305
Views
7
CrossRef citations to date
0
Altmetric
Review

Progress of dendritic cell-based cancer vaccines for patients with hematological malignancies

, , &
Pages 1113-1123 | Received 02 Apr 2016, Accepted 27 May 2016, Published online: 09 Jun 2016

References

  • Manh TP, Alexandre Y, Baranek T, et al. Plasmacytoid, conventional, and monocyte-derived dendritic cells undergo a profound and convergent genetic reprogramming during their maturation. Eur J Immunol. 2013 Jul;43(7):1706–1715. doi:10.1002/eji.201243106.
  • Palucka K, Banchereau J. Dendritic-cell-based therapeutic cancer vaccines. Immunity. 2013 Jul 25;39(1):38–48.
  • Steinbrink K, Graulich E, Kubsch S, et al. CD4(+) and CD8(+) anergic T cells induced by interleukin-10-treated human dendritic cells display antigen-specific suppressor activity. Blood. 2002 Apr 1;99(7):2468–2476.
  • Legge KL, Gregg RK, Maldonado-Lopez R, et al. On the role of dendritic cells in peripheral T cell tolerance and modulation of autoimmunity. J Exp Med. 2002 Jul 15;196(2):217–227.
  • Van Brussel I, Lee WP, Rombouts M, et al. Tolerogenic dendritic cell vaccines to treat autoimmune diseases: can the unattainable dream turn into reality? Autoimmun Rev. 2014 Feb;13(2):138–150. doi:10.1016/j.autrev.2013.09.008.
  • Xing Y, Hogquist KA. T-cell tolerance: central and peripheral. Cold Spring Harb Perspect Biol. 2012 Jun;4(6). doi:10.1101/cshperspect.a006957.
  • `Gabrilovich DI, Ostrand-Rosenberg S, Bronte V. Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol. 2012 Apr;12(4):253–268. doi:10.1038/nri3175.
  • Idris SZ, Hassan N, Lee LJ, et al. Increased regulatory T cells in acute lymphoblastic leukaemia patients. Hematology. 2016 Feb 23. doi:10.1080/10245332.2015.1101965.
  • Wang ZT, Zhang LL, Wang HP, et al. Tumor-induced CD14(+)HLA-DR-/low myeloid-derived suppressor cells correlate with tumor progression and outcome of therapy in multiple myeloma patients. Cancer Immunol Immun. 2015 Mar;64(3):389–399. doi:10.1007/s00262-014-1646-4.
  • Jitschin R, Braun M, Buttner M, et al. CLL-cells induce IDOhi CD14+HLA-DRlo myeloid-derived suppressor cells that inhibit T-cell responses and promote TRegs. Blood. 2014 Jul 31;124(5):750–760.
  • Frassanito MA, Ruggieri S, Desantis V, et al. Myeloma cells act as tolerogenic antigen-presenting cells and induce regulatory T cells in vitro. Eur J Haematol. 2015 Jul;95(1):65–74. doi:10.1111/ejh.12481.
  • Onodera T, Jang MH, Guo Z, et al. Constitutive expression of IDO by dendritic cells of mesenteric lymph nodes: functional involvement of the CTLA-4/B7 and CCL22/CCR4 interactions. J Immunol. 2009 Nov 1;183(9):5608–5614.
  • Campbell DJ, Koch MA. Phenotypical and functional specialization of FOXP3+ regulatory T cells. Nat Rev Immunol. 2011 Feb;11(2):119–130. doi:10.1038/nri2916.
  • Koch F, Stanzl U, Jennewein P, et al. High level IL-12 production by murine dendritic cells: upregulation via MHC class II and CD40 molecules and downregulation by IL-4 and IL-10. J Exp Med. 1996 Aug 1;184(2):741–746.
  • De Smedt T, Van Mechelen M, De Becker G, et al. Effect of interleukin-10 on dendritic cell maturation and function. Eur J Immunol. 1997 May;27(5):1229–1235. doi:10.1002/eji.1830270526.
  • Adorini L, Giarratana N, Penna G. Pharmacological induction of tolerogenic dendritic cells and regulatory T cells. Semin Immunol. 2004 Apr;16(2):127–134. doi:10.1016/j.smim.2003.12.008.
  • Li HB, Shi BY. Tolerogenic dendritic cells and their applications in transplantation. Cell Mol Immunol. 2015 Jan;12(1):24–30. doi:10.1038/cmi.2014.52.
