131
Views
5
CrossRef citations to date
0
Altmetric
Review

Biomaterial strategies to improve the efficacy of bone marrow cell therapy for myocardial infarction

&
Pages 1501-1516 | Received 22 Jun 2016, Accepted 07 Sep 2016, Published online: 19 Sep 2016

References

  • The 10 leading causes of death in the world, 2000 and 2012. World Health Organization; 2014. Available from http://www.who.int/mediacentre/factsheets/fs310/en
  • Alpert JS, Thygesen K, Antman E, et al. Myocardial infarction redefined–a consensus document of The Joint European Society of Cardiology/American College of Cardiology Committee for the redefinition of myocardial infarction. J Am Coll Cardiol. 2000;36:959–969.
  • Nian M, Lee P, Khaper N, et al. Inflammatory cytokines and postmyocardial infarction remodeling. Circ Res. 2004;94:1543–1553. DOI:10.1161/01.RES.0000130526.20854.fa
  • Boudoulas KD, Hatzopoulos AK. Cardiac repair and regeneration: the Rubik’s cube of cell therapy for heart disease. Dis Model Mech. 2009;2:344–358. DOI:10.1242/dmm.000240
  • Kucia M, Dawn B, Hunt G, et al. Cells expressing early cardiac markers reside in the bone marrow and are mobilized into the peripheral blood after myocardial infarction. Circ Res. 2004;95:1191–1199. DOI:10.1161/01.RES.0000150856.47324.5b
  • Schächinger V, Aicher A, Döbert N, et al. Pilot trial on determinants of progenitor cell recruitment to the infarcted human myocardium. Circulation. 2008;118:1425–1432. DOI:10.1161/CIRCULATIONAHA.108.777102
  • Shi M, Li J, Liao L, et al. Regulation of CXCR4 expression in human mesenchymal stem cells by cytokine treatment: role in homing efficiency in NOD/SCID mice. Haematologica. 2007;92:897–904.
  • Hu X, Dai S, Wu W-J, et al. Stromal cell derived factor-1 alpha confers protection against myocardial ischemia/reperfusion injury: role of the cardiac stromal cell derived factor-1 alpha CXCR4 axis. Circulation. 2007;116:654–663. DOI:10.1161/CIRCULATIONAHA.106.672451
  • Cheng C, Li P, Wang Y-G, et al. Study on the expression of VEGF and HIF-1α in infarct area of rats with AMI. Eur Rev Med Pharmacol Sci. 2016;20:115–119.
  • Yoon Y-S, Wecker A, Heyd L, et al. Clonally expanded novel multipotent stem cells from human bone marrow regenerate myocardium after myocardial infarction. J Clin Invest. 2005;115:326–338. DOI:10.1172/JCI22326
  • Fazel S, Cimini M, Chen L, et al. Cardioprotective c-kit+ cells are from the bone marrow and regulate the myocardial balance of angiogenic cytokines. J Clin Invest. 2006;116:1865–1877. DOI:10.1172/JCI27019
  • Wojakowski W, Tendera M, Michałowska A, et al. Mobilization of CD34/CXCR4+, CD34/CD117+, c-met+ stem cells, and mononuclear cells expressing early cardiac, muscle, and endothelial markers into peripheral blood in patients with acute myocardial infarction. Circulation. 2004;110:3213–3220. DOI:10.1161/01.CIR.0000147609.39780.02
  • Wojakowski W, Landmesser U, Bachowski R, et al. Mobilization of stem and progenitor cells in cardiovascular diseases. Leukemia. 2012;26:23–33. DOI:10.1038/leu.2011.184
  • Schmidt-Lucke C, Rössig L, Fichtlscherer S, et al. Reduced number of circulating endothelial progenitor cells predicts future cardiovascular events: proof of concept for the clinical importance of endogenous vascular repair. Circulation. 2005;111:2981–2987. DOI:10.1161/CIRCULATIONAHA.104.504340
  • Fortunato O, Spinetti G, Specchia C, et al. Migratory activity of circulating progenitor cells and serum SDF-1α predict adverse events in patients with myocardial infarction. Cardiovasc Res. 2013;100:192–200. DOI:10.1093/cvr/cvt153
  • Chen Y-L, Tsai T-H, Wallace CG, et al. Intra-carotid arterial administration of autologous peripheral blood-derived endothelial progenitor cells improves acute ischemic stroke neurological outcomes in rats. Int J Cardiol. 2015;201:668–683. DOI:10.1016/j.ijcard.2015.03.137
  • Hung H-S, Yang Y-C, Lin Y-C, et al. Regulation of human endothelial progenitor cell maturation by polyurethane nanocomposites. Biomaterials. 2014;35:6810–6821. DOI:10.1016/j.biomaterials.2014.04.076
  • Zhang X, Yan X, Wang C, et al. The effect of autologous endothelial progenitor cell transplantation combined with extracorporeal shock-wave therapy on ischemic skin flaps in rats. Cytotherapy. 2014;16:1098–1109. DOI:10.1016/j.jcyt.2014.02.013
  • Chen X, Wang J, An Q, et al. Electrospun poly(l-lactic acid-co-ε-caprolactone) fibers loaded with heparin and vascular endothelial growth factor to improve blood compatibility and endothelial progenitor cell proliferation. Colloids Surf B Biointerfaces. 2015;128:106–114. DOI:10.1016/j.colsurfb.2015.02.023
