323
Views
3
CrossRef citations to date
0
Altmetric
Review

Gene therapy for hypertension

, &
Pages 1345-1361 | Received 21 May 2017, Accepted 03 Aug 2017, Published online: 17 Aug 2017

References

  • The Pharmaceutical Research and Manufacturers of America (PhRMA). 2013 Report Medicines in development, Heart disease and stroke, 2015, [ online], Available from: http://www.phrma.org/sites/default/files/pdf/Heart_2013.pdf
  • Perk J, De Backer G, Gohlke H, et al. European guidelines on cardiovascular disease prevention in clinical practice (version 2012). The fifth joint task force of the European Society of Cardiology and other societies on cardiovascular disease prevention in clinical practice (constituted by representatives of nine societies and by invited experts). Eur Heart J 2012;33(13):1635–1701.
  • Mancia G, Fagard R, Narkiewicz K, et al. 2013 ESH/ESC guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens 2013;31(7):1281–1357.
  • Redwood H. Hypertension, society, and public policy. Eur Heart J. 2007;Suppl 9:B13–B18.
  • Paulis L, Rajkovicova R, Simko F. New developments in the pharmacological treatment of hypertension: dead-end or a glimmer at the horizon? Curr Hypertens Rep. 2015;17(6):557.
  • The Pharmaceutical Research and Manufacturers of America (PhRMA). 2015 Medicines in Development for Heart Disease and Stroke, 2015, [ online], Available from: http://phrma-docs.phrma.org/sites/default/files/pdf/2015_heart_disease_stroke_drug_list.pdf
  • Rissanen TT, Ylä-Herttuala S. Current status of cardiovascular gene therapy. Mol Ther. 2007;15(7):1233–1247.
  • Redon J, Olsen MH, Cooper RS, et al. Stroke mortality and trends from 1990 to 2006 in 39 countries from Europe and Central Asia: implications for control of high blood pressure. Eur Heart J. 2011;32(11):1424–1431.
  • Cutler DM, Long G, Berndt ER, et al. The value of antihypertensive drugs: a perspective on medical innovation. Health Aff (Millwood). 2007;26(1):97–110.
  • Paulis L, Unger T. Novel therapeutic targets for hypertension. Nat Rev Cardiol. 2010;7(8):431–441.
  • Raizada MK, Der Sarkissian S. Potential of gene therapy strategy for the treatment of hypertension. Hypertension. 2006;47(1):6–9.
  • Tsurumi Y, Takeshita S, Chen D, et al. Direct intramuscular gene transfer of naked DNA encoding vascular endothelial growth factor augments collateral development and tissue perfusion. Circulation. 1996;94(12):3281–3290.
  • Vale PR, Losordo DW, Milliken CE, et al. Randomized, single-blind, placebo-controlled pilot study of catheter-based myocardial gene transfer for therapeutic angiogenesis using left ventricular electromechanical mapping in patients with chronic myocardial ischemia. Circulation. 2001;103(17):2138–2143.
  • Fortuin FD, Vale P, Losordo DW, et al. One-year follow-up of direct myocardial gene transfer of vascular endothelial growth factor-2 using naked plasmid deoxyribonucleic acid by way of thoracotomy in no-option patients. Am J Cardiol. 2003;92(4):436–439.
  • Wright MJ, Wightman LM, Lilley C, et al. In vivo myocardial gene transfer: optimization, evaluation and direct comparison of gene transfer vectors. Basic Res Cardiol. 2001;96(3):227–236.
  • Laitinen M, Pakkanen T, Donetti E, et al. Gene transfer into the carotid artery using an adventitial collar: comparison of the effectiveness of the plasmid-liposome complexes, retroviruses, pseudotyped retroviruses, and adenoviruses. Hum Gene Ther. 1997;8(14):1645–1650.
  • Kankkonen HM, Vähäkangas E, Marr RA, et al. Long-term lowering of plasma cholesterol levels in LDL-receptor-deficient WHHL rabbits by gene therapy. Mol Ther. 2004;9(4):548–556.
  • Airenne KJ, Hiltunen MO, Turunen MP, et al. Baculovirus-mediated periadventitial gene transfer to rabbit carotid artery. Gene Ther. 2000;7(17):1499–1504.
  • Schnepp BC, Clark KR, Klemanski DL, et al. Genetic fate of recombinant adeno-associated virus vector genomes in muscle. J Virol. 2003;77(6):3495–3504.
