272
Views
0
CrossRef citations to date
0
Altmetric
Research Papers

Closed-form option pricing for exponential Lévy models: a residue approach

ORCID Icon &
Pages 251-278 | Received 03 Mar 2022, Accepted 22 Nov 2022, Published online: 15 Dec 2022

References

  • Abramowitz, M. and Stegun, I., Handbook of Mathematical Functions, 1972 (Dover Publications: Mineola, NY).
  • Aguilar, J.P., On expansions for the Black–Scholes prices and hedge parameters. J. Math. Anal. Appl., 2019, 478(2), 973–989.
  • Aguilar, J.P., Pricing path-independent payoffs with exotic features in the fractional diffusion model. Fractal Fract., 2020a, 4(2), 16.
  • Aguilar, J.P., Some pricing tools for the variance gamma model. Int. J. Theor. Appl. Finance, 2020b, 23(4), 2050025.
  • Aguilar, J.P., Explicit option valuation in the exponential NIG model. Quant. Finance, 2021a, 21(8), 1281–1299.
  • Aguilar, J.P., The value of power-related options under spectrally negative Lévy processes. Rev. Deriv. Res., 2021b, 24, 173–196.
  • Aguilar, J.P. and Korbel, J., Simple formulas for pricing and hedging European options in the finite moment log-stable model. Risks, 2019, 7(2), 36.
  • Andersen, L. and Lipton, A., Asymptotics for exponential Lévy processes and their volatility smile: Survey and new results. Int. J. Theor. Appl. Finance, 2013, 16(1), 1350001.
  • Asmussen, S. and Klüppelberg, C., Large deviations results for subexponential tails, with applications to insurance risk. Stoch. Process. Their Appl., 1996, 64(1), 103–125.
  • Avramidis, A.N. and L'Ecuyer, P., Efficient Monte Carlo and quasi–Monte Carlo option pricing under the variance gamma model. Manag. Sci., 2006, 52(12), 1930–1944.
  • Barndorff-Nielsen, O., Exponentially decreasing distributions for the logarithm of particle size. Proc. R Soc. Lond., 1977, 353, 401–419.
  • Barndorff-Nielsen, O., Normal inverse Gaussian distributions and the modeling of stock returns. Research report no 300, Department of Theoretical Statistics, Aarhus University, 1995.
  • Barndorff-Nielsen, O., Normal inverse Gaussian distributions and stochastic volatility models. Scand. J. Stat., 1997, 24(1), 1–13.
  • Barndorff-Nielsen, O., Kent, J. and Sørensen, M., Normal variance-mean mixtures and z-distributions. Int. Stat. Rev., 1982, 50(2), 145–159.
  • Barndorff-Nielsen, O.E. and Levendorskii, S.Z., Feller processes of normal inverse Gaussian type. Quant. Finance, 2001, 1(3), 318–331.
  • Barndorff-Nielsen, O.E., Mikosch, T. and Resnick, S.I., Lévy Processes: Theory and Applications, 2001 (Birkhäuser: Boston, MA).
  • Bateman, H., Tables of Integral Transforms (vol. I and II). 1954 (McGraw-Hill Book Company: New York).
  • Bates, D.S., Jumps and stochastic volatility: Exchange rate processes implicit in deutsche mark options. Rev. Financ. Stud., 1996, 9(1), 69–107.
  • Benth, F.E., Groth, M. and Kettler, P.C., A quasi-Monte Carlo algorithm for the normal inverse Gaussian distribution and valuation of financial derivatives. Int. J. Theor. Appl. Finance, 2006, 9(6), 843–867.
  • Bertoin, J., Lévy Processes, 1996 (Cambridge University Press: Cambridge, New York, Melbourne).
  • Bertrand, J., Bertrand, P. and Ovarlez, J., The Mellin transform. In The Transforms and Applications Handbook: Second Edition, edited by A.D. Poularikas, 2000 (CRC Press LLC: Boca Raton).
  • Boyarchenko, M., Fast simulation of Lévy processes. Available at SSRN 2138661, 2012.
  • Boyarchenko, S. and Levendorskii, S., Generalizations of the Black–Scholes equation for truncated Lévy processes. Working Paper, University of Pennsylvania, 1999.
  • Boyarchenko, S. and Levendorskii, S., Option pricing for truncated Lévy processes. Int. J. Theor. Appl. Finance, 2000, 3(3), 549–552.