  • González-Pecchi V, Valdés S, Pons V, et al. Apolipoprotein A-I enhances proliferation of human endothelial progenitor cells and promotes angiogenesis through the cell surface ATP synthase. Microvasc Res. 2015;98:9–15. DOI:10.1016/j.mvr.2014.11.003
  • Qi P, Yan W, Yang Y, et al. Immobilization of DNA aptamers via plasma polymerized allylamine film to construct an endothelial progenitor cell-capture surface. Colloids Surf B Biointerfaces. 2015;126:70–79. DOI:10.1016/j.colsurfb.2014.12.017
  • Li Q, Tang G, Xue S, et al. Silica-coated superparamagnetic iron oxide nanoparticles targeting of EPCs in ischemic brain injury. Biomaterials. 2013;34:4982–4992. DOI:10.1016/j.biomaterials.2013.03.030
  • Fadini GP, Losordo D, Dimmeler S. Critical reevaluation of endothelial progenitor cell phenotypes for therapeutic and diagnostic use. Circ Res. 2012;110:624–637. DOI:10.1161/CIRCRESAHA.111.243386
  • Orlic D, Kajstura J, Chimenti S, et al. Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci U S A. 2001;98:10344–10349. DOI:10.1073/pnas.181177898
  • Balsam L, Wagers A, Christensen J, et al. Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature. 2004;428:668–673. DOI:10.1038/nature02460
  • Murry CE, Reinecke H, Pabon LM. Regeneration gaps: observations on stem cells and cardiac repair. J Am Coll Cardiol. 2006;47:1777–1785. DOI:10.1016/j.jacc.2006.02.002
  • Cho H-J, Lee N, Lee JY, et al. Role of host tissues for sustained humoral effects after endothelial progenitor cell transplantation into the ischemic heart. J Exp Med. 2007;204:3257–3269. DOI:10.1084/jem.20070166
  • Loffredo FS, Steinhauser ML, Gannon J, et al. Bone marrow-derived cell therapy stimulates endogenous cardiomyocyte progenitors and promotes cardiac repair. Cell Stem Cell. 2011;8:389–398. DOI:10.1016/j.stem.2011.02.002
  • Chimenti I, Smith RR, Li T-S, et al. Relative roles of direct regeneration versus paracrine effects of human cardiosphere-derived cells transplanted into infarcted mice. Circ Res. 2010;106:971–980. DOI:10.1161/CIRCRESAHA.109.210682
  • Cheng Y, Jiang S, Hu R, et al. Potential mechanism for endothelial progenitor cell therapy in acute myocardial infarction: activation of VEGF- PI3K/Akt-eNOS pathway. Ann Clin Lab Sci. 2013;43:395–401.
  • Lovell MJ, Yasin M, Lee KL, et al. Bone marrow mononuclear cells reduce myocardial reperfusion injury by activating the PI3K/Akt survival pathway. Atherosclerosis. 2010;213:67–76. DOI:10.1016/j.atherosclerosis.2010.07.045
  • Zhang S, Zhao L, Shen L, et al. Comparison of various niches for endothelial progenitor cell therapy on ischemic myocardial repair: coexistence of host collateralization and Akt-mediated angiogenesis produces a superior microenvironment. Arterioscler Thromb Vasc Biol. 2012;32:910–923. DOI:10.1161/ATVBAHA.111.244970
  • Lehtonen ST, Mäkelä J, Ohlmeier S, et al. Analysis of molecular changes after autologous cell therapy in swine myocardial infarction tissue can reveal novel targets for future therapy. J Tissue Eng Regen Med. 2014;8:97–105. DOI:10.1002/term.1502
  • Jansen Of Lorkeers SJ, Eding JEC, Vesterinen HM, et al. Similar effect of autologous and allogeneic cell therapy for ischemic heart disease: systematic review and meta-analysis of large animal studies. Circ Res. 2015;116:80–86. DOI:10.1161/CIRCRESAHA.116.304872
  • Giordano C, Kuraitis D, Beanlands RSB, et al. Cell-based vasculogenic studies in preclinical models of chronic myocardial ischaemia and hibernation. Expert Opin Biol Ther. 2013;13:411–428. DOI:10.1517/14712598.2013.748739
  • Hou L, Kim JJ, Woo YJ, et al. Stem cell-based therapies to promote angiogenesis in ischemic cardiovascular disease. Am J Physiol Heart Circ Physiol. 2016;310:H455–H465. DOI:10.1152/ajpheart.00726.2015
  • Jakob P, Landmesser U. Current status of cell-based therapy for heart failure. Curr Heart Fail Rep. 2013;10:165–176. DOI:10.1007/s11897-013-0134-z
  • Sarto P, Balducci E, Balconi G, et al. Effects of exercise training on endothelial progenitor cells in patients with chronic heart failure. J Card Fail. 2007;13:701–708. DOI:10.1016/j.cardfail.2007.06.722
  • Eleuteri E, Mezzani A, Di SA, et al. Aerobic training and angiogenesis activation in patients with stable chronic heart failure: a preliminary report. Biomarkers. 2013;18:418–424. DOI:10.3109/1354750X.2013.805342
  • Turan RG, Brehm M, Kostering M, et al. Effects of exercise training on mobilization of BM-CPCs and migratory capacity as well as LVEF after AMI. Med Klin. 2006;101(Suppl 1):198–201.