  • Mäkinen K, Manninen H, Hedman M, et al. Increased vascularity detected by digital subtraction angiography after VEGF gene transfer to human lower limb artery: a randomized, placebo-controlled, double-blinded phase II study. Mol Ther. 2002;6(1):127–133.
  • Hedman M, Hartikainen J, Syvänne M, et al. Safety and feasibility of catheter-based local intracoronary vascular endothelial growth factor gene transfer in the prevention of postangioplasty and in-stent restenosis and in the treatment of chronic myocardial ischemia: phase II results of the Kuopio Angiogenesis Trial (KAT). Circulation. 2003;107(21):2677–2683.
  • Raper SE, Chirmule N, Lee FS, et al. Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol Genet Metab. 2003;80(1–2):148–158.
  • Wen S, Graf S, Massey PG, et al. Improved vascular gene transfer with a helper-dependent adenoviral vector. Circulation. 2004;110(11):1484–1491.
  • Zoltick PW, Chirmule N, Schnell MA, et al. Biology of E1-deleted adenovirus vectors in nonhuman primate muscle. J Virol. 2001;75(11):5222–5229.
  • Su H, Huang Y, Takagawa J, et al. AAV serotype-1 mediates early onset of gene expression in mouse hearts and results in better therapeutic effect. Gene Ther. 2006;13(21):1495–1502.
  • Fichou Y, Ferec C. The potential of oligonucleotides for therapeutic applications. Trends Biotechnol. 2006;24(12):563–570.
  • Laitinen M, Mäkinen K, Manninen H, et al. Adenovirus-mediated gene transfer to lower limb artery of patients with chronic critical leg ischemia. Hum Gene Ther. 1998;9(10):1481–1486.
  • Liang Y, Lin S, Zhou Y, et al. Beta-1 adrenergic receptor antisense-oligodeoxynucleotides ameliorates left ventricular remodeling in 2-Kidney, 1-Clip rats. J Biomed Sci. 2007;14(1):155–164.
  • Huang Y, Liu XL, Wen J, et al. Downregulation of the β1 adrenergic receptor in the myocardium results in insensitivity to metoprolol and reduces blood pressure in spontaneously hypertensive rats. Mol Med Rep. 2017;15(2):703–711.
  • Tang X, Mohuczy D, Zhang YC, et al. Intravenous angiotensinogen antisense in AAV-based vector decreases hypertension. Am J Physiol. 1999;277(6 Pt 2):H2392–H2399.
  • Kimura B, Mohuczy D, Tang X, et al. Attenuation of hypertension and heart hypertrophy by adeno-associated virus delivering angiotensinogen antisense. Hypertension. 2001;37(2 Pt 2):376–380.
  • Li W, Peng H, Cao T, et al. Brain-targeted (pro)renin receptor knockdown attenuates angiotensin II-dependent hypertension. Hypertension. 2012;59(6):1188–1194.
  • Wang H, Katovich MJ, Gelband CH, et al. Sustained inhibition of angiotensin I-converting enzyme (ACE) expression and long-term antihypertensive action by virally mediated delivery of ACE antisense cDNA. Circ Res. 1999;85(7):614–622.
  • Wang H, Reaves PY, Gardon ML, et al. Angiotensin I-converting enzyme antisense gene therapy causes permanent antihypertensive effects in the SHR. Hypertension. 2000;35(1 Pt 2):202–208.
  • Gelband CH, Wang H, Gardon ML, et al. Angiotensin I-converting enzyme antisense prevents altered renal vascular reactivity, but not high blood pressure, in spontaneously hypertensive rats. Hypertension. 2000;35(1 Pt 2):209–213.
  • Lu D, Raizada MK, Iyer S, et al. Losartan versus gene therapy: chronic control of high blood pressure in spontaneously hypertensive rats. Hypertension. 1997;30(3 Pt 1):363–370.
  • Katovich MJ, Gelband CH, Reaves P, et al. Reversal of hypertension by angiotensin II type 1 receptor antisense gene therapy in the adult SHR. Am J Physiol. 1999;277(3 Pt 2):H1260–H1264.
  • Reaves PY, Wang HW, Katovich MJ, et al. Attenuation of hypertension by systemic delivery of retroviral vector containing type I angiotensin II receptor antisense cDNA. Methods. 2000;22(3):211–218.
  • Katovich MJ, Reaves PY, Francis SC, et al. Gene therapy attenuates the elevated blood pressure and glucose intolerance in an insulin-resistant model of hypertension. J Hypertens. 2001;19(9):1553–1558.
  • Pachori AS, Numan MT, Ferrario CM, et al. Blood pressure-independent attenuation of cardiac hypertrophy by AT(1)R-AS gene therapy. Hypertension. 2002;39(5):969–975.
