33
Views
0
CrossRef citations to date
0
Altmetric
Research Papers

Neural network approach to portfolio optimization with leverage constraints: a case study on high inflation investment

, &
Received 31 May 2023, Accepted 11 May 2024, Published online: 11 Jun 2024

References

  • Al-Aradi, A., Correia, A., Jardim, G., de Freitas Naiff, D. and Saporito, Y., Extensions of the deep Galerkin method. Appl. Math. Comput., 2022, 430, 127287.
  • Al-Aradi, A. and Jaimungal, S., Outperformance and tracking: Dynamic asset allocation for active and passive portfolio management. Appl. Math. Finance, 2018, 25(3), 268–294.
  • Alekseev, A.G. and Sokolov, M.V., Benchmark-based evaluation of portfolio performance: A characterization. Ann. Finance, 2016, 12, 409–440.
  • Alizadeh, A.H. and Nomikos, N.K., Investment timing and trading strategies in the sale and purchase market for ships. Transp. Res. Part B Methodol., 2007, 41(1), 126–143.
  • Anarkulova, A., Cederburg, S. and O'Doherty, M.S., Stocks for the long run? evidence from a broad sample of developed markets. J. Financ. Econ., 2022, 143(1), 409–433.
  • Ang, A., Papanikolaou, D. and Westerfield, M.M., Portfolio choice with illiquid assets. Manage. Sci., 2014, 60(11), 2737–2761.
  • Ball, L.M., Leigh, D. and Mishra, P., Understanding US inflation during the COVID era. Technical report, 2022 (National Bureau of Economic Research).
  • Basak, S., Shapiro, A. and Tepla, L., Risk management with benchmarking. Manage. Sci., 2006, 52(4), 542–557.
  • Black, F., Estimating expected return. Financ. Ana. J., 1993, 49(5), 36–38.
  • Blanchet-Scalliet, C., El Karoui, N., Jeanblanc, M. and Martellini, L., Optimal investment decisions when time-horizon is uncertain. J. Math. Econ., 2008, 44(11), 1100–1113.
  • Bo, L., Liao, H. and Yu, X., Optimal tracking portfolio with a ratcheting capital benchmark. SIAM J. Control Optim., 2021, 59(3), 2346–2380.
  • Brigo, D., Dalessandro, A., Neugebauer, M. and Triki, F., A stochastic processes toolkit for risk management, 2008. arXiv preprint arXiv:0812.4210.
  • Browne, S., Survival and growth with a liability: Optimal portfolio strategies in continuous time. Math. Oper. Res., 1997, 22(2), 468–493.
  • Browne, S., Beating a moving target: Optimal portfolio strategies for outperforming a stochastic benchmark. Finance Stoch., 1999, 3, 275–294.
  • Browne, S., Risk-constrained dynamic active portfolio management. Manage. Sci., 2000, 46(9), 1188–1199.
  • Bureau of Labor Statistics, Consumer price index summary, 2023. Available online at: https://www.bls.gov/news.release/archives/cpi_04122023.pdf.
  • Cavaglia, S., Scott, L., Blay, K. and Hixon, S., Multi-asset class factor premia: A strategic asset allocation perspective. J. Portf. Manage., 2022, 48(4), 14–32.
  • Chen, M., Shirazi, M., Forsyth, P.A. and Li, Y., Machine learning and Hamilton–Jacobi–Bellman equation for optimal decumulation: A comparison study, 2023. arXiv:2306.10582.
  • Cogneau, P. and Zakamouline, V., Block bootstrap methods and the choice of stocks for the long run. Quant. Finance, 2013, 13(9), 1443–1457.
  • Cong, F. and Oosterlee, C.W., Multi-period mean–variance portfolio optimization based on Monte-Carlo simulation. J. Econ. Dyn. Control, 2016, 64, 23–38.