  • Vasa M, Fichtlscherer S, Adler K, et al. Increase in circulating endothelial progenitor cells by statin therapy in patients with stable coronary artery disease. Circulation. 2001;103:2885–2890.
  • Afzal MR, Samanta A, Shah ZI, et al. Adult bone marrow cell therapy for ischemic heart disease: evidence and insights from randomized controlled trials. Circ Res. 2015;117:558–575. DOI:10.1161/CIRCRESAHA.114.304792
  • Zhu K, Li J, Wang Y, et al. Intramyocardial autologous bone marrow-derived stem cells injection for ischemic heart disease ineligible for revascularization: a systematic review and meta-analysis. Arch Med Res. 2015;46:286–295. DOI:10.1016/j.arcmed.2015.06.001
  • Delewi R, Hirsch A, Tijssen JG, et al. Impact of intracoronary bone marrow cell therapy on left ventricular function in the setting of ST-segment elevation myocardial infarction: a collaborative meta-analysis. Eur Heart J. 2014;35:989–998. DOI:10.1093/eurheartj/eht372
  • Jeevanantham V, Butler M, Saad A, et al. Adult bone marrow cell therapy improves survival and induces long-term improvement in cardiac parameters: a systematic review and meta-analysis. Circulation. 2012;126:551–568. DOI:10.1161/CIRCULATIONAHA.111.086074
  • Gyöngyösi M, Wojakowski W, Lemarchand P, et al. Meta-analysis of cell-based CaRdiac stUdiEs (ACCRUE) in patients with acute myocardial infarction based on individual patient data. Circ Res. 2015;116:1346–1360. DOI:10.1161/CIRCRESAHA.116.304346
  • Fisher SA, Zhang H, Doree C, et al. Stem cell treatment for acute myocardial infarction. Cochrane Database Syst Rev. 2015;9:CD006536.
  • Nowbar AN, Mielewczik M, Karavassilis M, et al. Discrepancies in autologous bone marrow stem cell trials and enhancement of ejection fraction (DAMASCENE): weighted regression and meta-analysis. BMJ. 2014;348:g2688. DOI:10.1136/bmj.g2688
  • Pompilio G, Nigro P, Bassetti B, et al. Bone marrow cell therapy for ischemic heart disease: the never ending story. Circ Res. 2015;117:490–493. DOI:10.1161/CIRCRESAHA.115.307184
  • Kovacic JC, Fuster V. Cell therapy for patients with acute myocardial infarction: ACCRUEd evidence to date. Circ Res. 2015;116:1287–1290. DOI:10.1161/CIRCRESAHA.115.306323
  • Wollert KC. Bone marrow mononuclear cell therapy for acute myocardial infarction: we know what we want, but we just don’t know how yet. Heart. 2015;101:337–338. DOI:10.1136/heartjnl-2014-306787
  • Khan AR, Farid TA, Pathan A, et al. Impact of cell therapy on myocardial perfusion and cardiovascular outcomes in patients with angina refractory to medical therapy: a systematic review and meta-analysis. Circ Res. 2016;118:984–993. DOI:10.1161/CIRCRESAHA.115.308056
  • Ali-Hassan-Sayegh S, Mirhosseini SJ, Lotfaliani M-R, et al. Transplantation of bone marrow stem cells during cardiac surgery. Asian Cardiovasc Thorac Ann. 2014;23:363–374. DOI:10.1177/0218492314553251
  • Liu B, Duan C, Luo C, et al. Impact of timing following acute myocardial infarction on efficacy and safety of bone marrow stem cells therapy: a network meta-analysis. Stem Cells Int. 2016;2016:1031794.
  • Aicher A, Brenner W, Zuhayra M, et al. Assessment of the tissue distribution of transplanted human endothelial progenitor cells by radioactive labeling. Circulation. 2003;107:2134–2139. DOI:10.1161/01.CIR.0000062649.63838.C9
  • Li S-H, Lai TYY, Sun Z, et al. Tracking cardiac engraftment and distribution of implanted bone marrow cells: comparing intra-aortic, intravenous, and intramyocardial delivery. J Thorac Cardiovasc Surg. 2009;137:1225–1233. DOI:10.1016/j.jtcvs.2008.11.001
  • Daldrup-Link HE, Rudelius M, Metz S, et al. Cell tracking with gadophrin-2: a bifunctional contrast agent for MR imaging, optical imaging, and fluorescence microscopy. Eur J Nucl Med Mol Imaging. 2004;31:1312–1321. DOI:10.1007/s00259-003-1378-8
  • Kang WJ, Kang HJ, Kim HS, et al. Tissue distribution of 18F-FDG-labeled peripheral hematopoietic stem cells after intracoronary administration in patients with myocardial infarction. J Nucl Med. 2006;47:1295–1301.
