219
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Talus rock glaciers in the Cairngorm Mountains

ORCID Icon
Received 22 Aug 2023, Accepted 13 Feb 2024, Published online: 26 Feb 2024

References

  • Aoyama, M. (2005). Rock glaciers in the northern Japanese Alps: palaeoenvironmental implications since the Late Glacial. Journal of Quaternary Science, 20(5), 471–484. https://doi.org/10.1002/jqs.935
  • Arenson, L. U., & Springman, S. (2005). Mathematical descriptions for the behaviour of ice-rich frozen soils at temperatures close to 0°C. Canadian Geotechnical Journal, 42(2), 431–442. https://doi.org/10.1139/t04-109
  • Atkinson, T. C., Briffa, K. R., & Coope, G. R. (1987). Seasonal temperatures in Britain during the past 22,000 years, reconstructed using beetle remains. Nature, 325(6105), 587–592. https://doi.org/10.1038/325587a0
  • Ballantyne, C. K. (2018). Periglacial geomorphology. Wiley-Blackwell. 454 pp.
  • Ballantyne, C. K., & Benn, D. I. (1994). Glaciological constraints on protalus rampart development. Permafrost and Periglacial Processes, 5(3), 145–153. https://doi.org/10.1002/ppp.3430050304
  • Ballantyne, C. K., & Harris, C. (1994). The periglaciation of Great Britain. Cambridge University Press. 330 pp.
  • Ballantyne, C. K., Sandeman, G. F., Stone, J. O., & Wilson, P. (2014a). Rock-slope failure following Late Pleistocene deglaciation on tectonically stable mountainous terrain. Quaternary Science Reviews, 86, 144–157. https://doi.org/10.1016/j.quascirev.2013.12.021
  • Ballantyne, C. K., Schnabel, C., & Xu, S. (2009). Exposure dating and reinterpretation of coarse debris accumulations (‘rock glaciers’) in the Cairngorm Mountains, Scotland. Journal of Quaternary Science, 24(1), 19–31. https://doi.org/10.1002/jqs.1189
  • Ballantyne, C. K., & Stone, J. O. (2004). The Beinn Alligin rock avalanche, NW Scotland: Cosmogenic 10Be dating, interpretation and significance. The Holocene, 14(3), 448–453. https://doi.org/10.1191/0959683604hl720rr
  • Ballantyne, C. K., & Stone, J. O. (2009). Rock-slope failure at Baosbheinn, Wester Ross, NW Scotland: Age and interpretation. Scottish Journal of Geology, 45(2), 177–181. https://doi.org/10.1144/0036-9276/01-388
  • Ballantyne, C. K., Wilson, P., Gheorghiu, D., & Rodés, À. (2014b). Enhanced rock-slope failure following ice-sheet deglaciation: Timing and causes. Earth Surface Processes and Landforms, 39(7), 900–913. https://doi.org/10.1002/esp.3495
  • Barsch, D. (1996). Rockglaciers: Indicators for the present and former geoecology in high mountain environments. Springer-Verlag. 212 pp.
  • Bateman, M. D., Evans, D. J. A., Buckland, P. C., Connell, E. R., Friend, R. J., Hartmann, D., Moxon, H., Fairburn, W. A., Panagiotakopulu, E., & Ashurst, R. A. (2015). Last glacial dynamics of the Vale of York and North Sea lobes of the British and Irish Ice Sheet. Proceedings of the Geologists’ Association, 126(6), 712–730. https://doi.org/10.1016/j.pgeola.2015.09.005
  • Berthling, I. (2011). Beyond confusion: Rock glaciers as cryo-conditioned landforms. Geomorphology, 131(3-4), 98–106. https://doi.org/10.1016/j.geomorph.2011.05.002
  • Bickerdike, H. L., Evans, D. J. A., Cofaigh, Ó., & Stokes, C. R. (2016). The glacial geomorphology of the Loch Lomond Stadial in Britain: A map and geographic information system resource of published evidence. Journal of Maps, 12(5), 1178–1186. https://doi.org/10.1080/17445647.2016.1145149