  • Torres-Aguilar H, Aguilar-Ruiz SR, Gonzalez-Perez G, et al. Tolerogenic dendritic cells generated with different immunosuppressive cytokines induce antigen-specific anergy and regulatory properties in memory CD4(+) T cells. J Immunol. 2010 Feb 15;184(4):1765–1775.
  • Lan YY, Wang Z, Raimondi G, et al. “Alternatively activated” dendritic cells preferentially secrete IL-10, expand Foxp3+CD4+ T cells, and induce long-term organ allograft survival in combination with CTLA4-Ig. J Immunol. 2006 Nov 1;177(9):5868–5877. doi:10.4049/jimmunol.177.9.5868.
  • Panther E, Corinti S, Idzko M, et al. Adenosine affects expression of membrane molecules, cytokine and chemokine release, and the T-cell stimulatory capacity of human dendritic cells. Blood. 2003 May 15;101(10):3985–3990.
  • Yang M, Ma C, Liu S, et al. HIF-dependent induction of adenosine receptor A2b skews human dendritic cells to a Th2-stimulating phenotype under hypoxia. Immunol Cell Biol. 2010 Feb;88(2):165–171. doi:10.1038/icb.2009.77.
  • Novitskiy SV, Ryzhov S, Zaynagetdinov R, et al. Adenosine receptors in regulation of dendritic cell differentiation and function. Blood. 2008 Sep 1;112(5):1822–1831.
  • Nasi A, Fekete T, Krishnamurthy A, et al. Dendritic cell reprogramming by endogenously produced lactic acid. J Immunol. 2013 Sep 15;191(6):3090–3099.
  • Hardwick N, Chan L, Ingram W, et al. Lytic activity against primary AML cells is stimulated in vitro by an autologous whole cell vaccine expressing IL-2 and CD80. Cancer Immunol Immunother. 2010 Mar;59(3):379–388. doi:10.1007/s00262-009-0756-x.
  • Narita M, Watanabe N, Yamahira A, et al. A leukemic plasmacytoid dendritic cell line, PMDC05, with the ability to secrete IFN-alpha by stimulation via Toll-like receptors and present antigens to naive T cells. Leuk Res. 2009 Sep;33(9):1224–1232. doi:10.1016/j.leukres.2009.03.047.
  • Palucka K, Banchereau J. Cancer immunotherapy via dendritic cells. Nat Rev Cancer. 2012 Apr;12(4):265–277. doi:10.1038/nrc3258.
  • Chiang CL, Coukos G, Kandalaft LE. Whole tumor antigen vaccines: where are we? Vaccines (Basel). 2015;3(2):344–372. doi:10.3390/vaccines3020344.
  • Gonzalez FE, Gleisner A, Falcon-Beas F, et al. Tumor cell lysates as immunogenic sources for cancer vaccine design. Hum Vaccin Immunother. 2014;10(11):3261–3269. doi:10.4161/21645515.2014.982996.
  • Mantia-Smaldone GM, Chu CS. A review of dendritic cell therapy for cancer: progress and challenges. BioDrugs. 2013 Oct;27(5):453–468. doi:10.1007/s40259-013-0030-9.
  • Suresh K, Fraser G, Scheid E, et al. Generation of in vitro B-CLL specific HLA class I restricted CTL responses using autologous dendritic cells pulsed with necrotic tumor lysate. Leuk Lymphoma. 2006 Feb;47(2):297–306. doi:10.1080/10428190500301231.
  • Lim JH, Park CJ, Kim MJ, et al. Generation of lymphocytes potentiated against leukemic lymphoblasts by stimulation using leukemic cell lysate-pulsed dendritic cells in patients with acute lymphoblastic leukemia and measurement of in vitro anti-leukemic cytotoxicity. Hematology. 2012 Jan;17(1):15–22. doi:10.1179/102453312X13221316477453.
  • Alaniz L, Rizzo MM, Mazzolini G. Pulsing dendritic cells with whole tumor cell lysates. Methods Mol Biol. 2014;1139:27–31. doi:10.1007/978-1-4939-0345-0_3.
  • Hatfield P, Merrick AE, West E, et al. Optimization of dendritic cell loading with tumor cell lysates for cancer immunotherapy. J Immunother. 2008 Sep;31(7):620–632. doi:10.1097/CJI.0b013e31818213df.
  • Banchereau J, Paczesny S, Blanco P, et al. Dendritic cells: controllers of the immune system and a new promise for immunotherapy. Ann N Y Acad Sci. 2003;987:180–187.
