3,352
Views
35
CrossRef citations to date
0
Altmetric
Research Papers

Deep learning volatility: a deep neural network perspective on pricing and calibration in (rough) volatility models

, &
Pages 11-27 | Received 20 Jun 2019, Accepted 24 Aug 2020, Published online: 26 Oct 2020

References

  • Alòs, E., León, J. and Vives, J., On the short-time behavior of the implied volatility for jump-diffusion models with stochastic volatility. Financ. Stoch., 2007, 11(4), 571–589.
  • Alòs, E., García-Lorite, D. and Muguruza, A., On smile properties of volatility derivatives and exotic products: Understanding the VIX skew. arXiv:1808.03610, 2018.
  • Antonov, A., Konikov, M. and Spector, M., SABR spreads its wings. Risk, 2013 (August), 58–63.
  • Avellaneda, M., Carelli, A. and Stella, F., Following the Bayes path to option pricing. J. Comput. Intell. Financ., 1998.
  • Barron, A.R., Approximation and estimation bounds for artificial neural networks. Mach. Learn., 1994, 14(1), 115–133.
  • Bayer, C., Friz, P. and Gatheral, J., Pricing under rough volatility. Quant. Finance, 2016, 16(6), 1–18.
  • Bayer, C., Friz, P., Gassiat, P., Martin, J. and Stemper, B., A regularity structure for rough volatility. arXiv:1710.07481, 2017a.
  • Bayer, C., Friz, P., Gulisashvili, A., Horvath, B. and Stemper, B., Short-time near the money skew in rough fractional stochastic volatility models. arXiv:1703.05132, 2017b.
  • Bayer, C., Horvath, B., Muguruza, A., Stemper, B. and Tomas, M., On deep calibration of (rough) stochastic volatility models. Preprint, arXiv:1908.08806, 2019.
  • Bayer, C. and Stemper, B. Deep calibration of rough stochastic volatility models. Preprint, arXiv:1810.03399, October 2018.
  • Bennedsen, M., Lunde, A. and Pakkanen, M.S., Hybrid scheme for Brownian semistationary processes. Financ. Stoch., 2017, 21(4), 931–965.
  • Bergomi, L., Stochastic Volatility Modeling. Chapman & Hall/CRC financial mathematical series, 2015 (Chapman & Hall/CRC).
  • Buehler, H., Gonon, L., Teichmann, J. and Wood, B., Deep hedging. Preprint, arXiv:1802.03042, 2018.
  • Chen, B., Osterlee, C.W. and Van Der Weide, H., Efficient unbiased simulation scheme for the SABR stochastic volatility model, 2011.
  • De Spiegeleer, J., Madan, D., Reyners, S. and Schoutens, W., Machine learning for quantitative finance: Fast derivative pricing, hedging and fitting. SSRN:3191050, 2018.
  • Dimitroff, G., Röder, D. and Fries, C.P., Volatility model calibration with convolutional neural networks. Preprint, SSRN:3252432, 2018.
  • Doléans-Dade, C., Quelques applications de la formule de changement de variables pour les semimartingales. Z. Wahrscheinlichkeitstheorie verwandte Gebiete, 1970, 16(3), 181–194.
  • El Euch, O. and Rosenbaum, M., The characteristic function of rough Heston models. To appear in Mathematical Finance.
  • El Euch, O. and Rosenbaum, M., Perfect hedging in rough Heston models, to appear in The Annals of Applied Probability, 2018.
  • Eldan, R. and Shamir, O., The power of depth for feedforward neural networks. JMLR: Workshop and Conference Proceedings, Vol. 49, pp. 1–34, 2016.
  • Ferguson, R. and Green, A., Deeply learning derivatives. Preprint arXiv:1809.02233, 2018.
  • Fukasawa, M., Asymptotic analysis for stochastic volatility: Martingale expansion. Financ. Stoch., 2011, 15(4), 635–654.
  • Gatheral, J., A parsimonious arbitrage-free implied volatility parameterization with application to the valuation of volatility derivatives. Presentation at Global Derivatives, 2004.
  • Gatheral, J. and Jacquier, A., Arbitrage-free SVI volatility surfaces. Quant. Finance, 2014, 14(1), 59–71.
  • Gatheral, J., Jaisson, T. and Rosenbaum, M., Volatility is rough. Quant. Finance, 2018, 18(6), 933–949.
  • Goodfellow, I., Bengio, Y. and Courville, A., Deep Learning, 2016 (MIT Press).
  • Gulisashvili, A., Horvath, B. and Jacquier, A., On the probability of hitting the boundary for Brownian motions on the SABR plane. Electron. Commun. Probab., 2016, 21(75), 1–13.
  • Gulisashvili, A., Horvath, B. and Jacquier, A., Mass at zero in the uncorrelated SABR model. Quant. Finance, 2018, 18(10), 1753–1765.
  • Hagan, P., Kumar, D., Lesniewski, A. and Woodward, D., Managing smile risk. Wilmott Mag., 2002, (September), 84–108.
