247
Views
4
CrossRef citations to date
0
Altmetric
Research Papers

Calibration and advanced simulation schemes for the Wishart stochastic volatility model

& ORCID Icon
Pages 997-1016 | Received 23 May 2018, Accepted 14 Nov 2018, Published online: 11 Jan 2019

References

  • Ahdida, A. and Alfonsi, A., Exact and high-order discretization schemes for Wishart processes and their affine extensions. Ann. Appl. Probab., 2013, 23, 1025–1073. doi: 10.1214/12-AAP863
  • Andersen, L.B.G., Efficient simulation of the Heston stochastic volatility model. J. Comput. Finance, 2008, 11, 1–42. doi: 10.21314/JCF.2008.189
  • Bru, M., Wishart processes. J. Theor. Probab., 1991, 4, 725–751. doi: 10.1007/BF01259552
  • Christoffersen, P., Heston, S. and Jacobs, K., The shape and term structure of the index option smirk: Why multifactor stochastic volatility models work so well. Manage. Sci., 2009, 55, 1914–1932. doi: 10.1287/mnsc.1090.1065
  • Cont, R. and Da Fonseca, J., Dynamics of implied volatility surfaces. Quant. Finance, 2002, 2, 45–60. doi: 10.1088/1469-7688/2/1/304
  • Cox, J., Ingersoll, J. and Ross, S., A theory of the term structure of interest rates. Econometrica J. Econom. Soc., 1985, 385–407. doi: 10.2307/1911242
  • Cuchiero, C., Filipovic, D., Mayerhofer, E. and Teichmann, J., Affine processes on positive semidefinite matrices. Ann. Appl.Probab., 2011, 21, 397–463. doi: 10.1214/10-AAP710
  • Cui, Y., Rollin, S. and Germano, G., Full and fast calibration of the Heston stochastic volatility model. Eur. J. Oper. Res., 2017, 263, 625–638. doi: 10.1016/j.ejor.2017.05.018
  • Da Fonseca, J. and Grasselli, M., Riding on the smiles. Quant. Finance, 2011, 11, 1609–1632. doi: 10.1080/14697688.2011.615218
  • Da Fonseca, J., Grasselli, M. and Tebaldi, C., Option pricing when correlations are stochastic: An analytical framework. Rev. Derivatives Res., 2007, 10, 151–180. doi: 10.1007/s11147-008-9018-x
  • Da Fonseca, J. and Tebaldi, C., A multifactor volatility Heston model. Quant. Finance, 2008, 8, 591–604. doi: 10.1080/14697680701668418
  • Duffie, D., Filipović, D. and Schachermayer, W., Affine processes and applications in finance. Ann. Appl. Probab., 2003, 13, 984–1053. doi: 10.1214/aoap/1060202833
  • Fang, F. and Oosterlee, C., A novel pricing method for European options based on Fourier-cosine series expansions. SIAM. J. Sci. Comput., 2008, 31, 826–848. doi: 10.1137/080718061
  • Gauthier, P. and Possamaï, D., Prices expansion in the Wishart model. IUP J. Comput. Math., 2011, 4, 44–71.
  • Gauthier, P. and Possamaï, D., Efficient simulation of the Wishart model. IUP J. Comput. Math., 2012, 5, 14–58.
  • Gnoatto, A. and Grasselli, M., The explicit Laplace transform for the Wishart process. J. Appl. Probab., 2014a, 51, 640–656. doi: 10.1239/jap/1409932664
  • Gnoatto, A. and Grasselli, M., An affine multicurrency model with stochastic volatility and stochastic interest rates. SIAM J. Financ. Math., 2014b, 5, 493–531. doi: 10.1137/130922902
  • Grasselli, M. and Tebaldi, C., Solvable affine term structure models. Math. Finance, 2008, 18, 135–153. doi: 10.1111/j.1467-9965.2007.00325.x
  • Heston, S., A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Financ. Stud., 1993, 6, 327–343. doi: 10.1093/rfs/6.2.327
  • Imhof, J., Computing the distribution of quadratic forms in normal variables. Biometrika, 1961, 48, 419–426. doi: 10.1093/biomet/48.3-4.419
  • Kang, C., Kang, W. and Lee, J., Exact simulation of Wishart multidimensional stochastic volatility model. Oper. Res., 2017, 65, 1190–1206. doi: 10.1287/opre.2017.1636
  • Kotz, S., Johnson, N. and Boyd, D., Series representations of distributions of quadratic forms in normal variables. II. Non-central case. Ann. Math. Stat., 1967, 38, 838–848. doi: 10.1214/aoms/1177698878
  • Kourouklis, S. and Moschopoulos, P., On the distribution of the trace of a noncentral Wishart matrix. Metron, 1985, 43, 85–92.
  • Liu, H., Tang, Y. and Zhang, H., A new chi-square approximation to the distribution of non-negative definite quadratic forms in non-central normal variables. Comput. Stat. Data. Anal., 2009, 53, 853–856. doi: 10.1016/j.csda.2008.11.025
  • Mayerhofer, E., Pfaffel, O. and Stelzer, R., On strong solutions for positive definite jump diffusions. Stoch. Process. Their. Appl., 2011, 121, 2072–2086. doi: 10.1016/j.spa.2011.05.006
  • Van Loan, C., Computing integrals involving the matrix exponential. IEEE. Trans. Automat. Contr., 1978, 23, 395–404. doi: 10.1109/TAC.1978.1101743
  • Wang, S., Kuo, T. and Hsu, C., Trace bounds on the solution of the algebraic matrix Riccati and Lyapunov equation. IEEE. Trans. Automat. Contr., 1986, 31, 654–656. doi: 10.1109/TAC.1986.1104370
  • Wilcox, R.M., Exponential operators and parameter differentiation in quantum physics. J. Math. Phys., 1967, 8, 962–982. doi: 10.1063/1.1705306

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.