322
Views
4
CrossRef citations to date
0
Altmetric
Special Section: Mitigation Pathways

Increasing the ambition of mitigation action in small emitters: the case of Mauritius

Pages 514-528 | Received 17 Jan 2020, Accepted 02 Feb 2021, Published online: 25 Feb 2021

References

  • 2050 Pathways Platform. (2017). 2050 Pathways: A Handbook. Institut du développement durable et des relations internationales (IDDRI).
  • Bassi, A. M., & Deenapanray, P. N. K. (2012). A green investment analysis using system dynamics modelling – The case study of Mauritius. Small States: Economic Review and Basic Statistics, 16(12), 65–79. https://doi.org/10.14217/smalst-2012-en
  • Caetano, T., Winker, H., & Depledge, J. (2020). Towards zero carbon and zero poverty: Integrating national climate change mitigation and sustainable development goals. Climate Policy, 20(7), 773–778. https://doi.org/10.1080/14693062.2020.1791404
  • Deenapanray, P. N. K., & Bassi, A. M. (2015). System dynamics modelling of the power sector in Mauritius. Environmental and Climate Technologies, 16(1), 20–35. https://doi.org/10.1515/rtuect-2015-0010
  • Emodi, N. V., Emodi, C. C., Murthy, G. P., & Emodi, A. S. A. (2017). Energy policy for low carbon development in Nigeria: A LEAP model application. Renewable and Sustainable Energy Reviews, 68(1), 247–261. https://doi.org/10.1016/j.rser.2016.09.118
  • Gao, Y., Gao, X., & Zhang, X. (2017). The 2 °C global temperature target and the evolution of the long-term goal of addressing climate change—from the United Nations framework Convention on climate change to the Paris Agreement. Engineering, 3(2), 272–278. https://doi.org/10.1016/J.ENG.2017.01.022
  • Government of Mauritius. (2009). Long-term energy strategy 2009-2025. Ministry of Renewable Energy and Public Utilities.
  • Höhne, N., den Elzen, M., & Escalante, D. (2014). Regional GHG reduction targets based on effort sharing: A comparison of studies. Climate Policy, 14(1), 122–147. https://doi.org/10.1080/14693062.2014.849452
  • Höhne, N., Fekete, H., den Elzen, M. G. J., Hof, A. F., & Kuramochi, T. (2018). Assessing the ambition of post-2020 climate targets: A comprehensive framework. Climate Policy, 18(4), 425–441. https://doi.org/10.1080/14693062.2017.1294046
  • IPCC. (2018). Global warming of 1.5°C. Intergovernmental Panel on Climate Change.
  • Kannan, R., & Strachan, N. (2009). Modelling the UK residential energy sector under long-term decarbonisation scenarios: Comparison between energy systems and sectoral modelling approaches. Applied Energy, 86(4), 416–428. https://doi.org/10.1016/j.apenergy.2008.08.005
  • Kuramochi, T., Höhne, N., Schaeffer, M., Cantzler, J., Hare, B., Deng, Y., Sterl, S., Hagemann, M., Rocha, M., Yanguas-Parra, P. A., Mir, G.-U.-H., Wong, L., El-Laboudy, T., Wouters, K., Deryng, D., & Blok, K. (2018). Ten key short-term sectoral benchmarks to limit warming to 1.5°C. Climate Policy, 18(3), 287–305. https://doi.org/10.1080/14693062.2017.1397495
  • Luderer, G., Vrontisi, Z., Bertram, C., Edelenbosch, O. Y., Pietzcker, R. C., Rogelj, J., De Boer, H. S., Drouet, L., Emmerling, J., Fricko, O., Fujimori, S., Havlík, P., Iyer, G., Keramidas, K., Kitous, A., Pehl, M., Krey, V., Riahi, K., Saveyn, B., … Kriegler, E. (2018). Residual fossil CO2 emissions in 1.5–2 °C pathways. Nature Climate Change, 8(7), 626–633. https://doi.org/10.1038/s41558-018-0198-6
  • Lugovoy, O., Feng, X.-Z., Gao, J., Li, J.-F., Liu, Q., Teng, F., & Zou, L.-L. (2018). Multi-model comparison of CO2 emissions peaking in China: Lessons from CEMF01 study. Advances in Climate Change Research, 9(1), 1–15. https://doi.org/10.1016/j.accre.2018.02.001
  • Maxwell Stamp. (2016). Energy efficiency / demand side management Master plan and action plan 2016–2030, energy efficiency management Office. Maxwell Stamp.
  • Ministry of Economic Development, Productivity and Regional Development. (1999). Economic and social indicators, Occasional Paper No. 312.
  • Nakata, T., Silva, D., & Rodionov, M. (2011). Application of energy system models for designing a low-carbon society. Progress in Energy and Combustion Science, 37(4), 462–502. https://doi.org/10.1016/j.pecs.2010.08.001
  • Nangombe, S., Zhou, T., Zhang, W., Wu, B., Hu, S., Zou, L., & Li, D. (2018). Record-breaking climate extremes in Africa under stabilized 1.5 °C and 2 °C global warming scenarios. Nature Climate Change, 8(5), 375–380. https://doi.org/10.1038/s41558-018-0145-6