  • Westers TM, Van Den Ancker W, Bontkes HJ, et al. Chronic myeloid leukemia lysate-loaded dendritic cells induce T-cell responses towards leukemia progenitor cells. Immunotherapy. 2011 Apr;3(4):569–576. doi:10.2217/imt.11.3.
  • Duman BB, Sahin B, Ergin M, et al. Loss of CD20 antigen expression after rituximab therapy of CD20 positive B cell lymphoma (diffuse large B cell extranodal marginal zone lymphoma combination): a case report and review of the literature. Med Oncol. 2012 Jun;29(2):1223–1226. doi:10.1007/s12032-011-9955-3.
  • Forconi F, Moss P. Perturbation of the normal immune system in patients with CLL. Blood. 2015 Jul 30;126(5):573–581.
  • Hus I, Schmitt M, Tabarkiewicz J, et al. Vaccination of B-CLL patients with autologous dendritic cells can change the frequency of leukemia antigen-specific CD8+ T cells as well as CD4+CD25+FoxP3+ regulatory T cells toward an antileukemia response. Leukemia. 2008 May;22(5):1007–1017. doi:10.1038/leu.2008.29.
  • Yamahira A, Narita M, Nakamura T, et al. Generation of antigen-specific cytotoxic T lymphocytes using a leukemic plasmacytoid dendritic cell line as antigen presenting cells. Leuk Res. 2011 Jun;35(6):793–799. doi:10.1016/j.leukres.2010.12.003.
  • Schmitt M, Casalegno-Garduno R, Xu X, et al. Peptide vaccines for patients with acute myeloid leukemia. Expert Rev Vaccines. 2009 Oct;8(10):1415–1425. doi:10.1586/erv.09.90.
  • Bijker MS, Melief CJ, Offringa R, et al. Design and development of synthetic peptide vaccines: past, present and future. Expert Rev Vaccines. 2007 Aug;6(4):591–603. doi:10.1586/14760584.6.4.591.
  • Maeda T, Hosen N, Fukushima K, et al. Maintenance of complete remission after allogeneic stem cell transplantation in leukemia patients treated with Wilms tumor 1 peptide vaccine. Blood Cancer J. 2013;3:e130. doi:10.1038/bcj.2013.29.
  • Di Stasi A, Jimenez AM, Minagawa K, et al. Review of the results of WT1 peptide vaccination strategies for myelodysplastic syndromes and acute myeloid leukemia from nine different studies. Front Immunol. 2015;6:36. doi:10.3389/fimmu.2015.00036.
  • Casalegno-Garduno R, Schmitt A, Schmitt M. Clinical peptide vaccination trials for leukemia patients. Expert Rev Vaccines. 2011 Jun;10(6):785–799. doi:10.1586/erv.11.56.
  • Pol J, Bloy N, Buque A, et al. Trial watch: peptide-based anticancer vaccines. Oncoimmunology. 2015 Apr;4(4):e974411. doi:10.1080/2162402X.2015.1008371.
  • Pyzer AR, Avigan DE, Rosenblatt J. Clinical trials of dendritic cell-based cancer vaccines in hematologic malignancies. Hum Vaccin Immunother. 2014;10(11):3125–3131. doi:10.4161/21645515.2014.982993.
  • Hofmann S, Mead A, Malinovskis A, et al. Analogue peptides for the immunotherapy of human acute myeloid leukemia. Cancer Immunol Immunother. 2015 Nov;64(11):1357–1367. doi:10.1007/s00262-015-1762-9.
  • Romano A, Conticello C, Cavalli M, et al. Immunological dysregulation in multiple myeloma microenvironment. Biomed Res Int. 2014;2014:198539. doi:10.1155/2014/198539.
  • Niemann CU, Herman SE, Maric I, et al. Disruption of in vivo chronic lymphocytic leukemia tumor-microenvironment interactions by ibrutinib - findings from an investigator initiated phase 2 study. Clin Cancer Res. 2016 Apr;22(7):1572–1582. doi:10.1158/1078-0432.CCR-15-1965.
  • Pinho MP, Sundarasetty BS, Bergami-Santos PC, et al. Dendritic-tumor cell hybrids induce tumor-specific immune responses more effectively than the simple mixture of dendritic and tumor cells. Cytotherapy. 2016 Apr;18(4):570–580. doi:10.1016/j.jcyt.2016.01.005.
  • Gilboa E. The makings of a tumor rejection antigen. Immunity. 1999 Sep;11(3):263–270.