  • Bollman, E., Girstymair, A., Mitterer, S., Krainer, K., Sailer, R., & Stötter, J. (2015). A rock glacier activity index based on rock glacier thickness changes and displacement rates derived from airborne laser scanning. Permafrost and Periglacial Processes, 26(4), 347–359. https://doi.org/10.1002/ppp.1852
  • Brazier, V., Kirkbride, M. P., & Owens, I. F. (1998). The relationship between climate and rock glacier distribution in the Ben Ohau Range, New Zealand. Geografiska Annaler: Series A, Physical Geography, 80(3-4), 193–207. https://doi.org/10.1111/j.0435-3676.1998.00037.x
  • Brooks, S. J., & Birks, H. J. B. (2000). Chironomid-inferred late-glacial air temperatures at Whitrig Bog, south-east Scotland. Journal of Quaternary Science, 15(8), 759–764. https://doi.org/10.1002/1099-1417(200012)15:8<759::AID-JQS590>3.0.CO;2-V
  • Brooks, S. J., Matthews, I. P., Birks, H. H., & Birks, H. J. B. (2012). High resolution Lateglacial and early-Holocene summer air temperature records from Scotland inferred from chironomid assemblages. Quaternary Science Reviews, 41, 67–82. https://doi.org/10.1016/j.quascirev.2012.03.007
  • Burger, K. C., Degenhardt, J. J., & Giardino, J. R. (1999). Engineering geomorphology of rock glaciers. Geomorphology, 31(1-4), 93–132. https://doi.org/10.1016/S0169-555X(99)00074-4
  • Calkin, P. E., Haworth, L. A., & Ellis, J. M. (1998). Rock glaciers of central Brooks Range, Alaska. In J. R. Giardino, J. F. Schroder, & J. D. Vitek (Eds.), Rock glaciers (pp. 65–82). Allen & Unwin.
  • Chandler, B. M. P., Boston, C. M., & Lukas, S. (2019). A spatially-restricted Younger Dryas plateau icefield in the Gaick, Scotland: Reconstruction and palaeoclimatic implications. Quaternary Science Reviews, 211, 107–135. https://doi.org/10.1016/j.quascirev.2019.03.019
  • Chattopadhyay, G. P. (1984). A fossil valley-wall rock glacier in the Cairngorm Mountains. Scottish Journal of Geology, 20(1), 121–125. https://doi.org/10.1144/sjg20010121
  • Chueca, L. (1992). A statistical analysis of the distribution of rock glaciers, Spanish central Pyrenees. Permafrost and Periglacial Processes, 3(3), 261–265. https://doi.org/10.1002/ppp.3430030316
  • Cicoira, A., Marcer, M., Gärtner-Roer, I., Bodin, X., Arenson, L. U., & Vieli, A. (2021). A general theory of rock glacier creep based on in-situ and remote sensing observations. Permafrost and Periglacial Processes, 32(1), 139–153. https://doi.org/10.1002/ppp.2090
  • Clark, D. H., Steig, E. J., Potter, N., & Gillespie, A. R. (1998). Genetic variability of rock glaciers. Geografiska Annaler: Series A, Physical Geography, 80(3-4), 175–182. https://doi.org/10.1111/j.0435-3676.1998.00035.x
  • Colucci, R. R., Boccali, C., Zebre, M., & Guglielmin, M. (2016). Rock glaciers, protalus ramparts and pronival ramparts in the south-eastern Alps. Geomorphology, 269, 112–121. https://doi.org/10.1016/j.geomorph.2016.06.039
  • Delaloye, R., & Lambiel, C. (2005). Evidence of winter ascending air circulation throughout talus slopes and rock glaciers situated in the lower belt of alpine discontinuous permafrost (Swiss Alps). Norsk Geografisk Tidsskrift - Norwegian Journal of Geography, 59, 194–203. https://doi.org/10.1080/00291950510020673
  • Dlabáčková, T., Engel, Z., Uxa, T., Braucher, R., & Aster, Team. (2023). 10Be exposure ages and paleoenvironmental significance of rock glaciers in the Western Tatra Mts., Western Carpathians. Quaternary Science Reviews, 312, 108147. https://doi.org/10.1016/j.quascirev.2023.108147
  • Evin, M. (1987). Lithology and fracturing control of rock glaciers in south-western Alps of France and Italy. In J. R. Giardino, J. F. Schroder, & J. D. Vitek (Eds.), Rock glaciers (pp. 83–106). Allen & Unwin.