  • Karpov RS, Popov SV, Markov VA, et al. Autologous mononuclear bone marrow cells during reparative regeneratrion after acute myocardial infarction. Bull Exp Biol Med. 2005;140:640–643.
  • Vrtovec B, Poglajen G, Lezaic L, et al. Effects of intracoronary CD34+ stem cell transplantation in nonischemic dilated cardiomyopathy patients: 5-year follow-up. Circ Res. 2013;112:165–173. DOI:10.1161/CIRCRESAHA.112.276519
  • António N, Fernandes R, Soares A, et al. Reduced levels of circulating endothelial progenitor cells in acute myocardial infarction patients with diabetes or pre-diabetes: accompanying the glycemic continuum. Cardiovasc Diabetol. 2014;13:101. DOI:10.1186/1475-2840-13-80
  • Dimmeler S, Leri A. Aging and disease as modifiers of efficacy of cell therapy. Circ Res. 2008;102:1319–1330. DOI:10.1161/CIRCRESAHA.108.175943
  • Hill JM, Zalos G, Halcox JPJ, et al. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med. 2003;348:593–600. DOI:10.1056/NEJMoa022287
  • Heeschen C, Lehmann R, Honold J, et al. Profoundly reduced neovascularization capacity of bone marrow mononuclear cells derived from patients with chronic ischemic heart disease. Circulation. 2004;109:1615–1622. DOI:10.1161/01.CIR.0000124476.32871.E3
  • Kim K-A, Shin Y-J, Akram M, et al. High glucose condition induces autophagy in endothelial progenitor cells contributing to angiogenic impairment. Biol Pharm Bull. 2014;37:1248–1252.
  • Assmus B, Leistner DM, Schächinger V, et al. Long-term clinical outcome after intracoronary application of bone marrow-derived mononuclear cells for acute myocardial infarction: migratory capacity of administered cells determines event-free survival. Eur Heart J. 2014;35:1275–1283. DOI:10.1093/eurheartj/ehu062
  • Lou J, Povsic TJ, Allen JD, et al. The effect of aspirin on endothelial progenitor cell biology: preliminary investigation of novel properties. Thromb Res. 2010;126:e175–e179. DOI:10.1016/j.thromres.2009.11.017
  • Stiles J, Amaya C, Pham R, et al. Propranolol treatment of infantile hemangioma endothelial cells: a molecular analysis. Exp Ther Med. 2012;4:594–604. DOI:10.3892/etm.2012.654
  • Simari R, Pepine C, Traverse J, et al. Bone marrow mononuclear cell therapy for acute myocardial infarction: a perspective from the CCTRN. Circ Res. 2014;114:1564–1568. DOI:10.1161/CIRCRESAHA.114.303720
  • Wollert KC, Drexler H. Cell therapy for the treatment of coronary heart disease: a critical appraisal. Nat Rev Cardiol. 2010;7:204–215. DOI:10.1038/nrcardio.2010.1
  • Strauer B-E, Steinhoff G. 10 years of intracoronary and intramyocardial bone marrow stem cell therapy of the heart: from the methodological origin to clinical practice. J Am Coll Cardiol. 2011;58:1095–1104. DOI:10.1016/j.jacc.2011.06.016
  • Cima LG, Vacanti JP, Vacanti C, et al. Tissue engineering by cell transplantation using degradable polymer substrates. J Biomech Eng. 1991;113:143–151.
  • Kim I-Y, Seo S-J, Moon H-S, et al. Chitosan and its derivatives for tissue engineering applications. Biotechnol Adv. 2008;26:1–21. DOI:10.1016/j.biotechadv.2007.07.009
  • Brown A, Barker T. Fibrin-based biomaterials: modulation of macroscopic properties through rational design at the molecular level. Acta Biomater. 2011;72:181–204.