  • Cont, R. and Mancini, C., Nonparametric tests for pathwise properties of semimartingales. Bernoulli, 2011, 17(2), 781–813.
  • CPP Investments, Annual Report 2021, 2021. Available online at: https://www.cppinvestments.com/the-fund/our-performance/financial-results/ (accessed 5 December 2022).
  • CPP Investments, Annual Report 2022, 2022. Available online at: https://www.cppinvestments.com/wp-content/uploads/2022/06/CPP-Investments_F2022-Annual-Report-EN.pdf (accessed 5 December 2022).
  • Cumbo, J., Yu, S. and Gara, A., US pension funds worth 1.5tn add risk through leverage, 2024. Available online at: https://www.ft.com/content/623b67f9-090c-457f-a327-dc9f767e327a (online, Financial Times).
  • Dang, D.-M. and Forsyth, P.A., Continuous time mean-variance optimal portfolio allocation under jump diffusion: A numerical impulse control approach. Numer. Methods Partial Differ. Equ., 2014, 30, 664–698.
  • Dang, D.-M. and Forsyth, P.A., Better than pre-commitment mean-variance portfolio allocation strategies: A semi-self-financing Hamilton–Jacobi–Bellman equation approach. Eur. J. Oper. Res., 2016, 250(3), 827–841.
  • Davis, M. and Lleo, S., Risk-sensitive benchmarked asset management. Quant. Finance, 2008, 8(4), 415–426.
  • Dichtl, H., Drobetz, W. and Kryzanowski, L., Timing the stock market: Does it really make no sense? J. Behav. Exp. Finance, 2016, 10, 88–104.
  • Dixon, M.F., Halperin, I. and Bilokon, P., Machine Learning in Finance, Volume 1406. 2020 (Springer).
  • Efron, B., Bootstrap methods: Another look at the jackknife. In Breakthroughs in Statistics, edited by S. Kotz, and N. L. Johnson, pp. 569–593, 1992 (Springer: New York).
  • Forsyth, P.A., Optimal dynamic asset allocation for DC plan accumulation/decumulation: Ambition-CVAR. Insur. Math. Econ., 2020, 93, 230–245.
  • Gao, Z., Gao, Y., Hu, Y., Jiang, Z. and Su, J., Application of deep Q-network in portfolio management. In 2020 5th IEEE International Conference on Big Data Analytics (ICBDA), pp. 268–275, 2020 (IEEE).
  • Goodfellow, I., Bengio, Y. and Courville, A., Deep Learning, 2016 (MIT Press).
  • Han, J., Deep learning approximation for stochastic control problems, 2016. arXiv preprint arXiv:1611.07422.
  • Homer, S. and Sylla, R.E., A History of Interest Rates, 1996 (Rutgers University Press).
  • Hornik, K., Approximation capabilities of multilayer feedforward networks. Neural Netw., 1991, 4(2), 251–257.
  • Javorcik, B., Global supply chains will not be the same in the post-COVID-19 world. In COVID-19 and Trade Policy: Why Turning Inward Won't Work, edited by R. E. Baldwin and S. J. Everett, Volume 111, 2020 (CEPR Press: London).
  • Kingma, D.P. and Ba, J., Adam: A method for stochastic optimization, 2014. arXiv preprint arXiv:1412.6980.
  • Kou, S.G., A jump-diffusion model for option pricing. Manage. Sci., 2002, 48(8), 1086–1101.
  • Kou, S.G. and Wang, H., Option pricing under a double exponential jump diffusion model. Manage. Sci., 2004, 50(9), 1178–1192.
  • Kratsios, A. and Bilokopytov, I., Non-Euclidean universal approximation. Adv. Neural Inf. Process. Syst., 2020, 33, 10635–10646.
  • Lahaye, J., Laurent, S. and Neely, C.J., Jumps, cojumps and macro announcements. J. Appl. Econom., 2011, 26(6), 893–921.