  • Reaves PY, Beck CR, Wang HW, et al. Endothelial-independent prevention of high blood pressure in L-NAME-treated rats by angiotensin II type I receptor antisense gene therapy. Exp Physiol. 2003;88(4):467–473.
  • Phillips MI, Mohuczy-Dominiak D, Coffey M, et al. Prolonged reduction of high blood pressure with an in vivo, nonpathogenic, adeno-associated viral vector delivery of AT1-R mRNA antisense. Hypertension. 1997;29(1 Pt 2):374–380.
  • Zhang JQ, Sun HL, Ma YX, et al. Effects of RNA interference targeting angiotensin 1a receptor on the blood pressure and cardiac hypertrophy of rats with 2K1C hypertension. Zhonghua Yi Xue Za Zhi. 2006;86(16):1138–1143.
  • Fan ZD, Zhang L, Shi Z, et al. Artificial microRNA interference targeting AT(1a) receptors in paraventricular nucleus attenuates hypertension in rats. Gene Ther. 2012;19(8):810–817.
  • Zhou H, Bian YF, Li ML, et al. Effects of RNA interference targeting angiotensin 1 receptor and angiotensin-converting enzyme on blood pressure and myocardial remodeling in spontaneous hypertensive rats Zhonghua. Xin Xue Guan Bing Za Zhi. 2010;38(1):60–66.
  • Wang X, Skelley L, Cade R, et al. AAV delivery of mineralocorticoid receptor shRNA prevents progression of cold-induced hypertension and attenuates renal damage. Gene Ther. 2006;13(14):1097–1103.
  • Chen A, Huang BS, Wang HW, et al. Knockdown of mineralocorticoid or angiotensin II type 1 receptor gene expression in the paraventricular nucleus prevents angiotensin II hypertension in rats. J Physiol. 2014;592(16):3523–3536.
  • Blanch GT, Freiria-Oliveira AH, Speretta GF, et al. Increased expression of angiotensin II type 2 receptors in the solitary-vagal complex blunts renovascular hypertension. Hypertension. 2014;64(4):777–783.
  • Ruchaya PJ, Speretta GF, Blanch GT, et al. Overexpression of AT2R in the solitary-vagal complex improves baroreflex in the spontaneously hypertensive rat. Neuropeptides. 2016;60:29–36.
  • Xia H, Suda S, Bindom S, et al. ACE2-mediated reduction of oxidative stress in the central nervous system is associated with improvement of autonomic function. PLoS One. 2011;6(7):e22682.
  • Chen LG, Wang ZR, Wan CM, et al. Circadian renal rhythms influenced by implanted encapsulated hANP-producing cells in Goldblatt hypertensive rats. Gene Ther. 2004;11(20):1515–1522.
  • Chen LG, Wang ZR, Wan CM, et al. Encapsulated transgene cells attenuate hypertension, cardiac hypertrophy and enhance renal function in Goldblatt hypertensive rats. J Gene Med. 2004;6(7):786–797.
  • Qin YJ, Zhang JF, Wei YJ, et al. Gene suture–a novel method for intramuscular gene transfer and its application in hypertension therapy. Life Sci. 1999;65(21):2193–2203.
  • Therrien JP, Kim SM, Terunuma A, et al. A gene therapy approach for long-term normalization of blood pressure in hypertensive mice by ANP-secreting human skin grafts. Proc Natl Acad Sci U S A. 2010;107(3):1178–1183.
  • Li T, Liang H, Lu J, et al. Transplantation of atrial natriuretic peptide-expressing fibroblasts reduces blood pressure and increases urine volume in spontaneously hypertensive rats. Sheng Wu Gong Cheng Xue Bao. 2010;26(5):643–648.
  • Cataliotti A, Tonne JM, Bellavia D, et al. Long-term cardiac pro-B-type natriuretic peptide gene delivery prevents the development of hypertensive heart disease in spontaneously hypertensive rats. Circulation. 2011;123(12):1297–1305.
  • Tonne JM, Holditch SJ, Oehler EA, et al. Cardiac BNP gene delivery prolongs survival in aged spontaneously hypertensive rats with overt hypertensive heart disease. Aging (Albany NY). 2014;6(4):311–319.
  • Wang C, Chao L, Chao J. Direct gene delivery of human tissue kallikrein reduces blood pressure in spontaneously hypertensive rats. J Clin Invest. 1995;95(4):1710–1716.