  • Hus I, Rolinski J, Tabarkiewicz J, et al. Allogeneic dendritic cells pulsed with tumor lysates or apoptotic bodies as immunotherapy for patients with early-stage B-cell chronic lymphocytic leukemia. Leukemia. 2005 Sep;19(9):1621–1627. doi:10.1038/sj.leu.2403860.
  • Li L, Giannopoulos K, Reinhardt P, et al. Immunotherapy for patients with acute myeloid leukemia using autologous dendritic cells generated from leukemic blasts. Int J Oncol. 2006 Apr;28(4):855–861.
  • Berneman N, Van De Velde A, Anguille S, et al. Induction of complete and molecular remissions in acute myeloid leukemia by Wilms’ tumor 1 antigen-targeted dendritic cell vaccination. Haematol Hematol J. 2010;95:461–61.
  • Westermann J, Kopp J, Van Lessen A, et al. Vaccination with autologous non-irradiated dendritic cells in patients with bcr/abl plus chronic myeloid leukaemia. Brit J Haematol. 2007 May;137(4):297–306. doi:10.1111/j.1365-2141.2007.06547.x.
  • Schnorfeil F, Lichtenegger F, Rothe M, et al. Dendritic cell vaccination in postremission therapy of AML: results of a clinical phase i trial and of preclinical studies testing combinatorial approaches. Haematologica. 2015;100:287–87.
  • Litzow MR, Dietz AB, Bulur PA, et al. Testing the safety of clinical-grade mature autologous myeloid DC in a phase I clinical immunotherapy trial of CML. Cytotherapy. 2006;8(3):290–298. doi:10.1080/14653240600735743.
  • Roddie H, Klammer M, Thomas C, et al. Phase I/II study of vaccination with dendritic-like leukaemia cells for the immunotherapy of acute myeloid leukaemia. Br J Haematol. 2006 Apr;133(2):152–157. doi:10.1111/j.1365-2141.2006.05997.x.
  • Ossenkoppele GJ, Stam AG, Tm W, et al. Vaccination of chronic myeloid leukemia patients with autologous in vitro cultured leukemic dendritic cells. Leukemia. 2003 Jul;17(7):1424–1426. doi:10.1038/sj.leu.2402979.
  • Fujii S, Shimizu K, Fujimoto K, et al. Analysis of a chronic myelogenous leukemia patient vaccinated with leukemic dendritic cells following autologous peripheral blood stem cell transplantation. Jpn J Cancer Res. 1999 Oct;90(10):1117–1129.
  • Anguille S, Van Tendeloo VF, Berneman ZN. Leukemia-associated antigens and their relevance to the immunotherapy of acute myeloid leukemia. Leukemia. 2012 Oct;26(10):2186–2196. doi:10.1038/leu.2012.145.
  • Schmitt M, Li L, Giannopoulos K, et al. Chronic myeloid leukemia cells express tumor-associated antigens eliciting specific CD8+ T-cell responses and are lacking costimulatory molecules. Exp Hematol. 2006 Dec;34(12):1709–1719. doi:10.1016/j.exphem.2006.07.009.
  • Greiner J, Schmitt M, Li L, et al. Expression of tumor-associated antigens in acute myeloid leukemia: implications for specific immunotherapeutic approaches. Blood. 2006 Dec 15;108(13):4109–4117. doi:10.1182/blood-2006-01-023127.
  • Giannopoulos K, Schmitt M. Targets and strategies for T-cell based vaccines in patients with B-cell chronic lymphocytic leukemia. Leuk Lymphoma. 2006 Oct;47(10):2028–2036. doi:10.1080/10428190600709721.
  • Kowalewski DJ, Schuster H, Backert L, et al. HLA ligandome analysis identifies the underlying specificities of spontaneous antileukemia immune responses in chronic lymphocytic leukemia (CLL). Proc Natl Acad Sci U S A. 2015 Jan 13;112(2):E166–75.
  • Berlin C, Kowalewski DJ, Schuster H, et al. Mapping the HLA ligandome landscape of acute myeloid leukemia: a targeted approach toward peptide-based immunotherapy. Leukemia. 2015 Mar;29(3):647–659. doi:10.1038/leu.2014.233.
  • Weinzierl AO, Lemmel C, Schoor O, et al. Distorted relation between mRNA copy number and corresponding major histocompatibility complex ligand density on the cell surface. Mol Cell Proteomics. 2007 Jan;6(1):102–113. doi:10.1074/mcp.M600310-MCP200.
  • Walter S, Weinschenk T, Stenzl A, et al. Multipeptide immune response to cancer vaccine IMA901 after single-dose cyclophosphamide associates with longer patient survival. Nat Med. 2012 Aug;18(8):1254–1261. doi:10.1038/nm.2883.
