399
Views
9
CrossRef citations to date
0
Altmetric
Research Papers

On the first hitting time density for a reducible diffusion process

&
Pages 723-743 | Received 04 Jul 2019, Accepted 05 Jan 2020, Published online: 19 Feb 2020

References

  • Abate, J., Choudhury, G.L. and Whitt, W., An introduction to numerical transform inversion and its application to probability models. In Computational Probability, edited by W. Grassmann, pp. 257–323, 2000 (Springer: Berlin).
  • Abramowitz, M. and Stegun, I.A., Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables, Vol. 55, 1965 (Dover Publications: New York).
  • Alili, L., Patie, P. and Pedersen, J.L., Representations of the first hitting time density of an Ornstein–Uhlenbeck process. Stoch. Models, 2005, 21(4), 967–980. doi: 10.1080/15326340500294702
  • Avellaneda, M. and Lee, J.-H., Statistical arbitrage in the US equities market. Quant. Finance, 2010, 10(7), 761–782. doi: 10.1080/14697680903124632
  • Avellaneda, M. and Zhu, J., Distance to default. Risk, 2001, 14(12), 125–129.
  • Black, F. and Cox, J.C., Valuing corporate securities: Some effects of bond indenture provisions. J. Finance., 1976, 31(2), 351–367. doi: 10.1111/j.1540-6261.1976.tb01891.x
  • Bluman, G.W., On the transformation of diffusion processes into the Wiener process. SIAM. J. Appl. Math., 1980, 39(2), 238–247. doi: 10.1137/0139021
  • Borodin, A.N. and Salminen, P., Handbook of Brownian Motion-facts and Formulae, 2012 (Birkhäuser: Basel).
  • Breiman, L., First exit times from a square root boundary. In Fifth Berkeley Symposium, Vol. 2, pp. 9–16, 1967 (Berkeley).
  • Cheridito, P. and Xu, Z., Pricing and hedging CoCos, 2015. Available online at SSRN: https://ssrn.com/abstract=2201364.
  • Cherkasov, I.D., On the transformation of the diffusion process to a Wiener process. Theor. Probab. Appl., 1957, 2(3), 373–377. doi: 10.1137/1102028
  • Coculescu, D., Geman, H. and Jeanblanc, M., Valuation of default-sensitive claims under imperfect information. Finance Stoch., 2008, 12(2), 195–218. doi: 10.1007/s00780-007-0060-6
  • Collin-Dufresne, P. and Goldstein, R.S., Do credit spreads reflect stationary leverage ratios? J. Finance, 2001, 56(5), 1929–1957. doi: 10.1111/0022-1082.00395
  • Daniels, H.E., Approximating the first crossing-time density for a curved boundary. Bernoulli, 1996, 2, 133–143. doi: 10.2307/3318547
  • De Prado, M.L., Advances in Financial Machine Learning, 2018 (John Wiley & Sons: Hoboken, NJ).
  • Di Nardo, E., Nobile, A., Pirozzi, E. and Ricciardi, L., A computational approach to first-passage-time problems for Gauss–Markov processes. Adv. Appl. Probab., 2001, 33(2), 453–482. doi: 10.1017/S0001867800010892
  • Duffy, D.J., Finite Difference Methods in Financial Engineering: A Partial Differential Equation Approach, 2013 (John Wiley & Sons: Chichester).
  • Einstein, A., Über die von der molekularkinetischen theorie der wärme geforderte bewegung von in ruhenden flüssigkeiten suspendierten teilchen. Ann. Phys., 1905, 322(8), 549–560. doi: 10.1002/andp.19053220806
  • Fortet, R., Les fonctions altatoires du type de markoff associees a certaines equations linlaires aux dfrivees partielles du type parabolique. J. Math. Pures Appl., 1943, 22, 177–243.
  • Göing-Jaeschke, A. and Yor, M., A clarification note about hitting times densities for Ornstein–Uhlenbeck processes. Finance Stoch., 2003, 7(3), 413–415. doi: 10.1007/s007800200092
  • Horowitz, J., Measure-valued random processes. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 1985, 70(2), 213–236. doi: 10.1007/BF02451429
  • Hull, J.C. and White, A., Valuing credit default swaps II: Modeling default correlations. J. Derivatives, 2001, 8(3), 12–21. doi: 10.3905/jod.2001.319153
  • Hyer, T., Lipton, A., Pugachevsky, D. and Qui, S., A hidden-variable model for risky bonds. Bankers Trust working paper, 1999.
  • Jiang, Y., Macrina, A. and Peters, G., Multiple barrier-crossings of an Ornstein-Uhlenbeck diffusion in consecutive periods, 2019. Available online at SSRN 3334142.
  • Johansson, F., et al., mpmath: A Python library for arbitrary-precision floating-point arithmetic (version 0.18), 2013. Available online at: http://mpmath.org/.
  • Kolk, M. and Pedas, A., Numerical solution of Volterra integral equations with weakly singular kernels which may have a boundary singularity. Math. Model. Anal., 2009, 14(1), 79–89. doi: 10.3846/1392-6292.2009.14.79-89
  • Kolk, M. and Pedas, A., Numerical solution of Volterra integral equations with singularities. Front. Math. China, 2013, 8(2), 239–259. doi: 10.1007/s11464-013-0292-z