  • Boyarchenko, S.I. and Levendorski iˇ, S.Z., Non-Gaussian Merton-Black–Scholes Theory, volume 9 of Adv. Ser. Stat. Sci. Appl. Probab. ed. 2002 (World Scientific Publishing Co: River Edge, NJ).
  • Boyarchenko, S. and Levendorskii, S., Barrier options and touch-and-out options under regular Lévy processes of exponential type. Ann. Appl. Probab., 2002a, 12(4), 1261–1298.
  • Boyarchenko, S.I. and Levendorskii, S.Z., Perpetual American options under Lévy processes. SIAM J. Control Optim., 2002b, 40(6), 1663–1696.
  • Boyarchenko, S. and Levendorskii, S., New efficient versions of Fourier transform method in applications to option pricing. Available at SSRN 1846633, 2011.
  • Boyarchenko, S. and Levendorskii, S., Efficient Laplace inversion, Wiener–Hopf factorization and pricing lookbacks. Int. J. Theor. Appl. Finance, 2013, 16(3), 1350011.
  • Boyarchenko, M. and Levendorskii, S., Pricing barrier options and credit default swaps (CDS) in spectrally one-sided Lévy models: The parabolic Laplace inversion method. Quant. Finance, 2015, 15(3), 421–441.
  • Boyarchenko, S.I. and Levendorski iˇ, S.Z., Efficient variations of Fourier transform in applications to option pricing. J. Comput. Finance, 2015, 18(2), 57–90.
  • Boyarchenko, S. and Levendorski iˇ, S., Sinh-acceleration: Efficient evaluation of probability distributions, option pricing, and Monte Carlo simulations. Int. J. Theor. Appl. Finance, 2019, 22(3), 1950011.
  • Boyarchenko, S. and Levendorskii, S., Conformal accelerations method and efficient evaluation of stable distributions. Acta Appl. Math., 2020a, 169(1), 711–765.
  • Boyarchenko, S. and Levendorskii, S., Static and semistatic hedging as contrarian or conformist bets. Math. Finance, 2020b, 30(3), 921–960.
  • Boyarchenko, S. and Levendorskii, S., Efficient evaluation of expectations of functions of a Lévy process and its extremum. arXiv preprint arXiv:2207.02793, 2022a.
  • Boyarchenko, S. and Levendorskii, S., Efficient evaluation of expectations of functions of a stable Lévy process and its extremum. arXiv preprint arXiv:2209.12349, 2022b.
  • Boyarchenko, S. and Levendorskii, S., Lévy models amenable to efficient calculations. arXiv preprint arXiv:2207.02359, 2022c.
  • Boyarchenko, S., Levendorskii, S., Kirkby, J.L. and Cui, Z., SINH-acceleration for B-spline projection with option pricing applications. Int. J. Theor. Appl. Finance, 2022, 24(8), 2150040.
  • Brenner, M. and Subrahmanyam, M.G., A simple approach to option valuation and hedging in the Black–Scholes model. Financ. Anal. J., 1994, 50, 25–28.
  • Brummelhuis, R. and Chan, R.T.L., A radial basis function scheme for option pricing in exponential Lévy models. Appl. Math. Finance, 2014, 21(3), 238–269.
  • Carr, P., Geman, H., Madan, D. and Yor, M., The fine structure of asset returns: An empirical investigation. J. Bus., 2002, 75(2), 305–333.
  • Carr, P. and Madan, D., Option valuation using the fast Fourier transform. J. Comput. Finance, 1999, 2, 61–73.
  • Carr, P. and Wu, L., The finite moment log stable process and option pricing. J. Finance, 2003a, 58(2), 753–777.
  • Carr, P. and Wu, L., What type of process underlies options? A simple robust test. J. Finance, 2003b, 58(6), 2581–2610.
  • Chan, T., Some applications of Levy process in insurance and finance. Finance, 2004, 25, 71–94.
  • Chan, R.T.L., Adaptive radial basis function methods for pricing options under jump-diffusion models. Comput. Econ., 2016, 47(4), 623–643.
  • Cont, R. and Tankov, P., Financial Modelling with Jump Processes, 2004 (Chapman & Hall: New York).
  • Cont, R. and Voltchkova, E., A finite difference scheme for option pricing in jump diffusion and exponential Lévy models. SIAM J. Numer. Anal., 2005, 43(4), 1596–1626.
  • Cui, Z., Kirkby, J.L. and Nguyen, D., A data-driven framework for consistent financial valuation and risk measurement. Eur. J. Oper. Res., 2021, 289(1), 381–398.