  • Garg AD, Vandenberk L, Koks C, et al. Dendritic cell vaccines based on immunogenic cell death elicit danger signals and T cell-driven rejection of high-grade glioma. Sci Transl Med. 2016 Mar 2;8(328):328ra27. doi:10.1126/scitranslmed.aaf0746.
  • Gilboa E, Vieweg J. Cancer immunotherapy with mRNA-transfected dendritic cells. Immunol Rev. 2004 Jun;199:251–263. doi:10.1111/j.0105-2896.2004.00139.x.
  • Van Tendeloo VF, Van De Velde A, Van Driessche A, et al. Induction of complete and molecular remissions in acute myeloid leukemia by Wilms’ tumor 1 antigen-targeted dendritic cell vaccination. Proc Natl Acad Sci U S A. 2010 Aug 3;107(31):13824–13829. doi:10.1073/pnas.1008051107.
  • Subklewe M, Geiger C, Lichtenegger FS, et al. New generation dendritic cell vaccine for immunotherapy of acute myeloid leukemia. Cancer Immunol Immunother. 2014 Oct;63(10):1093–1103. doi:10.1007/s00262-014-1600-5.
  • Porter DL, Levine BL, Kalos M, et al. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med. 2011 Aug 25;365(8):725–733.
  • Grupp SA, Kalos M, Barrett D, et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med. 2013 Apr 18;368(16):1509–1518.
  • Ramos CA, Heslop HE, Brenner MK. CAR-T Cell Therapy for Lymphoma. Annu Rev Med. 2016 Jan 14;67:165–183. doi:10.1146/annurev-med-051914-021702.
  • Sundarasetty BS, Singh VK, Salguero G, et al. Lentivirus-induced dendritic cells for immunization against high-risk WT1(+) acute myeloid leukemia. Hum Gene Ther. 2013 Feb;24(2):220–237. doi:10.1089/hum.2012.128.
  • Sundarasetty BS, Kloess S, Oberschmidt O, et al. Generation of lentivirus-induced dendritic cells under GMP-compliant conditions for adaptive immune reconstitution against cytomegalovirus after stem cell transplantation. J Transl Med. 2015;13:240. doi:10.1186/s12967-015-0541-x.
  • Sundarasetty BS, Chan L, Darling D, et al. Lentivirus-induced ‘Smart’ dendritic cells: pharmacodynamics and GMP-compliant production for immunotherapy against TRP2-positive melanoma. Gene Ther. 2015 Sep;22(9):707–720. doi:10.1038/gt.2015.43.
  • Rickmann M, Macke L, Sundarasetty BS, et al. Monitoring dendritic cell and cytokine biomarkers during remission prior to relapse in patients with FLT3-ITD acute myeloid leukemia. Ann Hematol. 2013 Aug;92(8):1079–1090. doi:10.1007/s00277-013-1744-y.
  • Rickmann M, Krauter J, Stamer K, et al. Elevated frequencies of leukemic myeloid and plasmacytoid dendritic cells in acute myeloid leukemia with the FLT3 internal tandem duplication. Ann Hematol. 2011 Sep;90(9):1047–1058. doi:10.1007/s00277-011-1231-2.
  • Stripecke R, Cardoso AA, Pepper KA, et al. Lentiviral vectors for efficient delivery of CD80 and granulocyte-macrophage-colony-stimulating factor in human acute lymphoblastic leukemia and acute myeloid leukemia cells to induce antileukemic immune responses. Blood. 2000 Aug 15;96(4):1317–1326.
  • Ackerman AL, Cresswell P. Cellular mechanisms governing cross-presentation of exogenous antigens. Nat Immunol. 2004 Jul;5(7):678–684. doi:10.1038/ni1082.
  • Tacken PJ, Joosten B, Reddy A, et al. No advantage of cell-penetrating peptides over receptor-specific antibodies in targeting antigen to human dendritic cells for cross-presentation. J Immunol. 2008 Jun 1;180(11):7687–7696.
  • Kretz-Rommel A, Qin F, Dakappagari N, et al. In vivo targeting of antigens to human dendritic cells through DC-SIGN elicits stimulatory immune responses and inhibits tumor growth in grafted mouse models. J Immunother. 2007 Oct;30(7):715–726. doi:10.1097/CJI.0b013e318135472c.
  • Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015 Jul 2;373(1):23–34. doi:10.1056/NEJMoa1504030.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.