  • Okada M, Payne TR, Oshima H, et al. Differential efficacy of gels derived from small intestinal submucosa as an injectable biomaterial for myocardial infarct repair. Biomaterials. 2010;31:7678–7683. DOI:10.1016/j.biomaterials.2010.06.056
  • Blackburn NJR, Sofrenovic T, Kuraitis D, et al. Timing underpins the benefits associated with injectable collagen biomaterial therapy for the treatment of myocardial infarction. Biomaterials. 2015;39:182–192. DOI:10.1016/j.biomaterials.2014.11.004
  • Serpooshan V, Zhao M, Metzler SA, et al. The effect of bioengineered acellular collagen patch on cardiac remodeling and ventricular function post myocardial infarction. Biomaterials. 2013;34:9048–9055. DOI:10.1016/j.biomaterials.2013.08.017
  • Tabuchi M, Negishi J, Yamashita A, et al. Effect of decellularized tissue powders on a rat model of acute myocardial infarction. Mater Sci Eng C. 2015;56:494–500. DOI:10.1016/j.msec.2015.07.010
  • Leor J, Amsalem Y, Cohen S. Cells, scaffolds, and molecules for myocardial tissue engineering. Pharmacol Ther. 2005;105:151–163. DOI:10.1016/j.pharmthera.2004.10.003
  • Ahmadi A, McNeill B, Vulesevic B, et al. The role of integrin α2 in cell and matrix therapy that improves perfusion, viability and function of infarcted myocardium. Biomaterials. 2014;35:4749–4758. DOI:10.1016/j.biomaterials.2014.02.028
  • Lalit PA, Hei DJ, Raval AN, et al. Induced pluripotent stem cells for post-myocardial infarction repair: remarkable opportunities and challenges. Circ Res. 2014;114:1328–1345. DOI:10.1161/CIRCRESAHA.114.300556
  • Xiang Z, Liao R, Kelly MS, et al. Collagen-GAG scaffolds grafted onto myocardial infarcts in a rat model: a delivery vehicle for mesenchymal stem cells. Tissue Eng. 2006;12:2467–2478. DOI:10.1089/ten.2006.12.2467
  • Pozzobon M, Bollini S, Iop L, et al. Human bone marrow-derived CD133+ cells delivered to a collagen patch on cryoinjured rat heart promote angiogenesis and arteriogenesis. Cell Transplant. 2010;19:1247–1260. DOI:10.3727/096368910X505864
  • Chan BP, Hui TY, Yeung CW, et al. Self-assembled collagen-human mesenchymal stem cell microspheres for regenerative medicine. Biomaterials. 2007;28:4652–4666. DOI:10.1016/j.biomaterials.2007.07.041
  • Dai W, Hale SL, Kay GL, et al. Delivering stem cells to the heart in a collagen matrix reduces relocation of cells to other organs as assessed by nanoparticle technology. Cardiovasc Med. 2010;4:387–395.
  • Liu J, Hu Q, Wang Z, et al. Autologous stem cell transplantation for myocardial repair. Am J Physiol Heart Circ Physiol. 2004;287:H501–H511. DOI:10.1152/ajpheart.00049.2004
  • Gaffey AC, Chen MH, Venkataraman CM, et al. Injectable shear-thinning hydrogels used to deliver endothelial progenitor cells, enhance cell engraftment, and improve ischemic myocardium. J Thorac Cardiovasc Surg. 2015;150:1268–1276. DOI:10.1016/j.jtcvs.2015.07.035
  • Chen C-H, Wang -S-S, Wei EI, et al. Hyaluronan enhances bone marrow cell therapy for myocardial repair after infarction. Mol Ther. 2013;21:670–679. DOI:10.1038/mt.2012.268
  • Chen C-H, Chang M-Y, Wang -S-S, et al. Injection of autologous bone marrow cells in hyaluronan hydrogel improves cardiac performance after infarction in pigs. Am J Physiol Heart Circ Physiol. 2014;306:H1078–H1086. DOI:10.1152/ajpheart.00481.2013
  • Shevach M, Zax R, Abrahamov A, et al. Omentum ECM-based hydrogel as a platform for cardiac cell delivery. Biomed Mater. 2015;10:034106. DOI:10.1088/1748-6041/10/1/015022
  • Ungerleider JL, Johnson TD, Rao N, et al. Fabrication and characterization of injectable hydrogels derived from decellularized skeletal and cardiac muscle. Methods. 2015;84:53–59. DOI:10.1016/j.ymeth.2015.03.024
  • Suuronen EJ, Zhang P, Kuraitis D, et al. An acellular matrix-bound ligand enhances the mobilization, recruitment and therapeutic effects of circulating progenitor cells in a hindlimb ischemia model. FASEB J. 2009;23:1447–1458. DOI:10.1096/fj.08-111054
  • Thitiwuthikiat P, Ii M, Saito T, et al. A vascular patch prepared from Thai silk fibroin and gelatin hydrogel incorporating simvastatin-micelles to recruit endothelial progenitor cells. Tissue Eng Part A. 2015;21:1309–1319. DOI:10.1089/ten.TEA.2014.0237
  • Chi N-H, Yang M-C, Chung T-W, et al. Cardiac repair achieved by bone marrow mesenchymal stem cells/silk fibroin/hyaluronic acid patches in a rat of myocardial infarction model. Biomaterials. 2012;33:5541–5551. DOI:10.1016/j.biomaterials.2012.04.030
  • Zhang S, Zhang F, Feng B, et al. Hematopoietic stem cell capture and directional differentiation into vascular endothelial cells for metal stent-coated chitosan/hyaluronic acid loading CD133 antibody. Tissue Eng Part A. 2015;21:1173–1183. DOI:10.1089/ten.TEA.2014.0352
  • Kai D, Wang Q-L, Wang H-J, et al. Stem cell-loaded nanofibrous patch promotes the regeneration of infarcted myocardium with functional improvement in rat model. Acta Biomater. 2014;10:2727–2738. DOI:10.1016/j.actbio.2014.02.030
  • Ravichandran R, Venugopal JR, Mukherjee S, et al. Elastomeric core/shell nanofibrous cardiac patch as a biomimetic support for infarcted porcine myocardium. Tissue Eng Part A. 2015;21:1288–1298. DOI:10.1089/ten.TEA.2014.0265