  • De Innocentis, M. and Levendorskii, S., Pricing discrete barrier options and credit default swaps under Lévy processes. Quant. Finance, 2014, 14(8), 1337–1365.
  • De Innocentis, M. and Levendorskii, S., Calibration and backtesting of the Heston model for counterparty credit risk. Available at SSRN 2757008, 2016.
  • Embrechts, P., Actuarial versus financial pricing of insurance. J. Risk Finance, 2000, 1(4), 17–26.
  • Embrechts, P. and Maejima, M., An introduction to the theory of selfsimilar stochastic processes. Int. J. Mod. Phys., 2000, B14, 1399–1420.
  • Fang, F. and Oosterlee, C.W., A novel pricing method for European options based on Fourier cosine series expansions. SIAM J. Sci. Comput., 2008, 31, 826–848.
  • Feng, L. and Linetsky, V., Pricing discretely monitored barrier options and defaultable bonds in Levy process models: A fast Hilbert transform approach. Math. Finance, 2008, 18(3), 337–384.
  • Figueroa-López, J.E. and Forde, M., The small-maturity smile for exponential Lévy models. SIAM J. Financ. Math., 2012, 3(1), 33–65.
  • Figueroa-López, J.E., Lancette, S.R, Lee, K. and Mi, Y., Estimation of NIG and VG models for high frequency financial data. In Handbook of Modeling High-Frequency Data in Finance, edited by F. Viens, M.C. Mariani and I. Florescu, 2012 (John Wiley & Son: Hoboken, NJ).
  • Flajolet, P., Gourdon, X. and Dumas, P., Mellin transforms and asymptotics: Harmonic sums. Theor. Comput. Sci., 1995, 144, 3–58.
  • Frontczak, R. and Schobel, R., On modified Mellin transforms, Gauss–Laguerre quadrature, and the valuation of American call options. J. Comput. Appl. Math., 2010, 234(5), 1559–1571.
  • Fusai, G., Marazzina, D. and Marena, M., Pricing discretely monitored Asian options by maturity randomization. SIAM J. Financ. Math., 2011, 2(1), 383–403.
  • Griffiths, P. and Harris, J., Principles of Algebraic Geometry, 1978 (Wiley & Sons: Hoboken, NJ).
  • Guardasoni, C., Rodrigo, M.R. and Sanfelici, S., A Mellin transform approach to barrier option pricing. IMA J. Manag. Math., 2020, 31(1), 49–67.
  • Heston, S., A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Financ. Stud., 1993, 6(2), 327–343.
  • Heston, S.L. and Rossi, A.G., A spanning series approach to options. Rev. Asset Pricing Stud., 2016, 7(1), 2–42.
  • Jackson, K.R., Jaimungal, S. and Surkov, V., Fourier space time-stepping for option pricing with Lévy models. J. Comput. Finance, 2008, 12(2), 1–29.
  • Jarrow, R. and Rudd, A., Approximate option valuation for arbitrary stochastic processes. J. Financ. Econ., 1982, 10, 347–369.
  • Jondeau, E. and Rockinger, M., Gram–Charlier densities. J. Econ. Dyn. Control, 2001, 25, 1457–1483.
  • Kalemanova, A., Schmid, B. and Werner, R., The normal inverse Gaussian distribution for synthetic CDO pricing. J. Deriv., 2007, 14(3), 80–94.
  • Kirkby, J.L., Efficient option pricing by frame duality with the fast Fourier transform. SIAM J. Financ. Math., 2015, 6(1), 713–747.
  • Kirkby, J.L., Robust barrier option pricing by frame projection under exponential Lévy dynamics. Appl. Math. Finance, 2017, 24(4), 337–386.
  • Kirkby, J.L., American and exotic option pricing with jump diffusions and other Levy processes. J. Comput. Finance, 2018, 22(3), 89–148.
  • Kirkby, J.L. and Deng, S., Swing option pricing by dynamic programming with b-spline density projection. Int. J. Theor. Appl. Finance, 2019, 22(8), 1950038.
  • Kirkby, J.L., Mitra, S. and Nguyen, D., An analysis of dollar cost averaging and market timing investment strategies. Eur. J. Oper. Res., 2020, 286(3), 1168–1186.