  • Francou, B., & Manté, C. (1990). Analysis of the segmentation in the profile of alpine talus slopes. Permafrost and Periglacial Processes, 1(1), 53–60. https://doi.org/10.1002/ppp.3430010107
  • Frauenfelder, R., Haeberli, W., Hoelzle, M., & Maisch, M. (2001). Using relict rockglaciers in GIS-based modelling to reconstruct Younger Dryas permafrost distribution patterns in the Err-Julier area, Swiss Alp. Norsk Geografisk Tidsskrift - Norwegian Journal of Geography, 55(4), 195–202. https://doi.org/10.1080/00291950152746522
  • Freher, M., Ling, A. H. M., & Gärtner-Roer, I. (2015). Furrow-and-ridge morphology on rockglaciers explained by gravity-driven buckle folding: A case study from the Murtèl Rockglacier (Switzerland). Permafrost and Periglacial Processes, 26(1), 57–66. https://doi.org/10.1002/ppp.1831
  • Gordon, L. S., & Ballantyne, C. K. (2006). ‘Protalus ramparts’ on Navajo Mountain, Utah, USA: Reinterpretation as blockslope-sourced rock glaciers. Permafrost and Periglacial Processes, 17(2), 179–187. https://doi.org/10.1002/ppp.545
  • Haeberli, W. (1985). Creep of mountain permafrost: Internal structure and flow of alpine rock glaciers. Mitteilungen der Versuchanstalt für Wasserbau, Hydrologie und Glaziologie, 77, 142 pp.
  • Haeberli, W., Hallet, B., Arenson, L., Elconin, R., Humlum, O., Kääb, A., Kaufmann, V., Ladanyi, B., Matsuoka, N., Springman, S., & Mühll, D. V. (2006). Permafrost creep and rock glacier dynamics. Permafrost and Periglacial Processes, 17(3), 189–214. https://doi.org/10.1002/ppp.561
  • Haeberli, W., & Vonder Mühll, D. (1996). On the characteristics and possible origin of ice in rock glacier permafrost. Zeitschrift für Geomorphologie Supplementband, 104, 43–57.
  • Harrison, S., Whalley, W. B., & Anderson, E. (2008). Relict rock glaciers and protalus lobes in the British Isles: implications for Late Pleistocene mountain geomorphology and palaeoclimate. Journal of Quaternary Science, 23(3), 287–304. https://doi.org/10.1002/jqs.1148
  • Hausmann, H., Krainer, K., Brückl, E., & Ullrich, C. (2012). Internal structure, ice content and dynamics of Ölgrube and Kaiserberg rock glaciers (Öztal Alps, Austria) determined from geophysical surveys. Austrian Journal of Earth Sciences, 102, 12–31.
  • Hinchliffe, S., & Ballantyne, C. K. (1999). Talus accumulation and rockwall retreat, Trotternish, Isle of Skye, Scotland. Scottish Geographical Journal, 115(1), 53–70. https://doi.org/10.1080/00369229918737057
  • Hinchliffe, S., & Ballantyne, C. K. (2009). Talus structure and evolution on sandstone mountains in NW Scotland. The Holocene, 19(3), 477–486. https://doi.org/10.1177/0959683608101396
  • Hu, Y., Liu, L., Wang, X., Zhao, L., Wu, T., Cai, J., Zhu, X., & Hao, J. (2021). Quantification of permafrost creep provides kinematic evidence for classifying a puzzling periglacial landform. Earth Surface Processes and Landforms, 46(2), 465–477. https://doi.org/10.1002/esp.5039
  • Huang, S. L., Aughenbach, N. B., & Wu, M.-C. (1986). Stability study of the CRREL permafrost tunnel. Journal of Geotechnical Engineering, 112(8), 777–790. https://doi.org/10.1061/(ASCE)0733-9410(1986)112:8(777)
  • Hugentobler, M., Aaron, J., Loew, S., & Roques, C. (2022). Hydro-mechanical interactions within a rock slope with a retreating valley glacier. Journal of Geophysical Research: Earth Surface, 127(4), 251–260. https://doi.org/10.1029/2021JF006484
  • Humlum, O. (1998). The climatic significance of rock glaciers. Permafrost and Periglacial Processes, 9(4), 375–395. https://doi.org/10.1002/(SICI)1099-1530(199810/12)9:4<375::AID-PPP301>3.0.CO;2-0
  • Humlum, O. (2000). The geomorphic significance of rock glaciers: Estimates of rock glacier debris volumes and headwall recession rates in West Greenland. Geomorphology, 35(1-2), 41–67. https://doi.org/10.1016/S0169-555X(00)00022-2
  • Humlum, O., Christiansen, H. H., & Juliussen, H. (2007). Avalanche-derived rock glaciers in Svalbard. Permafrost and Periglacial Processes, 18(1), 75–88. https://doi.org/10.1002/ppp.580
  • Isarin, R. F. B. (1997). Permafrost distribution and temperatures in Europe during the Younger Dryas. Permafrost and Periglacial Processes, 8(3), 313–333. https://doi.org/10.1002/(SICI)1099-1530(199709)8:3<313::AID-PPP255>3.0.CO;2-E
  • Jarman, D., Wilson, P., & Harrison, S. (2013). Are there any relict rock glaciers in the British mountains? Journal of Quaternary Science, 28(2), 131–143. https://doi.org/10.1002/jqs.2574
  • Kääb, A. (2013). Rock glaciers and protalus forms. In S. Elias (Ed.), Encyclopedia of Quaternary Science (2nd ed., pp. 535–541). Elsevier.