  • Lee YS, Lim KS, Oh J-E, et al. Development of porous PLGA/PEI1.8k biodegradable microspheres for the delivery of mesenchymal stem cells (MSCs). J Control Release. 2015;205:128–133. DOI:10.1016/j.jconrel.2015.01.004
  • Wall ST, Yeh -C-C, Tu RYK, et al. Biomimetic matrices for myocardial stabilization and stem cell transplantation. J Biomed Mater Res Part A. 2010;95A:1055–1066. DOI:10.1002/jbm.a.v95a:4
  • Xia Y, Zhu K, Lai H, et al. Enhanced infarct myocardium repair mediated by thermosensitive copolymer hydrogel-based stem cell transplantation. Exp Biol Med. 2015;240:593–600. DOI:10.1177/1535370214560957
  • Xu G, Wang X, Deng C, et al. Injectable biodegradable hybrid hydrogels based on thiolated collagen and oligo(acryloyl carbonate)-poly(ethylene glycol)-oligo(acryloyl carbonate) copolymer for functional cardiac regeneration. Acta Biomater. 2015;15:55–64. DOI:10.1016/j.actbio.2014.12.016
  • Doroudian G, Pinney J, Ayala P, et al. Sustained delivery of MGF peptide from microrods attracts stem cells and reduces apoptosis of myocytes. Biomed Microdevices. 2014;16:705–715. DOI:10.1007/s10544-014-9875-z
  • Lin Y-D, Yeh M-L, Yang Y-J, et al. Intramyocardial peptide nanofiber injection improves postinfarction ventricular remodeling and efficacy of bone marrow cell therapy in pigs. Circulation. 2010;122(11_suppl_1):S132–S141. DOI:10.1161/CIRCULATIONAHA.110.939512
  • Tongers J, Webber MJ, Vaughan EE, et al. Enhanced potency of cell-based therapy for ischemic tissue repair using an injectable bioactive epitope presenting nanofiber support matrix. J Mol Cell Cardiol. 2014;74:231–239. DOI:10.1016/j.yjmcc.2014.05.017
  • Seeto WJ, Tian Y, Lipke EA. Peptide-grafted poly(ethylene glycol) hydrogels support dynamic adhesion of endothelial progenitor cells. Acta Biomater. 2013;9:8279–8289. DOI:10.1016/j.actbio.2013.05.023
  • Webber MJ, Tongers J, Renault M-A, et al. Reprint of: development of bioactive peptide amphiphiles for therapeutic cell delivery. Acta Biomater. 2015;23:S42–S51. DOI:10.1016/j.actbio.2015.07.018
  • Felice F, Zambito Y, Belardinelli E, et al. Delivery of natural polyphenols by polymeric nanoparticles improves the resistance of endothelial progenitor cells to oxidative stress. Eur J Pharm Sci. 2013;50:393–399. DOI:10.1016/j.ejps.2013.08.008
  • Wang T, Wu D-Q, Jiang X-J, et al. Novel thermosensitive hydrogel injection inhibits post-infarct ventricle remodelling. Eur J Heart Fail. 2009;11:14–19. DOI:10.1093/eurjhf/hfn009
  • Fujimoto KL, Ma Z, Nelson DM, et al. Synthesis, characterization and therapeutic efficacy of a biodegradable, thermoresponsive hydrogel designed for application in chronic infarcted myocardium. Biomaterials. 2009;30:4357–4368. DOI:10.1016/j.biomaterials.2009.04.055
  • Li X-Y, Wang T, Jiang X-J, et al. Injectable hydrogel helps bone marrow-derived mononuclear cells restore infarcted myocardium. Cardiology. 2010;115:194–199. DOI:10.1159/000281840
  • Atluri P, Miller JS, Emery RJ, et al. Tissue-engineered, hydrogel-based endothelial progenitor cell therapy robustly revascularizes ischemic myocardium and preserves ventricular function. J Thorac Cardiovasc Surg. 2014;148:1090–1098. DOI:10.1016/j.jtcvs.2014.06.038
  • Roche ET, Hastings CL, Lewin SA, et al. Comparison of biomaterial delivery vehicles for improving acute retention of stem cells in the infarcted heart. Biomaterials. 2014;35:6850–6858. DOI:10.1016/j.biomaterials.2014.04.114
  • Ceccaldi C, Bushkalova R, Alfarano C, et al. Evaluation of polyelectrolyte complex-based scaffolds for mesenchymal stem cell therapy in cardiac ischemia treatment. Acta Biomater. 2014;10:901–911. DOI:10.1016/j.actbio.2013.10.027
  • Deng C, Zhang P, Vulesevic B, et al. A collagen-chitosan hydrogel for endothelial differentiation and angiogenesis. Tissue Eng Part A. 2010;16:3099–3109. DOI:10.1089/ten.tea.2009.0504
  • Yuan Y, Altalhi WA, Ng JJ, et al. Derivation of human peripheral blood derived endothelial progenitor cells and the role of osteopontin surface modification and eNOS transfection. Biomaterials. 2013;34:7292–7301. DOI:10.1016/j.biomaterials.2013.06.003
  • McNeill B, Vulesevic B, Ostojic A, et al. Collagen matrix-induced expression of integrin αVβ3 in circulating angiogenic cells can be targeted by matricellular protein CCN1 to enhance their function. FASEB J. 2015;29:1198–1207. DOI:10.1096/fj.14-261586
  • Chen H, Li X, Zhao Y, et al. Construction of a multifunctional coating consisting of phospholipids and endothelial progenitor cell-specific peptides on titanium substrates. Appl Surf Sci. 2015;347:169–177. DOI:10.1016/j.apsusc.2015.02.032
  • Prokoph S, Chavakis E, Levental KR, et al. Sustained delivery of SDF-1α from heparin-based hydrogels to attract circulating pro-angiogenic cells. Biomaterials. 2012;33:4792–4800. DOI:10.1016/j.biomaterials.2012.03.039
  • Kuraitis D, Zhang P, Zhang Y, et al. A stromal cell-derived factor-1 releasing matrix enhances the progenitor cell response and blood vessel growth in ischaemic skeletal muscle. Eur Cell Mater. 2011;22:109–123.