  • Kirkby, J.L. and Nguyen, D., Equity-linked guaranteed minimum death benefits with dollar cost averaging. Insur. Math. Econ., 2021, forthcoming. https://ssrn.com/abstract=3833502
  • Koponen, I., Analytic approach to the problem of convergence of truncated Lévy flights towards the Gaussian stochastic process. Phys. Rev. E, 1995, 52, 1197–1199.
  • Kou, S., A jump-diffusion model for option pricing. Manag. Sci., 2002, 48, 1086–1101.
  • Kudryavtsev, O. and Levendorski iˇ, S., Fast and accurate pricing of barrier options under Lévy processes. Finance Stoch., 2009, 13(4), 531–562.
  • Kudryavtsev, O. and Zanette, A., Efficient pricing of swing options in Lévy-driven models. Quant. Finance, 2013, 13(4), 627–635.
  • Kuznetsov, A., Wiener–Hopf factorization and distribution of extrema for a family of Lévy processes. Ann. Appl. Probab., 2010, 20, 1801–1830.
  • Kuznetsov, A., Kyprianou, A.E., Pardo, J.C. and van Schaik, K., A Wiener–Hopf Monte Carlo simulation technique for Lévy processes. Ann. Appl. Probab., 2011, 21(6), 2171–2190.
  • Lam, K., Chang, E. and Lee, M.C., An empirical test of the variance gamma option pricing model. Pac. Basin Finance J., 2002, 10, 267–285.
  • Lee, S.S. and Hannig, J., Detecting jumps from Lévy jump diffusion processes. J. Financ. Econ., 2010, 96(2), 271–290.
  • Leitao, Á., Ortiz-Gracia, L. and Wagner, E.I., SWIFT valuation of discretely monitored arithmetic Asian options. J. Comput. Sci., 2018, 28, 120–139.
  • Levendorskii, S., Method of paired contours and pricing barrier options and CDSs of long maturities. Int. J. Theor. Appl. Finance, 2014, 17(5), 1450033.
  • Levendorskii, S., Pitfalls of the Fourier transform method in affine models, and remedies. Appl. Math. Finance, 2016, 23(2), 81–134.
  • Levendorskii, S.Z. and Boyarchenko, S.I., On rational pricing of derivative securities for a family of non-Gaussian processes. Working Paper, 1998.
  • Lewis, A.L., A simple option formula for general jump-diffusion and other exponential Lévy processes, 2001. Available online at: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=282110 (accessed 08 June 2020).
  • Li, L. and Zhang, G., Option pricing in some non-Lévy jump models. SIAM J. Sci. Comput., 2016, 38(4), B539–B569.
  • Li, T.R. and Rodrigo, M.R., Alternative results for option pricing and implied volatility in jump-diffusion models using Mellin transforms. Eur. J. Appl. Math., 2017, 28(5), 789–826.
  • Linders, D. and Stassen, B., The multivariate variance gamma model: Basket option pricing and calibration. Quant. Finance, 2015, 16(4), 555–572.
  • Lipton, A., Assets with jumps. Risk Mag., 2002, 15(9), 143–153.
  • Lord, R., Fang, F., Bervoets, F. and Oosterlee, C.W., A fast and accurate FFT-based method for pricing early-exercise options under Levy processes. SIAM J. Sci. Comput., 2008, 30, 1678–1705.
  • Loregian, A., Mercuri, L. and Rroji, E., Approximation of the variance gamma model with a finite mixture of normals. Stat. Probab. Lett., 2012, 82(2), 217–224.
  • Luciano, E., Business time and new credit risk models. International Centre for Economic (Research Working Paper No. 16/2010). 2009. https://ssrn.com/abstract=1626726
  • Luciano, E. and Semeraro, P., Multivariate time changes for Lévy asset models: Characterization and calibration. J. Comput. Appl. Math., 2010, 223(8), 1937–1953.
  • Madan, D., Carr, P. and Chang, E., The variance gamma process and option pricing. Eur. Finance Rev., 1998, 2, 79–105.
  • Madan, D. and Daal, E.A., An empirical examination of the variance gamma model for foreign currency options. J. Bus., 2005, 78(6), 2121–2152.
  • Madan, D. and Schoutens, W., Break on through to the single side. Working Paper, Katholieke Universiteit Leuven, 2008.
  • Madan, D. and Seneta, E., The variance gamma (V.G.) model for share market returns. J. Bus., 1990, 63(4), 511–524.
  • Mainardi, F., Luchko, Y. and Pagnini, G., The fundamental solution of the space-time fractional diffusion equation. Fract. Calc. Appl. Anal., 2001, 4, 153–192.