  • Hagan, P., Lesniewski, A. and Woodward, D., Probability distribution in the SABR model of stochastic volatility. In Large Deviations and Asymptotic Methods in Finance. Springer Proceedings in Mathematics and Statistics, Vol. 110, 2015.
  • Hendriks, S. and Martini, C., The extended SSVI volatility surface. Preprint, SSRN:2971502, 2017.
  • Hernandez, A., Model calibration with neural networks. Risk, 2017.
  • Hornik, K., Approximation capabilities of multilayer feedforward networks. Neural Netw., 1991, 4(2), 251–257.
  • Hornik, K., Stinchcombe, M. and White, H., Multilayer feedforward networks are universal approximators. Neural Netw., 1989, 2(5), 359–366.
  • Hornik, K., Stinchcombe, M. and White, H., Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks. Neural Netw., 1990, 3(5), 551.560
  • Horvath, B. and Reichmann, O., Dirichlet forms and finite element methods for the SABR model. SIAM J. Financ. Math., May 2018, 9(2), 716–754.
  • Horvath, B., Jacquier, A. and Lacombe, C., Asymptotic behaviour of randomised fractional volatility models. arXiv:1708.01121, 2017a.
  • Horvath, B., Jacquier, A. and Muguruza, A., Functional central limit theorems for rough volatility. arXiv:1711.03078, 2017b.
  • Hutchinson, J.M., Lo, A.W. and Poggio, T., A nonparametric approach to pricing and hedging derivative securities via learning networks. J. Financ., 1994, 49(3), 851–889.
  • Jacquier, A., Martini, C. and Muguruza, A., On VIX futures in the rough Bergomi model. Quant. Finance, 2018a, 18(1), 45–61.
  • Jacquier, A., Pakkanen, M. and Stone, H., Pathwise large deviations for the rough Bergomi model. J. Appl. Probab., 2018b, 55(4), 1078–1092.
  • Ioffe, S. and Szegedy, C., Batch normalisation: Accelerating deep network training by reducing internal covariate shift. Preprint, arXiv:1502.03167, 2015.
  • Kienitz, J. and Wetterau, D., Financial Modelling: Theory, Implementation and Practice, 2013 (Wiley).
  • Kondratyev, A., Curve dynamics with artificial neural networks. Risk, May 2018.
  • Kraft, D., A Software Package for Sequential Quadratic Programming. DFVLR-FB, pp. 88–28, 1988.
  • Leitao Rodriguez, A., Grzelak, L.A. and Oosterlee, C.W., On an efficient multiple time step Monte Carlo simulation of the SABR model. Quant. Finance, 2017, 17(10), 1549–1565.
  • Levenberg, K., A method for the solution of certain non-linear problems in least squares. Quart. Appl. Math., 1944, 2, 164–168.
  • Marquardt, D., An algorithm for least-Squares estimation of nonlinear parameters. SIAM J. Appl. Math., 1963, 11(2), 431–441.
  • McGhee, W.A., An artificial neural network representation of the SABR stochastic volatility model. Preprint SSRN:3288882, 2018.
  • Mhaskar, H.N., Approximation properties of a multilayered feedforward artificial neural network. Adv. Comput. Math., 1993, 1(1), 61–80.
  • Nelder, J.A. and Mead, R., A simplex method for function minimization. Comp. J., 1965, 7, 308–313.
  • Nocedal, J. and Wright, S., Numerical Optimization. Springer Series in Operations Research and Financial Engineering, 2006 (Springer-Verlag: New York).
  • Powell, M.J.D., A direct search optimization method that models the objective and constraint functions by linear interpolation. In Advances in Optimization and Numerical Analysis, edited by S. Gomez and J.-P. Hennart, pp. 51–67, 1994 (Kluwer Academic: Dordrecht).
  • Rios, L.M. and Sahinidis, N.V., Derivative-free optimization: A review of algorithms and comparison of software implementations. J. Global Optim., 2013, 56(3), 1247–1293.
  • Schoutens, W., Simons, E. and Tistaert, J., A perfect calibration! Now what? Wilmott Mag., March 2004, 66–78.
  • Shaham, U., Cloninger, A. and Coifman, R.R., Provable approximation properties for deep neural networks. Appl. Comput. Harmon. Anal., 2018, 44(3), 537–557.
  • Storn, R. and Price, K., A simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim., 1997, 11(4), 341–359.
  • Zhu, C., Byrd, R.H. and Nocedal, J., L-BFGS-B: Algorithm 778: L-BFGS-B, FORTRAN routines for large scale bound constrained optimization. ACM Trans. Math. Softw., 1997, 23(4), 550–560.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.