  • Song M, Jang H, Lee J, et al. Regeneration of chronic myocardial infarction by injectable hydrogels containing stem cell homing factor SDF-1 and angiogenic peptide Ac-SDKP. Biomaterials. 2014;35:2436–2445. DOI:10.1016/j.biomaterials.2013.12.011
  • Macarthur JW, Purcell BP, Shudo Y, et al. Sustained release of engineered stromal cell-derived factor 1-α from injectable hydrogels effectively recruits endothelial progenitor cells and preserves ventricular function after myocardial infarction. Circulation. 2013;128(11suppl 1):S79–S86. DOI:10.1161/CIRCULATIONAHA.112.000343
  • Salimath AS, Phelps EA, Boopathy AV, et al. Dual delivery of hepatocyte and vascular endothelial growth factors via a protease-degradable hydrogel improves cardiac function in rats. PLoS One. 2012;7:e50980. DOI:10.1371/journal.pone.0050980
  • Rufaihah AJ, Seliktar D. Hydrogels for therapeutic cardiovascular angiogenesis. Adv Drug Deliv Rev. 2016;96:31–39. DOI:10.1016/j.addr.2015.07.003
  • Chen F-M, Wu L-A, Zhang M, et al. Homing of endogenous stem/progenitor cells for in situ tissue regeneration: promises, strategies, and translational perspectives. Biomaterials. 2011;32:3189–3209. DOI:10.1016/j.biomaterials.2010.12.032
  • Segers VFM, Lee RT. Biomaterials to enhance stem cell function in the heart. Circ Res. 2011;109:910–922. DOI:10.1161/CIRCRESAHA.111.249052
  • Sepantafar M, Maheronnaghsh R, Mohammadi H, et al. Stem cells and injectable hydrogels: synergistic therapeutics in myocardial repair. Biotechnol Adv. 2016;34:362–379. DOI:10.1016/j.biotechadv.2016.03.003
  • Wang X, Liu T, Chen Y, et al. Extracellular matrix inspired surface functionalization with heparin, fibronectin and VEGF provides an anticoagulant and endothelialization supporting microenvironment. Appl Surf Sci. 2014;320:871–882. DOI:10.1016/j.apsusc.2014.09.004
  • Miyagi Y, Chiu LLY, Cimini M, et al. Biodegradable collagen patch with covalently immobilized VEGF for myocardial repair. Biomaterials. 2011;32:1280–1290. DOI:10.1016/j.biomaterials.2010.10.007
  • Tardif K, Cloutier I, Miao Z, et al. A phosphorylcholine-modified chitosan polymer as an endothelial progenitor cell supporting matrix. Biomaterials. 2011;32:5046–5055. DOI:10.1016/j.biomaterials.2011.04.002
  • Kuraitis D, Hou C, Zhang Y, et al. Ex vivo generation of a highly potent population of circulating angiogenic cells using a collagen matrix. J Mol Cell Cardiol. 2011;51:187–197. DOI:10.1016/j.yjmcc.2011.04.011
  • Gnecchi M, Zhang Z, Ni A, et al. Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res. 2008;103:1204–1219. DOI:10.1161/CIRCRESAHA.108.176826
  • Yang J, Ii M, Kamei N, et al. CD34+ cells represent highly functional endothelial progenitor cells in murine bone marrow. PLoS One. 2011;6:e20219. DOI:10.1371/journal.pone.0020219
  • Pozzoli O, Vella P, Iaffaldano G, et al. Endothelial fate and angiogenic properties of human CD34+ progenitor cells in zebrafish. Arterioscler Thromb Vasc Biol. 2011;31:1589–1597. DOI:10.1161/ATVBAHA.111.226969
  • Fuchs S, Motta A, Migliaresi C, et al. Outgrowth endothelial cells isolated and expanded from human peripheral blood progenitor cells as a potential source of autologous cells for endothelialization of silk fibroin biomaterials. Biomaterials. 2006;27:5399–5408. DOI:10.1016/j.biomaterials.2006.06.015
  • Suuronen EJ, Veinot JP, Wong S, et al. Tissue-engineered injectable collagen-based matrices for improved cell delivery and vascularization of ischemic tissue using CD133+ progenitors expanded from the peripheral blood. Circulation. 2006;114:138–145. DOI:10.1161/CIRCULATIONAHA.105.001081
  • Toeg HD, Tiwari-Pandey R, Seymour R, et al. Injectable small intestine submucosal extracellular matrix in an acute myocardial infarction model. Ann Thorac Surg. 2013;96:1686–1694. DOI:10.1016/j.athoracsur.2013.06.063