  • Xiong W, Chao J, Chao L. Muscle delivery of human kallikrein gene reduces blood pressure in hypertensive rats. Hypertension. 1995;25(4 Pt 2):715–719.
  • Zhao C, Wang P, Xiao X, et al. Gene therapy with human tissue kallikrein reduces hypertension and hyperinsulinemia in fructose-induced hypertensive rats. Hypertension. 2003;42(5):1026–1033.
  • Wang T, Li H, Zhao C, et al. Recombinant adeno-associated virus-mediated kallikrein gene therapy reduces hypertension and attenuates its cardiovascular injuries. Gene Ther. 2004;11(17):1342–1350.
  • Wang T, Hou LB, Liu ZJ, et al. Intramuscular delivery of rAAV-mediated kallikrein gene reduces hypertension and prevents cardiovascular injuries in model rats. Acta Pharmacol Sin. 2007;28(12):1898–1906.
  • Yan JT, Wang T, Li J, et al. Recombinant adeno-associated virus-mediated human kallikrein gene therapy prevents high-salt diet-induced hypertension without effect on basal blood pressure. Acta Pharmacol Sin. 2008;29(7):808–814.
  • Chen LM, Chao L, Chao J. Adenovirus-mediated delivery of human kallistatin gene reduces blood pressure of spontaneously hypertensive rats. Hum Gene Ther. 1997;8(3):341–347.
  • Chen PG, Aav SZ. Delivery of endothelin-1 shRNA attenuates cold-induced hypertension. Hum Gene Ther. 2017;28(2):190–199.
  • Lin KF, Chao L, Chao J. Prolonged reduction of high blood pressure with human nitric oxide synthase gene delivery. Hypertension. 1997;30(3 Pt 1):307–313.
  • Miller WH, Brosnan MJ, Graham D, et al. Targeting endothelial cells with adenovirus expressing nitric oxide synthase prevents elevation of blood pressure in stroke-prone spontaneously hypertensive rats. Mol Ther. 2005;12(2):321–327.
  • Gava AL, Peotta VA, Cabral AM, et al. Overexpression of eNOS prevents the development of renovascular hypertension in mice. Can J Physiol Pharmacol. 2008;86(7):458–464.
  • Zhao CX, Xu X, Cui Y, et al. Increased endothelial nitric-oxide synthase expression reduces hypertension and hyperinsulinemia in fructose-treated rats. J Pharmacol Exp Ther. 2009;328(2):610–620.
  • Zhang F, Qian JQ, Wang DW. Arachidonate CYP hydroxylases of kidney contribute to formation of hypertension and maintenance of blood pressure. Acta Pharmacol Sin. 2002;23(6):497–502.
  • Zhang F, Chen CL, Qian JQ, et al. Long-term modifications of blood pressure in normotensive and spontaneously hypertensive rats by gene delivery of rAAV-mediated cytochrome P450 arachidonic acid hydroxylase. Cell Res. 2005;15(9):717–724.
  • Xu X, Zhao CX, Wang L, et al. Increased CYP2J3 expression reduces insulin resistance in fructose-treated rats and db/db mice. Diabetes. 2010;59(4):997–1005.
  • Suh W, Lee JS, Kim KL, et al. Angiopoietin-1 gene therapy attenuates hypertension and target organ damage in nitric oxide synthase inhibited spontaneously hypertensive rats. Korean Circ J. 2011;41(10):590–595.
  • Ataka K, Maruyama H, Neichi T, et al. Effects of erythropoietin-gene electrotransfer in rats with adenine-induced renal failure. Am J Nephrol. 2003;23(5):315–323.
  • Kishioka H, Fukuda N, Wen-Yang H, et al. Effects of PDGF A-chain antisense oligodeoxynucleotides on growth of cardiovascular organs in stroke-prone spontaneously hypertensive rats. Am J Hypertens. 2001;14(5 Pt 1):439–445.
  • Romero-Vásquez F, Chávez M, Pérez M, et al. Overexpression of HGF transgene attenuates renal inflammatory mediators, Na(+)-ATPase activity and hypertension in spontaneously hypertensive rats. Biochim Biophys Acta. 2012;1822(10):1590–1599.
  • Hu ZP, Bao Y, Chen DN, et al. Effects of recombinant adenovirus hepatocyte growth factor gene on myocardial remodeling in spontaneously hypertensive rats. J Cardiovasc Pharmacol Ther. 2013;18(5):476–480.
  • Kim-Mitsuyama S, Izumi Y, Izumiya Y, et al. Dominant-negative c-Jun inhibits rat cardiac hypertrophy induced by angiotensin II and hypertension. Gene Ther. 2006;13(4):348–355.