  • Kääb, A., Isaksen, K., Eiken, T., & Farbrot, H. (2002). Geometry and dynamics of two lobe-shaped rock glaciers in the permafrost of Svalbard. Norsk Geografisk Tidsskrift - Norwegian Journal of Geography, 56, 152–160. https://doi.org/10.1080/002919502760056486
  • Kenner, R., Arenson, L. U., & Grämiger, L. (2021). Mass movement processes related to permafrost and glaciation. In J. J. F. Shroder (Ed.), Treatise on geomorphology (2nd ed., Vol. 5, pp. 283–303). Elsevier. https://doi.org/10.1016/B978-0-12-818234-5.00112-7
  • Kenner, R., Phillips, M., Hauck, C., Hilbich, C., Mulsow, C., Bühler, Y., Stoffel, A., & Buchroithner, M. (2017). New insights on permafrost genesis and conservation in talus slopes based on observations at Flüelapass, Eastern Switzerland. Geomorphology, 290, 101–113. https://doi.org/10.1016/j.geomorph.2017.04.011
  • Kirkbride, M. P., & Brazier, V. (1995). On the sensitivity of Holocene talus-derived rock glaciers to climate change in the Ben Ohau Range, New Zealand. Journal of Quaternary Science, 10(4), 353–365. https://doi.org/10.1002/jqs.3390100405
  • Kirkby, M., & Statham, I. (1975). Surface stone movement and scree formation. The Journal of Geology, 83(3), 349–362. https://doi.org/10.1086/628097
  • Lambiel, C., & Pieracci, K. (2008). Permafrost distribution in talus slopes located within the alpine periglacial belt, Swiss Alps. Permafrost and Periglacial Processes, 19(3), 293–304. https://doi.org/10.1002/ppp.624
  • Leopold, M., Williams, M. W., Caine, N., Völkel, J., & Dethier, D. (2011). Internal structure of the Green Lake 5 rock glacier, Colorado Front Range, USA. Permafrost and Periglacial Processes, 22(2), 107–119. https://doi.org/10.1002/ppp.706
  • Luckman, B. H. (1977). The geomorphic activity of snow avalanches. Geografiska Annaler: Series A, Physical Geography, 59(1-2), 31–48. https://doi.org/10.1080/04353676.1977.11879945
  • Maclean, A. F.. (1991). The formation of valley-wall rock glaciers [PhD thesis]. University of St Andrews. http://hdl.handl.net/10023/2797
  • Moran, A. P., Ivy Ochs, S., Vockenhuber, C., & Kerschner, H. (2016). Rock glacier development in the Northern Calcareous Alps at the Pleistocene-Holocene boundary. Geomorphology, 273, 178–188. https://doi.org/10.1016/j.geomorph.2016.08.017
  • Morris, S. E., & Olyphant, G. A. (1990). Alpine lithofacies variation: Working toward a physically-based model. Geomorphology, 3(1), 73–90. https://doi.org/10.1016/0169-555X(90)90033-M
  • Murton, J., & Ballantyne, C. K. (2017). Periglacial and permafrost ground models for Great Britain. Geological Society, London, Engineering Geology Special Publications, 28(1), 501–597. https://doi.org/10.1144/EGSP28.5
  • Nesje, A., Matthews, J. A., Linge, H., Bredal, M., Wilson, P., & Winkler, S. (2021). New evidence for active talus-foot rock glaciers at Øyberget, southern Norway, and their development during the Holocene. The Holocene, 31(11-12), 1786–1796. https://doi.org/10.1177/09596836211033226
  • Phillips, M., Mutter, E. K., Kern-Luetschg, M., & Lehning, M. (2009). Rapid degradation of ground ice in a ventilated talus slope: Flüela pass, Swiss Alps. Permafrost and Periglacial Processes, 20(1), 1–14. https://doi.org/10.1002/ppp.638
  • Ribolini, A., Guglielmin, M., Fabre, D., Bodin, X., Marchisio, M., Sartini, S., Spagnolo, M., & Schoeneich, P. (2010). The internal structure of rock glaciers and recently deglaciated slopes as revealed by geoelectrical tomography: Insights on permafrost and recent glacial evolution in the central and western Alps (Italy-France). Quaternary Science Reviews, 29(3-4), 507–521. https://doi.org/10.1016/j.quascirev.2009.10.008