  • Lin X, Robinson M, Petrie T, et al. Small intestinal submucosa-derived extracellular matrix bioscaffold significantly enhances angiogenic factor secretion from human mesenchymal stromal cells. Stem Cell Res Ther. 2015;6:164. DOI:10.1186/s13287-015-0114-1
  • Mosala Nezhad Z, Poncelet A, de Kerchove L, et al. Small intestinal submucosa extracellular matrix (CorMatrix®) in cardiovascular surgery: a systematic review. Interact Cardiovasc Thorac Surg. 2016;22:839–850. DOI:10.1093/icvts/ivw020
  • Chang CW, Petrie T, Clark A, et al. Mesenchymal stem cell seeding of porcine small intestinal submucosal extracellular matrix for cardiovascular applications. PLoS One. 2016;11:e0153412. DOI:10.1371/journal.pone.0153412
  • Giordano C, Thorn SL, Renaud JM, et al. Preclinical evaluation of biopolymer-delivered circulating angiogenic cells in a swine model of hibernating myocardium. Circ Cardiovasc Imaging. 2013;6:982–991. DOI:10.1161/CIRCIMAGING.113.000185
  • Zhang S, Sun A, Ma H, et al. Infarcted myocardium-like stiffness contributes to endothelial progenitor lineage commitment of bone marrow mononuclear cells. J Cell Mol Med. 2011;15:2245–2261. DOI:10.1111/j.1582-4934.2010.01217.x
  • Carenza E, Barceló V, Morancho A, et al. In vitro angiogenic performance and in vivo brain targeting of magnetized endothelial progenitor cells for neurorepair therapies. Nanomedicine. 2014;10:225–234. DOI:10.1016/j.nano.2013.06.005
  • Frederick J, Fitzpatrick R, McCormick R, et al. Stromal cell-derived factor-1α activation of tissue engineered endothelial progenitor cell matrix enhances ventricular function after myocardial infarction by inducing neovasculogenesis. Circulation. 2010;141:520–529.
  • Andukuri A, Sohn Y, Anakwenze CP, et al. Enhanced human endothelial progenitor cell adhesion and differentiation by a bioinspired multifunctional nanomatrix. Tissue Eng Part C. 2013;19:375–385. DOI:10.1089/ten.tec.2012.0312
  • Schüssler-Lenz M, Beuneu C, Menezes-Ferreira M, et al. Cell-based therapies for cardiac repair: a meeting report on scientific observations and European regulatory viewpoints. Eur J Heart Fail. 2016;18:133–141. DOI:10.1002/ejhf.422
  • Farouz Y, Cossé M, Renault N, et al. Safety, regulatory, and ethical issues of human studies. In: Suuronen EJ, Ruel M, editors. Biomaterials for cardiac regeneration. New York (NY): Springer; 2015.
  • Tarabah F. Good manufacturing practice (GMP) for biomaterials and medical devices in the EU and the USA. In: Amato S, Ezzell B, editors. Regulatory affairs for biomaterials and medical devices. New York (NY): Woodhead Publishing; 2015.
  • Rao SV, Zeymer U, Douglas PS, et al. Bioabsorbable intracoronary matrix for prevention of ventricular remodeling after myocardial infarction. J Am Coll Cardiol. 2016;68:715–723. DOI:10.1016/j.jacc.2016.05.053
  • Mann DL, Lee RJ, Coats AJS, et al. One-year follow-up results from AUGMENT-HF: a multicentre randomized controlled clinical trial of the efficacy of left ventricular augmentation with Algisyl in the treatment of heart failure. Eur J Heart Fail. 2016;18:314–325. DOI:10.1002/ejhf.449
  • Chachques JC, Trainini JC, Lago N, et al. Myocardial assistance by grafting a new bioartificial upgraded myocardium (MAGNUM trial): clinical feasibility study. Ann Thorac Surg. 2008;85:901–908. DOI:10.1016/j.athoracsur.2007.10.052
  • Chachques JC, Trainini JC, Lago N, et al. Myocardial assistance by grafting a new bioartificial upgraded myocardium (MAGNUM clinical trial): one year follow-up. Cell Transplant. 2007;16:927–934. DOI:10.3727/096368907783338217
  • Ungerleider JL, Christman KL. Concise review: injectable biomaterials for the treatment of myocardial infarction and peripheral artery disease: translational challenges and progress. Stem Cells Transl Med. 2014;3:1090–1099. DOI:10.5966/sctm.2014-0049

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.