  • Bello Roufai M, Li H, Sun Z. Heart-specific inhibition of protooncogene c-myc attenuates cold-induced cardiac hypertrophy. Gene Ther. 2007;14(19):1406–1416.
  • Crosswhite P, Sun Z. Ribonucleic acid interference knockdown of interleukin 6 attenuates cold-induced hypertension. Hypertension. 2010;55(6):1484–1491.
  • Nomoto T, Okada T, Shimazaki K, et al. Systemic delivery of IL-10 by an AAV vector prevents vascular remodeling and end-organ damage in stroke-prone spontaneously hypertensive rat. Gene Ther. 2009;16(3):383–391.
  • Landa MS, García SI, Liberjen L, et al. Parathyroid hormone-related protein overexpression decreases blood pressure in spontaneously hypertensive rats. Clin Exp Hypertens. 2005;27(4):343–354.
  • Zhang W, Telemaque S, Augustyniak RA, et al. Adenovirus-mediated leptin expression normalises hypertension associated with diet-induced obesity. J Neuroendocrinol. 2010;22(3):175–180.
  • Wei X, Zhao C, Jiang J, et al. Adrenomedullin gene delivery alleviates hypertension and its secondary injuries of cardiovascular system. Hum Gene Ther. 2005;16(3):372–380.
  • Kumai T, Tateishi T, Tanaka M, et al. Tyrosine hydroxylase antisense gene therapy causes hypotensive effects in the spontaneously hypertensive rats. J Hypertens. 2001;19(10):1769–1773.
  • Li BS, Ma HX, Wang YJ, et al. Klotho gene attenuates the progression of hypertension and heart damage in spontaneous hypertensive rats. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2012;29(6):662–668.
  • Unger T, Steckeligs U, Souza Dos Santos R. The protective arm of the renin angiotensin system (RAS). 1stedn. Functional Aspects and Therapeutic Implications. London: Elsevier; 2015. ISBN: 9780128013649
  • Schmerler P, Rajkovicova R, Domenig O, et al. The effects of AT1 receptor blockade and AT2 receptor stimulation on the RAS peptide levels in the prevention and treatment of experimental autoimmune myocarditis (EAM) in male Lewis rats. In: 20th annual meeting of the European Council for Cardiovascular Research, Abstracts. Ware: Garda; 2016: PB.10
  • Brown MJ. Success and failure of vaccines against renin–angiotensin system components. Nat Rev Cardiol. 2009;6(10):639–647.
  • Danser AH. The increase in renin during renin inhibition: does it result in harmful effects by the (pro)renin receptor? Hypertens Res. 2009;33(1):4–10.
  • Sealey JE, Laragh JH. Aliskiren, the first renin inhibitor for treating hypertension: reactive renin secretion may limit its effectiveness. Am J Hypertens. 2007;20(5):587–597.
  • De Boer RA, Azizi M, Danser AJ, et al. Dual RAAS suppression: recent developments and implications in light of the ALTITUDE study. J Renin Angiotensin Aldosterone Syst. 2012;13(3):409–412.
  • Goldblatt H, Haas E, Lamfrom H. Antirenin in man and animals. Trans Assoc Am Physicians. 1951;64:122–125.
  • Michel JB, Guettier C, Reade R, et al. Immunologic approaches to blockade of the renin-angiotensin system: a review. Am Heart J. 1989;117(3):756–767.
  • Michel JB, Guettier C, Philippe M, et al. Active immunization against renin in normotensive marmoset. Proc Natl Acad Sci U S A. 1987;84(12):4346–4350.
  • Michel JB, Sayah S, Guettier C, et al. Physiological and immunopathological consequences of active immunization of spontaneously hypertensive and normotensive rats against murine renin. Circulation. 1990;81(6):1899–1910.
  • Michel JB. Renin-angiotensin vaccine: old story, new project ‘efficacy versus safety’. Clin Sci (Lond). 2004;107(2):145–147.
  • Brown MJ, Coltart J, Gunewardena K, et al. Randomized double-blind placebo-controlled study of an angiotensin immunotherapeutic vaccine (PMD3117) in hypertensive subjects. Clin Sci (Lond). 2004;107(2):167–173.
  • Ambühl PM, Tissot AC, Fulurija A, et al. A vaccine for hypertension based on virus-like particles: preclinical efficacy and phase I safety and immunogenicity. J Hypertens. 2007;25(1):63–72.
