27
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The relative multifractal analysis of a vector function in a metric space

Received 22 Mar 2024, Accepted 20 May 2024, Published online: 29 May 2024

References

  • N. Attia, On the multifractal analysis of the branching random walk in Rd, J. Theor. Probab. 27 (2014), pp. 1329–1349.
  • N. Attia, Relative multifractal spectrum, Commun. Korean Math. Soc. 33 (2018), pp. 459–471.
  • N. Attia, On the exact dimension of Mandelbrot measure, Probab. Math. Stat. 39(2) (2019), pp. 299–314.
  • N. Attia, On the multifractal analysis of covering number on the Galton Watson tree, J. Appl. Probab. Trust 56(1) (2019), pp. 265–281.
  • N. Attia, Hausdorff and packing dimensions of Mandelbrot measure, Int. J. Math. 31(09) (2020), p. 2050068.
  • N. Attia, On the multifractal analysis of branching random walk on Galton-Watson tree with random metric, J. Theor. Probab 34 (2021), pp. 90–102.
  • N. Attia, On the multifractal analysis of a non-standard branching random walk, Acta Sci. Math. (Szeged) 88 (2022), pp. 697–722.
  • N. Attia and M. Bel Haj Khalifa, Note on the multifractral formalism of covering number on the Galton-Watson tree, Kragujevac J. Math. 49(1) (2025), pp. 43–60.
  • N. Attia and A. Mahjoub, On the vectorial multifractal analysis in a metric space, AIMS Math. 8(10) (2023), pp. 23548–23565.
  • N. Attia and B. Selmi, A multifractal formalism for Hewitt-Stromberg measures, J. Geom. Anal. 31 (2019), pp. 825–862.
  • N. Attia, H. Jebali, and M.H. Khalifa, A note on fractal measures of cartesian product sets, Bull. Malays. Math. Sci. Soc. 44(6) (2021), pp. 4383–4404.
  • N. Attia, R. Guedri, and O. Guizani, Note on the multifractal measures of Cartesian product sets, Commun. Korean Math. Soc. 37(4) (2022), pp. 1073–1097.
  • H.K. Baek, Regularities of multifractal measures, Proc. Indian Acad. Sci 118 (2008), pp. 273–279.
  • F. Ben Nasr and J. Peyrière, Revisiting the multifractal analysis of measures, Revista Math. Ibro. 25 (2013), pp. 315–328.
  • F. Ben Nasr , I. Bhouri, and Y. Heurteaux, The validity of the multifractal formalism: results and examples, Adv. Math. 165 (2002), pp. 264–284.
  • A. Besicovitch, On the sum of digits of real numbers represented in the dyadic system, Math. Ann. 110 (1934), pp. 321–30.
  • A. Besicovitch, A general form of the covering principle and relative differentiation of additive function, Proc. Cambridge Philos. Soc. 41 (1945), pp. 103–110.
  • J.D. Biggins, Martingale convergence in the branching random walk, J. Appl. Probab. 14 (1977), pp. 25–37.
  • G. Brown, G. Michon, and J. Peyrière, On the multifractal analysis of mesures, J. Stat. Phys. 66 (1992), pp. 775–790.
  • J. Cole, Relative multifractal analysis, Chaos Solit. Fract. 11 (2000), pp. 2233–2250.
  • K.J. Falconer, The multifractal spectrum of statistically self-similar measures, J. Theoret. Probab. 7 (1994), pp. 681–702.
  • K.J. Falconer, Generalized dimensions of measures on self-affine sets, Nonlinearity 12 (1999), pp. 877–891.
  • D.J. Feng, Multifractal analysis of Bernoulli convolutions associated with Salem numbers, Adv. Math. 229 (2012), pp. 3052–3077.
  • D.J. Feng and K.S. Lau, Multifractal formalism for self-similar measures with weak separation condition, J. Math. Pures Appl. 92 (2009), pp. 407–428.
  • O. Guizani and N. Attia, A note on scaling properties of Hewitt-Stromberg measure, Filomat 36(10) (2022), pp. 3551–3559.
  • O. Guizani, A. Mahjoub, and N. Attia, On the Hewitt-Stromberg measure of product sets, Ann. Mat. Pura Appl. 200(2) (2020), pp. 867–879.