  • Lee, W., Yu, H., Rival, X. and Yang, H., On correctness of automatic differentiation for non-differentiable functions. Adv. Neural Inf. Process. Syst., 2020, 33, 6719–6730.
  • L'Her, J.F., Stoyanova, R., Shaw, K., Scott, W. and Lai, C., A bottom-up approach to the risk-adjusted performance of the buyout fund market. Financ. Anal. J., 2016, 72(4), 36–48.
  • Li, D. and Ng, W.-L., Optimal dynamic portfolio selection: Multiperiod mean-variance formulation. Math. Finance, 2000, 10(3), 387–406.
  • Li, Y. and Forsyth, P.A., A data-driven neural network approach to optimal asset allocation for target based defined contribution pension plans. Insur. Math. Econ., 2019, 86, 189–204.
  • Li, Z., Tsang, K.H. and Wong, H.Y., Lasso-based simulation for high-dimensional multi-period portfolio optimization. IMA J. Manage. Math., 2020, 31(3), 257–280.
  • Lim, A. and Wong, B., A benchmark approach to optimal asset allocation for insurers and pension funds. Insur. Math. Econ., 2010a, 46(2), 317–327.
  • Lim, A.E. and Wong, B., A benchmarking approach to optimal asset allocation for insurers and pension funds. Insur. Math. Econ., 2010b, 46(2), 317–327.
  • Lin, Y., MacMinn, R.D. and Tian, R., De-risking defined benefit plans. Insur. Math. Econ., 2015, 63, 52–65.
  • Lu, Y. and Lu, J., A universal approximation theorem of deep neural networks for expressing probability distributions. Adv. Neural Inf. Process. Syst., 2020, 33, 3094–3105.
  • Lucarelli, G. and Borrotti, M., A deep Q-learning portfolio management framework for the cryptocurrency market. Neural Comput. Appl., 2020, 32(23), 17229–17244.
  • MacMinn, R., Brockett, P., Wang, J., Lin, Y. and Tian, R., The securitization of longevity risk and its implications for retirement security. In Recreating Sustainable Retirement, edited by O. Mitchell, R. Maurer, and P. Hammond, pp. 134–160, 2014 (Oxford University Press: Oxford).
  • Mancini, C., Non-parametric threshold estimation for models with stochastic diffusion coefficient and jumps. Scand. J. Stat., 2009, 36(2), 270–296.
  • Merton, R.C., Lifetime portfolio selection under uncertainty: The continuous-time case. Rev. Econ. Stat., 1969, 51(3), 247–257.
  • Merton, R.C., Optimum consumption and portfolio rules in a continuous-time model. J. Econ. Theory, 1971, 3(4), 373–413.
  • Merton, R.C., Option pricing when underlying stock returns are discontinuous. J. Financ. Econ., 1976, 3(1–2), 125–144.
  • NASDAQ, NASDAQ Composite Index, 2023. Available online at: https://www.nasdaq.com/market-activity/index/comp/historical (accessed 15 February 2023).
  • Ni, C., Li, Y., Forsyth, P. and Carroll, R., Optimal asset allocation for outperforming a stochastic benchmark target. Quant. Finance, 2022, 22(9), 1595–1626.
  • Ni, C., Li, Y. and Forsyth, P.A., Neural network approach to portfolio optimization with leverage constraints: A case study on high inflation investment, 2023. arXiv preprint arXiv:2304.05297v2.
  • Nicolosi, M., Angelini, F. and Herzel, S., Portfolio management with benchmark related incentives under mean reverting processes. Ann. Oper. Res., 2018, 266, 373–394.
  • Norges Bank, Investment Strategy, 2022. https://www.nbim.no/en/the-fund/how-we-invest/investment-strategy/ (accessed 5 December 2022).
  • Oderda, G., Stochastic portfolio theory optimization and the origin of rule based investing. Quant. Finance, 2015, 15(8), 1259–1266.