  • Tissot AC, Maurer P, Nussberger J, et al. Effect of immunisation against angiotensin II with CYT006-AngQb on ambulatory blood pressure: a double-blind, randomised, placebo-controlled phase IIa study. Lancet. 2008;371(9615):821–827.
  • Cytos Biotechnology. Updates on the development of the hypertension vaccine CYT006-AngQb. (2009 May 30). On-line supplement http://www.cytos.com/userfiles/file/Cytos_Press_E_091110.pdf
  • Hansson L, Lindholm LH, Niskanen L, et al. Effect of angiotensin-converting-enzyme inhibition compared with conventional therapy on cardiovascular morbidity and mortality in hypertension: the Captopril Prevention Project (CAPPP) randomised trial. Lancet. 1999;353(9153):611–616.
  • Hansson L, Lindholm LH, Ekbom T, et al. Randomised trial of old and new antihypertensive drugs in elderly patients: cardiovascular mortality and morbidity the Swedish Trial in old patients with hypertension-2 study. Lancet. 1999;354(9192):1751–1756.
  • Yusuf S, Sleight P, Pogue J, et al. Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. The heart outcomes prevention evaluation study investigators. N Engl J Med. 2000;342(3):145–153.
  • Dahlöf B, Devereux RB, Kjeldsen SE, et al. Cardiovascular morbidity and mortality in the Losartan intervention for endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet 2002;359(9311):995–1003.
  • Julius S, Weber MA, Kjeldsen SE, et al. The Valsartan antihypertensive long-term use evaluation (VALUE) trial: outcomes in patients receiving monotherapy. Hypertension. 2006;48(3):385–391.
  • Volpe M, Danser AH, Menard J, et al. Inhibition of the renin-angiotensin-aldosterone system: is there room for dual blockade in the cardiorenal continuum? J Hypertens. 2012;30(4):647–654.
  • Jeunemaitre X, Chatellier G, Kreft-Jais C, et al. Efficacy and tolerance of spironolactone in essential hypertension. Am J Cardiol. 1987;60(10):820–825.
  • Williams GH, Burgess E, Kolloch RE, et al. Efficacy of eplerenone versus enalapril as monotherapy in systemic hypertension. Am J Cardiol. 2004;93(8):990–996.
  • Weinberger MH, Roniker B, Krause SL, et al. Eplerenone, a selective aldosterone blocker, in mild-to-moderate hypertension. Am J Hypertens. 2002;15(8):709–716.
  • White WB, Duprez D, St Hillaire R, et al. Effects of the selective aldosterone blocker eplerenone versus the calcium antagonist amlodipine in systolic hypertension. Hypertension. 2003;41(5):1021–1026.
  • Pitt B, Remme W, Zannad F, et al. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med 2003;348(14):1309–1321.
  • Pitt B, Kober L, Ponikowski P, et al. Safety and tolerability of the novel non-steroidal mineralocorticoid receptor antagonist BAY 94-8862 in patients with chronic heart failure and mild or moderate chronic kidney disease: a randomized, double-blind trial. Eur Heart J. 2013;34(31):2453–2463.
  • Zannad F, McMurray JJ, Krum H, et al. Eplerenone in patients with systolic heart failure and mild symptoms. N Engl J Med 2011;364(1):11–21.
  • Faselis C, Boutari C, Doumas M, et al. Novel drugs for hypertension and heart failure: struggling for a place under the sun. Curr Pharm Des. 2017;23:1540–1550. Epub ahead of print. DOI:10.2174/1381612823666170206154706
  • Amar L, Azizi M, Menard J, et al. Aldosterone synthase inhibition with LCI699: a proof-of-concept study in patients with primary aldosteronism. Hypertension. 2010;56(5):831–838.
  • Calhoun DA, White WB, Krum H, et al. Effects of a novel aldosterone synthase inhibitor for treatment of primary hypertension: results of a randomized, double-blind, placebo- and active-controlled phase 2 trial. Circulation. 2011;124(18):1945–1955.
  • Schumacher CD, Steele RE, Brunner HR. Aldosterone synthase inhibition for the treatment of hypertension and the derived mechanistic requirements for a new therapeutic strategy. J Hypertens. 2013;31(10):2085–2093.
  • Funder JW. Mineralocorticoid receptors: distribution and activation. Heart Fail Rev. 2005;10(1):15–22.
  • Steckelings UM, Paulis L, Unger T, et al. Emerging drugs which target the renin-angiotensin-aldosterone system. Expert Opin Emerg Drugs. 2011;16(4):619–630.