  • Landis, E., Second Order Equations of Elliptic and Parabolic Type, 1997 (American Mathematical Soc: Providence, RI).
  • Leblanc, B., Renault, O. and Scaillet, O., A correction note on the first passage time of an Ornstein-Uhlenbeck process to a boundary. Finance Stoch., 2000, 4(1), 109–111. doi: 10.1007/s007800050007
  • Leblanc, B. and Scaillet, O., Path dependent options on yields in the affine term structure model. Finance Stoch., 1998, 2(4), 349–367. doi: 10.1007/s007800050045
  • Linetsky, V., Computing hitting time densities for CIR and OU diffusions: Applications to mean-reverting models. J. Comput. Finance, 2004, 7, 1–22. doi: 10.21314/JCF.2004.120
  • Linz, P., Analytical and Numerical Methods for Volterra Equations, 1985 (SIAM: Philadelphia, PA).
  • Lipton, A., Mathematical Methods For Foreign Exchange: A Financial Engineer's Approach, 2001 (World Scientific: Singapore).
  • Lipton, A., Financial Engineering: Selected Works of Alexander Lipton, 2018 (World Scientific: Singapore).
  • Lipton, A. and Kaushansky, V., On the first hitting time density of an Ornstein-Uhlenbeck process, 2018. arXiv preprint arXiv:1810.02390.
  • Lipton, A., Kaushansky, V. and Reisinger, C., Semi-analytical solution of a McKean-Vlasov equation with feedback through hitting a boundary, 2018. arXiv preprint arXiv:1808.05311.
  • Lipton, A. and Savescu, I., Pricing credit default swaps with bilateral value adjustments. Quant. Finance, 2014, 14(1), 171–188. doi: 10.1080/14697688.2013.828239
  • Lipton, A. and Sepp, A., Credit value adjustment in the extended structural default model. In The Oxford Handbook of Credit Derivatives, edited by A. Lipton and A. Rennie, pp. 406–463, 2011a (Oxford University Press: Oxford).
  • Lipton, A. and Sepp, A., Filling the gaps. Risk Magazine, 2011b, 24(11), 66–71.
  • Maleknejad, K., Hashemizadeh, E. and Ezzati, R., A new approach to the numerical solution of Volterra integral equations by using Bernstein's approximation. Commun. Nonlinear Sci. Numer. Simul., 2011, 16(2), 647–655. doi: 10.1016/j.cnsns.2010.05.006
  • Maleknejad, K., Sohrabi, S. and Rostami, Y., Numerical solution of nonlinear Volterra integral equations of the second kind by using Chebyshev polynomials. Appl. Math. Comput., 2007, 188(1), 123–128.
  • Martin, R., Craster, R. and Kearney, M., Infinite product expansion of the Fokker–Planck equation with steady-state solution. Proc. R. Soc. A, 2015, 471(2179), 20150084. doi: 10.1098/rspa.2015.0084
  • Martin, R., Kearney, M.J. and Craster, R.V., Long-and short-time asymptotics of the first-passage time of the Ornstein–Uhlenbeck and other mean-reverting processes. J. Phys. A Math. Theor., 2019.
  • Novikov, A.A., On stopping times for a Wiener process. Theor. Probab. Appl., 1971, 16(3), 449–456. doi: 10.1137/1116049
  • Novikov, A., Frishling, V. and Kordzakhia, N., Approximations of boundary crossing probabilities for a Brownian motion. J. Appl. Probab., 1999, 36(4), 1019–1030. doi: 10.1239/jap/1032374752
  • Polyanin, A.D. and Manzhirov, A.V., Handbook of Integral Equations, 1998 (CRC Press: Boca Raton, FL).
  • Pötzelberger, K. and Wang, L., Boundary crossing probability for Brownian motion. J. Appl. Probab., 2001, 38(1), 152–164. doi: 10.1239/jap/996986650
  • Ricciardi, L.M., On the transformation of diffusion processes into the Wiener process. J. Math. Anal. Appl., 1976, 54(1), 185–199. doi: 10.1016/0022-247X(76)90244-4
  • Ricciardi, L.M. and Sato, S., First-passage-time density and moments of the Ornstein–Uhlenbeck process. J. Appl. Probab., 1988, 25(1), 43–57. doi: 10.2307/3214232
  • Shepp, L.A., A first passage problem for the Wiener process. Ann. Math. Statist., 1967, 38(6), 1912–1914. doi: 10.1214/aoms/1177698626
  • Smith, C.E., A Laguerre series approximation for the probability density of the first passage time of the Ornstein–Uhlenbeck process. In Noise in Physical Systems and 1/f Fluctuations, edited by T. Musha, S. Sato and M. Yamamoto, 1991 (Ohmsha: Tokyo).
  • Tikhonov, A.N. and Samarskii, A.A., Equations of Mathematical Physics, 1963 (Dover: New York). English translation.
  • Von Smoluchowski, M., Zur kinetischen theorie der brownschen molekularbewegung und der suspensionen. Ann. Phys., 1906, 326(14), 756–780. doi: 10.1002/andp.19063261405
  • Yi, C., On the first passage time distribution of an Ornstein–Uhlenbeck process. Quant. Finance, 2010, 10(9), 957–960. doi: 10.1080/14697680903373684

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.