  • Øksendal, B.K. and Sulem, A., Applied Stochastic Control of Jump Diffusions, Volume 498. 2007 (Springer).
  • Park, H., Sim, M.K. and Choi, D.G., An intelligent financial portfolio trading strategy using deep Q-learning. Expert Syst. Appl., 2020, 158, 113573.
  • Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L. and Lerer, A., Automatic differentiation in Pytorch. In NIPS 2017 Workshop on Autodiff, Long Beach, CA, 2017. Available online at: https://openreview.net/forum?id=BJJsrmfCZ.
  • Phalippou, L., Performance of buyout funds revisited? Rev. Finance, 2014, 18(1), 189–218.
  • Politis, D.N. and Romano, J.P., The stationary bootstrap. J. Am. Stat. Assoc., 1994, 89(428), 1303–1313.
  • Rudin, C., Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell., 2019, 1(5), 206–215.
  • Scott, L. and Cavaglia, S., A wealth management perspective on factor premia and the value of downside protection. J. Portf. Manage., 2017, 43(3), 33–41.
  • Shahzad, S.J.H., Bouri, E., Roubaud, D., Kristoufek, L. and Lucey, B., Is bitcoin a better safe-haven investment than gold and commodities? Int. Rev. Financ. Anal., 2019, 63, 322–330.
  • Simonian, J. and Martirosyan, A., Sharpe parity redux. J. Portf. Manag., 2022, 48(4), 183–193.
  • Sirignano, J. and Spiliopoulos, K., DGM: A deep learning algorithm for solving partial differential equations. J. Comput. Phys., 2018, 375, 1339–1364.
  • Tepla, L., Optimal investment with minimum performance constraints. J. Econ. Dyn. Control, 2001, 25, 1629–1645.
  • The Federal Reserve, What is an acceptable level of inflation? 2011. https://www.federalreserve.gov/faqs/5D58E72F066A4DBDA80BBA659C55F774.htm (accessed 5 December 2022).
  • Tsang, K.H. and Wong, H.Y., Deep-learning solution to portfolio selection with serially dependent returns. SIAM J. Financ. Math., 2020, 11(2), 593–619.
  • van Staden, P.M., Forsyth, P.A. and Li, Y., Beating a benchmark: Dynamic programming may not be the right numerical approach. SIAM J. Financ. Math., 2023, 14(2), 407–451.
  • van Staden, P.M., Forsyth, P.A. and Li, Y., Across-time risk-aware strategies for outperforming a benchmark. Eur. J. Oper. Res., 2024, 313(2), 776–800.
  • Vigna, E., On efficiency of mean–variance based portfolio selection in defined contribution pension schemes. Quant. Finance, 2014, 14(2), 237–258.
  • Wang, J. and Forsyth, P.A., Numerical solution of the Hamilton–Jacobi–Bellman formulation for continuous time mean variance asset allocation. J. Econ. Dyn. Control, 2010, 34(2), 207–230.
  • Wang, J. and Forsyth, P.A., Comparison of mean variance like strategies for optimal asset allocation problems. Int. J. Theor. Appl. Finance, 2012, 15(02), 1250014.
  • Wang, R., Foster, D.P. and Kakade, S.M., What are the statistical limits of offline RL with linear function approximation? 2020, 51(3).
  • Yao, D.D., Zhang, S. and Zhou, X.Y., Tracking a financial benchmark using a few assets. Oper. Res., 2006, 54(2), 232–246.
  • Zhang, Q. and Gao, Y., Portfolio selection based on a benchmark process with dynamic value-at-risk constraints. J. Comput. Appl. Math., 2017, 313, 440–447.
  • Zhao, Y., A dynamic model of active portfolio management with benchmark orientation. J. Bank. Finance, 2007, 31(11), 3336–3356.
  • Zhou, X.Y. and Li, D., Continuous-time mean-variance portfolio selection: A stochastic LQ framework. Appl. Math. Optim., 2000, 42, 19–33.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.