  • Rehman A, Leibowitz A, Yamamoto N, et al. Angiotensin type 2 receptor agonist compound 21 reduces vascular injury and myocardial fibrosis in stroke-prone spontaneously hypertensive rats. Hypertension. 2012;59(2):291–299.
  • Paulis L, Becker ST, Lucht K, et al. Direct angiotensin II type 2 receptor stimulation in Nω-nitro-L-arginine-methyl ester-induced hypertension: the effect on pulse wave velocity and aortic remodeling. Hypertension. 2012;59(2):485–492.
  • Kaschina E, Grzesiak A, Li J, et al. Angiotensin II type 2 receptor stimulation: a novel option of therapeutic interference with the renin-angiotensin system in myocardial infarction? Circulation. 2008;118(24):2523–2532.
  • Lauer D, Slavic S, Sommerfeld M, et al. Angiotensin type 2 receptor stimulation ameliorates left ventricular fibrosis and dysfunction via regulation of tissue inhibitor of matrix metalloproteinase 1/matrix metalloproteinase 9 axis and transforming growth factor β1 in the rat heart. Hypertension. 2014;63(3):e60–e67.
  • Hrenak J, Arendasova K, Rajkovicova R, et al. Protective effect of captopril, olmesartan, melatonin and compound 21 on doxorubicin-induced nephrotoxicity in rats. Physiol Res. 2013;62(Suppl 1):S181–S189.
  • Matavelli LC, Huang J, Siragy HM. Angiotensin AT(2) receptor stimulation inhibits early renal inflammation in renovascular hypertension. Hypertension. 2011;57(2):308–313.
  • Gelosa P, Pignieri A, Fändriks L, et al. Stimulation of AT2 receptor exerts beneficial effects in stroke-prone rats: focus on renal damage. J Hypertens. 2009;27(12):2444–2451.
  • Villela D, Leonhardt J, Patel N, et al. Angiotensin type 2 receptor (AT2R) and receptor Mas: a complex liaison. Clin Sci (Lond). 2015;128(4):227–234.
  • Bertagnolli M, Casali KR, De Sousa FB, et al. An orally active angiotensin-(1-7) inclusion compound and exercise training produce similar cardiovascular effects in spontaneously hypertensive rats. Peptides. 2014;51:65–73.
  • Singh Y, Singh K, Sharma PL. Effect of combination of renin inhibitor and Mas-receptor agonist in DOCA-salt-induced hypertension in rats. Mol Cell Biochem. 2013;373(1–2):189–194.
  • Rentzsch B, Todiras M, Iliescu R, et al. Transgenic angiotensin-converting enzyme 2 overexpression in vessels of SHRSP rats reduces blood pressure and improves endothelial function. Hypertension. 2008;52(5):967–973.
  • Haschke M, Schuster M, Poglitsch M, et al. Pharmacokinetics and pharmacodynamics of recombinant human angiotensin-converting enzyme 2 in healthy human subjects. Clin Pharmacokinet. 2013;52(9):783–792.
  • Solomon SD, Zile M, Pieske B, et al. The angiotensin receptor neprilysin inhibitor LCZ696 in heart failure with preserved ejection fraction: a phase 2 double-blind randomised controlled trial. Lancet 2012;380(9851):1387–1395.
  • Voors AA, Gori M, Liu LC, et al. Renal effects of the angiotensin receptor neprilysin inhibitor LCZ696 in patients with heart failure and preserved ejection fraction. Eur J Heart Fail 2015;17(5):510–517.
  • McMurray JJ, Packer M, Desai AS, et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med 2014;371(11):993–1004.
  • Ruilope LM, Dukat A, Böhm M, et al. Blood-pressure reduction with LCZ696, a novel dual-acting inhibitor of the angiotensin II receptor and neprilysin: a randomised, double-blind, placebo-controlled, active comparator study. Lancet. 2010;375(9722):1255–1266.
  • Li Y, Wang J, Zhang S, et al. Neprilysin gene transfer: A promising therapeutic approach for Alzheimer’s disease. J Neurosci Res. 2015;93(9):1325–1329.
  • Jordan R, Stark J, Huskey S, et al. Phase 1 study of the novel A-type natriuretic receptor agonist, PL-3994, in healthy volunteers. In: Presented at 12th Annual Scientific Meeting of the HFSA, September 21-24, 2008, Toronto, Ontario, Canada, Poster 220. Rockville: Bethesda.
  • Sica D, Jordan R, Fischkoff SA. Phase IIa study of the NPR-agonist, PL-3994, in healthy adult volunteers with controlled hypertension. In: Presented at the 13th scientific meeting of the Heart Failure Society of America; results posted at clinicaltrials.gov for NCT00686803. 2009. Rockville: Bethesda.