  • Mandelbrot, B., The variation of certain speculative prices. J. Bus., 1963, 36(4), 394–419.
  • Mantegna, R.N. and Eugene Stanley, H., Stochastic process with ultraslow convergence to a Gaussian: The truncated Lévy flight. Phys. Rev. Lett., 1994, 73, 2946–2949.
  • Matache, A.-M., Von Petersdorff, T. and Schwab, C., Fast deterministic pricing of options on Lévy driven assets. ESAIM Math. Model. Numer. Anal., 2004, 38(1), 37–71.
  • Merton, R., Option pricing when underlying stock returns are discontinuous. J. Financ. Econ., 1976, 3, 125–144.
  • Mittnik, S. and Rachev, S., Stable Paretian Models in Finance, 2000 (John Wiley & Sons: Hoboken, NJ).
  • Muhle-Karbe, J. and Nutz, M., Small-time asymptotics of option prices and first absolute moments. J. Appl. Probab., 2011, 48(4), 1003–1020.
  • Neuberger, A., The log contract. J. Portf. Manag., 1994, 20, 74–80.
  • Ortiz-Gracia, L. and Oosterlee, C.W., Robust pricing of European options with wavelets and the characteristic function. SIAM J. Sci. Comput., 2013, 35(5), B1055–B1084.
  • Panini, R. and Srivastav, R.P., Option pricing with Mellin transforms. Math. Comput. Model., 2004, 40(1–2), 43–56.
  • Passare, M., Tsikh, A., and Zhdanov, O., A multidimensional Jordan residue lemma with an application to Mellin-Barnes integrals. In Contributions to Complex Analysis and Analytic Geometry. Aspects of Mathematics, edited by H. Skoda and J.M. Trépreau, vol E 26, 1994 (Vieweg + Teubner Verlag: Wiesbaden).
  • Phelan, C.E., Marazzina, D., Fusai, G. and Germano, G., Fluctuation identities with continuous monitoring and their application to the pricing of barrier options. Eur. J. Oper. Res., 2018, 271(1), 210–223.
  • Robinson, G.K., Practical computing for finite moment log-stable distributions to model financial risk. Stat. Comput., 2015, 25, 1233–1246.
  • Rodrigo, M.R., Pricing formulas for perpetual American options with general payoffs. IMA J. Manag. Math., 2021, 33(2), 201–228.
  • Roper, M., Implied volatility: Small time to expiry asymptotics in exponential Lévy models. PhD diss., Thesis, University of New South Wales, 2009.
  • Rosinski, J., Tempering stable processes. Stoch. Process. Their Appl., 2007, 117(6), 677–707.
  • Rydberg, T., The normal inverse Gaussian Lévy process: Simulation and approximation. Commun. Stat. Stoch. Models, 1997, 13, 887–910.
  • Sato, K., Lévy Processes and Infinitely Divisible Distributions, 1999 (Cambridge University Press: Cambridge).
  • Schoutens, W., Lévy Processes in Finance: Pricing Financial Derivatives, 2003 (John Wiley & Sons: Hoboken, NJ).
  • Semeraro, P., A multivariate variance gamma model for financial applications. Int. J. Theor. Appl. Finance, 2008, 11(1), 1–18.
  • Venter, J. and de Jongh, P., Risk estimation using the normal inverse Gaussian distribution. J. Risks, 2002, 2, 1–25.
  • Wang, W. and Zhang, Z., Computing the Gerber–Shiu function by frame duality projection. Scand. Actuar. J., 2019, 2019, 291–307.
  • Wilmott, P., Paul Wilmott on Quantitative Finance, 2006 (Wiley & Sons: Hoboken, NJ).
  • Xie, J. and Zhang, Z., Recursive approximating to the finite-time Gerber–Shiu function in Lévy risk models under periodic observation. Working Paper, 2020.
  • Zhang, Z., Yong, Y. and Yu, W., Valuing equity-linked death benefits in general exponential Lévy models. J. Comput. Appl. Math., 2020, 365, 112377.
  • Zhdanov, O.N. and Tsikh, A.K., Studying the multiple Mellin–Barnes integrals by means of multidimensional residues. Siber. Math. J., 1998, 39(2), 245–260.
  • Zhou, C., A jump-diffusion approach to modeling credit risk and valuing defaultable securities. Board of Governors of the Federal Reserve System, Finance and Economics Discussion Series 1997–15, 1997.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.