  • Sandeman, A. F., & Ballantyne, C. K. (1996). Talus rock glaciers in Scotland: Characteristics and controls on formation. Scottish Geographical Magazine, 112(3), 138–146. https://doi.org/10.1080/14702549608554947
  • Schenk, F., Väliranta, M., Muschitiello, F., Tarasov, L., Heikkilä, M., Björck, S., Brandefelt, J., Johansson, A. V., Näslund, J.-O., & Wohlfarth, B. (2018). Warm summers during the Younger Dryas cold reversal. Nature Communications, 9(1), 1634. https://doi.org/10.1038/s41467-018-04071-5
  • Serrano, E., de Sanjosé, J. J., & González-Trueba, J. J. (2010). Rock glacier dynamics in marginal periglacial environments. Earth Surface Processes and Landforms, 35(11), 1302–1314. https://doi.org/10.1002/esp.1972
  • Sissons, J. B. (1979a). Palaeoclimatic inferences from former glaciers in Scotland and the Lake District. Nature, 278(5704), 518–521. https://doi.org/10.1038/278518a0
  • Sissons, J. B. (1979b). The Loch Lomond Advance in the Cairngorm Mountains. Scottish Geographical Magazine, 95(2), 66–82. https://doi.org/10.1080/00369227908736423
  • Sollid, J. L., & Sørbel, L. (1992). Rock glaciers in Svalbard and Norway. Permafrost and Periglacial Processes, 3(3), 215–220. https://doi.org/10.1002/ppp.3430030307
  • Standell, M. R.. (2014). Lateglacial (Younger Dryas) glaciers and ice-sheet deglaciation in the Cairngorm Mountains, Scotland: glacier reconstructions and their palaeoclimatic implications [PhD thesis]. Loughborough University, 403 pp. https://hdl.handle.net/2134/16159
  • Stiegler, C., Rode, M., Sass, O., & Otto, J.-C. (2014). An undercooled scree slope detected by geophysical investigations in sporadic permafrost below 1000 m ASL, central Austria. Permafrost and Periglacial Processes, 25(3), 194–207. https://doi.org/10.1002/ppp.1813
  • Tieldidze, L. G., Ciciora, A., Nosenk, G. A., & Eaves, S. R. (2023). The first rock glacier inventory for the Greater Caucasus. Geosciences, 13(4), 117. https://doi.org/10.3390/geosciences13040117
  • Töchterle, P., Baldo, A., Murton, J. B., Schenk, F., Edwards, R. L., Koltai, G., & Moseley, G. E. (2023). Reconstructing Younger Dryas ground temperature and snow thickness from cave deposits. Climate of the Past, preprint cp-2023-72. https://doi.org/10.5194/cp-2023-72
  • Walker, M. J. C., & Lowe, J. J. (2019). Lateglacial environmental change in Scotland. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 110(1-2), 173–198. https://doi.org/10.1017/S1755691017000184
  • Whalley, W. B., & Martin, H. E. (1992). Rock glaciers: II models and mechanisms. Progress in Physical Geography: Earth and Environment, 16(2), 127–186. https://doi.org/10.1177/030913339201600201
  • Wicky, J., & Hauck, C. (2016). Numerical modelling of convective heat transport by air flow in permafrost talus slopes. The Cryosphere, 11(3), 1311–1325. https://doi.org/10.5194/tc-11-1311-2017
  • Wilson, P. (2004). Relict rock glaciers, slope failure deposits, or polygenetic features? A re- assessment of some Donegal debris landforms. Irish Geography, 37(1), 77–87. https://doi.org/10.1080/00750770409555830
  • Wilson, P. (2011). Relict rock glaciers in Wasdale, western Lake District, northwest England: Geofact or geofantasy. Proceedings of the Geologists’ Association, 122(3), 455–459. https://doi.org/10.1016/j.pgeola.2011.01.002
  • Worsley, P. (2014). Ice-wedge growth and casting in a Late Pleistocene periglacial, fluvial succession at Baston, Lincolnshire. Mercian Geologist, 18, 159–170.
  • Zurawek, R. (2002). Internal structure of a relict rock glacier, Ślęża Massif, southwest Poland. Permafrost and Periglacial Processes, 13(1), 29–42. https://doi.org/10.1002/ppp.403