  • Neehaul, N., Jeetah, P., & Deenapanray, P. N. K. (2020). Energy recovery from municipal solid waste in Mauritius: Opportunities and challenges. Environmental Development, 33, 100489. https://doi.org/10.1016/j.envdev.2019.100489
  • Pye, S., Broad, O., Bataille, C., Brockway, P., Daly, H. E., Freeman, R., Gambhir, A., Geden, O., Rogan, F., Sanghvi, S., Tomei, J., Vorushylo, I., & Watson, J. (2020). Modelling net-zero emissions energy systems requires a change in approach. Climate Policy, 21(2), 222–231. https://doi.org/10.1080/14693062.2020.1824891.
  • Raftery, A. E., Zimmer, A., Frierson, D. M. W., Startz, R., & Liu, P. (2017). Less than 2 °C warming by 2100 unlikely. Nature Climate Change, 7(9), 637–641. https://doi.org/10.1038/nclimate3352
  • Raupach, M. R., Davis, S. J., Peters, G. P., Andrew, R. M., Canadell, J. G., Ciais, P., Friedlingstein, P., Jotzo, F., van Vuuren, D. P., & Le Quéré, C., (2014). Sharing a quota on cumulative carbon emissions. Nature Climate Change, 4(10), 873–879. https://doi.org/10.1038/nclimate2384
  • Republic of Mauritius. (2015). Intended nationally determined contribution for the Republic of Mauritius.
  • Republic of Mauritius. (2016). Third National Communication Report to the UNFCCC. Republic of Mauritius.
  • Republic of Mauritius. (2019). Renewable energy Roadmap 2030 for the electricity sector. Ministry of Energy and Public Utilities.
  • Robiou du Pont, Y., & Meinshausen, M. (2018). Warming assessment of the bottom-up Paris Agreement emissions pledges. Nature Communications, 9(1), 4810. https://doi.org/10.1038/s41467-018-07223-9
  • Sanderson, B. M., O’Neill, B., & Tebaldi, C. (2016). What would it take to achieve the Paris temperature targets? Geophysical Research Letters, 43(13), 7133–7142. https://doi.org/10.1002/2016GL069563
  • Statistics Mauritius. (2016a). Digest of Environment Statistics. Ministry of Finance and Economic Development.
  • Statistics Mauritius. (2016b). Digest of demographic Statistics 2015. Ministry of Finance and Economic Development.
  • Statistics Mauritius. (2017). Digest of energy Statistics 2016. Ministry of Finance and Economic Development.
  • Statistics Mauritius. (2018a). Environment Statistics – 2017. Ministry of Finance and Economic Development.
  • Statistics Mauritius. (2018b). Digest of demographic Statistics 2017. Ministry of Finance and Economic Development.
  • Statistics Mauritius. (2018c). Energy and water Statistics – 2017. Ministry of Finance and Economic Development.
  • Statistics Mauritius. (2019). Environment Statistics – 2018. Ministry of Finance and Economic Development.
  • Statistics Mauritius. (2020a). Environment Statistics – 2019. Ministry of Finance and Economic Development.
  • Statistics Mauritius. (2020b). Energy and water Statistics – 2019. Ministry of Finance and Economic Development.
  • Tobarska, K. B., & Gillett, N. P. (2018). Cumulative carbon emissions budgets consistent with 1.5 °C global warming. Nature Climate Change, 8(4), 296–299. https://doi.org/10.1038/s41558-018-0118-9
  • UNFCCC. (2012). Report on the Workshop on equitable access to sustainable Development. Report No. (AWG-LCA 15): FCCC/AWGLCA/2012/INF.3/Rev.1.
  • UNFCCC. (2015). Decision 1/CP.21: Adoption of the Paris Agreement. Paris Climate Change Conference, Paris, France.
  • UNFCCC. (2016). Standardized baseline: Grid emission factor of Mauritius – version 01.0, ASB0019. CDM.
  • UNFCCC. (2019). Standardized baseline: Mauritius grid emission factor – version 01.0, ASB0046. CDM.
  • van Vuuren, D. P., Stehfest, E., Gernaat, D. E. H. J., van den Berg, M., Bijl, D. L., de Boer, H. S., Daioglou, V., Doelman, J. C., Edelenbosch, O. Y., Harmsen, M., Hof, A. F., & van Sluisveld, M. A. E. (2018). Alternative pathways to the 1.5 °C target reduce the need for negative emission technologies. Nature Climate Change, 8(5), 391–397. https://doi.org/10.1038/s41558-018-0119-8
  • Vrontisi, Z., Luderer, G., Saveyn, B., Keramidas, K., Lara, A. R., Baumstark, L., Bertram, C., de Boer, H. S., Drouet, L., Fragkiadakis, K., Fricko, O., Fujimori, S., Guivarch, C., Kitous, A., Krey, V., Kriegler, E., Broin, E. Ó., Paroussos, L., & van Vuuren, D. (2018). Enhancing global climate policy ambition towards a 1.5°C stabilization: A short-term multi-model assessment. Environmental Research Letters, 13(4), 044039. https://doi.org/10.1088/1748-9326/aab53e
  • Yu, S., Gao, X., Ma, C., & Zhai, L. (2011). Study on the concept of per capita cumulative emissions and allocation options. Advances in Climate Change Research, 2(2), 79–85. https://doi.org/10.3724/SP.J.1248.2011.00079

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.