  • O. Guizani, A. Mahjoub, and N. Attia, Some relations between Hewitt-Stromberg premeasure and Hewitt-Stromberg measure, Filomat 37(1) (2023), pp. 13–20.
  • H. Haase, A contribution to measure and dimension of metric spaces, Math. Nachr. 124 (1985), pp. 45–55.
  • E. Hewitt and K. Stromberg, Real and Abstract Analysis. A Modern Treatment of the Theory of Functions of a Real Variable, Springer, New York, 1965.
  • R. Holley and E.C. Waymire, Multifractal dimensions and scaling exponents for strongly bounded random cascades, Ann. Appl. Probab. 2 (1992), pp. 819–845.
  • L. Huang, Q. Liu, and G. Wang, Multifractal analysis of Bernoulli measures on a class of homogeneous Cantor sets, J. Math. Anal. Appl. 491 (2020), p. 124362.
  • S. Jaffard, Formalisme multifractal pour les fonctions, Comptes Rendus Acad. Sc. Paris Série I 317 (1993), pp. 745–750.
  • S. Jaffard, Multifractal Formalism for functions, part I: Results valid for all functions, and part II: Selfsimilar functions, SIAM J. Math. Anal. 28(4) (1997), pp. 994 9970 and 971–998 994–970 and 971–998 .
  • S. Jurina, N. MacGregor, A. Mitchell, L. Olsen, and A. Stylianou, On the Hausdorff and packing measures of typical compact metric spaces, Aequationes Math. 92(4) (2018), pp. 709–735.
  • J.P. Kahane, Sur l'irrégularité locale du mouvement brownien, C. R. Acad. Sc. Paris 278 (1974), pp. 331–333.
  • J.P. Kahane and J. Peyrière, Sur certaines martingales de B. Mandelbrot, Adv. Math. 22 (1976), pp. 131–145.
  • Q. Liu and A. Rouault, On two measures defined on the boundary of a branching tree, in Classical and Modern Branching Processes (Minneapolis, MN, 1994), IMA Vol. Math. Appl., Vol. 84, Springer, New York, 1997, pp. 187–201.
  • A. Mahjoub and N. Attia, A relative vectorial multifractal formalism, Chaos, Solit. Fract. 160 (2022), p. 112221.
  • M. Menceur and A. Ben Mabrouk, A joint multifractal analysis of vector valued non Gibbs measures, Chaos Solit. Fract. 126 (2019), pp. 203–217.
  • G.M. Molchan, Scaling exponents and multifractal dimensions for independent random cascades, Commun. Math. Phys. 179 (1996), pp. 681–702.
  • L. Olsen, Random geometrically graph directed self-similar multifractals, Pitman Res. Notes Math. Ser. (1994).
  • L. Olsen, A multifractal formalism, Adv. in Math. 116 (1995), pp. 82–196. MR 1361481.
  • L. Olsen, Self-affine multifractal Sierpinski sponges in Rd, Pacific J. Math. 183 (1998), pp. 143–199.
  • S. Orey and S.J. Taylor, How often on a Brownian path does the law of iterated logarithm fail? Proc. London Math. Soc. 28 (1974), pp. 174–192.
  • P.Y. Pesin, Dimension type characteristics for invariant sets of dynamical systems, Russ. Math: Surv. 43 (1988), pp. 111–151.
  • J. Peyrière, Multifractal measures. Probabilistic and stochastic methods in analysis, with applications, Springer, Dordrecht, (1992), pp. 175–186.
  • R. Riedi and I. Scheuring, Conditional and relative multifractal spectra, Fractals 5(1) (1997), pp. 153–168.
  • M. Wu, The multifractal spectrum of some Moran measures, Sci. China. Ser. A Math. 48 (2005), pp. 97–112.
  • M. Wu, The singularity spectrum f(α) of some Moran fractals, Monatsh Math. 144 (2005), pp. 141–55.
  • M. Wu and J. Xiao, The singularity spectrum of some non-regularity moran fractals, Chaos Solit. Fract. 44 (2011), pp. 548–557.
  • J. Xiao and M. Wu, The multifractal dimension functions of homogeneous moran measure, Fractals 16 (2008), pp. 175–185.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.