  • Sharma JN, Sharma J. Cardiovascular properties of the kallikrein-kinin system. Curr Med Res Opin. 2002;18(1):10–17.
  • Feldstein C, Romero C. Role of endothelins in hypertension. Am J Ther. 2007;14(2):147–153.
  • Sastry BK. Pharmacologic treatment for pulmonary arterial hypertension. Curr Opin Cardiol. 2006;21(6):561–568.
  • Weber MA, Black H, Bakris G, et al. A selective endothelin-receptor antagonist to reduce blood pressure in patients with treatment-resistant hypertension: a randomised, double-blind, placebo-controlled trial. Lancet. 2009;374(9699):1423–1431.
  • Bakris G, Bisognano J, Nadim M, et al. Potential of implantable carotid sinus stimulator for drug-resistant hypertension. In: 23rd Scientific Meeting of the International Society of Hypertension, Vancouver, Canada, September 2010. Teddington.
  • Son JS, Kim KC, Kim BK, et al. Effect of small hairpin RNA targeting endothelin-converting enzyme-1 in monocrotaline-induced pulmonary hypertensive rats. J Korean Med Sci. 2012;27(12):1507–1516.
  • Stasch JP, Becker EM, Alonso-Alija C, et al. NO-independent regulatory site on soluble guanylate cyclase. Nature. 2001;410(6825):212–215.
  • Stasch JP, Alonso-Alija C, Apeler H, et al. Pharmacological actions of a novel NO-independent guanylyl cyclase stimulator, BAY 41-8543: in vitro studies. Br J Pharmacol. 2002;135(2):333–343.
  • Stasch JP, Dembowsky K, Perzborn E, et al. Cardiovascular actions of a novel NO-independent guanylyl cyclase stimulator, BAY 41-8543: in vivo studies. Br J Pharmacol. 2002;135(2):344–355.
  • Kloner RA, Mitchell M, Emmick JT. Cardiovascular effects of tadalafil in patients on common antihypertensive therapies. Am J Cardiol. 2003;92(9A):47M–57M.
  • Herttuala YS, Baker AH. Cardiovascular gene therapy: past, present, and future. Mol Ther. 2017;25(5):1095–1106.
  • Yang ZJ, Zhang YR, Chen B, et al. Phase I clinical trial on intracoronary administration of Ad-hHGF treating severe coronary artery disease. Mol Biol Rep. 2009;36(6):1323–1329.
  • Henry TD, Hirsch AT, Goldman J, et al. Safety of a non-viral plasmid-encoding dual isoforms of hepatocyte growth factor in critical limb ischemia patients: a phase I study. Gene Ther. 2011;18(8):788–794.
  • Gu Y, Zhang J, Guo L, et al. A phase I clinical study of naked DNA expressing two isoforms of hepatocyte growth factor to treat patients with critical limb ischemia. J Gene Med. 2011;13(11):602–610.
  • Kim JS, Hwang HY, Cho KR, et al. Intramyocardial transfer of hepatocyte growth factor as an adjunct to CABG: phase I clinical study. Gene Ther. 2013;20(7):717–722.
  • Kibbe MR, Hirsch AT, Mendelsohn FO, et al. Safety and efficacy of plasmid DNA expressing two isoforms of hepatocyte growth factor in patients with critical limb ischemia. Gene Ther. 2016;23(3):306–312.
  • Powell RJ, Simons M, Mendelsohn FO, et al. Results of a double-blind, placebo-controlled study to assess the safety of intramuscular injection of hepatocyte growth factor plasmid to improve limb perfusion in patients with critical limb ischemia. Circulation. 2008;118(1):58–65.
  • Shigematsu H, Yasuda K, Iwai T, et al. Randomized, double-blind, placebo-controlled clinical trial of hepatocyte growth factor plasmid for critical limb ischemia. Gene Ther. 2010;17(9):1152–1161.
  • Powell RJ, Goodney P, Mendelsohn FO, et al. Safety and efficacy of patient specific intramuscular injection of HGF plasmid gene therapy on limb perfusion and wound healing in patients with ischemic lower extremity ulceration: results of the HGF-0205 trial. J Vasc Surg 2010;52(6):1525–1530.
  • Makino H, Aoki M, Hashiya N, et al. Long-term follow-up evaluation of results from clinical trial using hepatocyte growth factor gene to treat severe peripheral arterial disease. Arterioscler Thromb Vasc Biol. 2012;32(10):2503–2509.
  • Kutryk MJ, Foley DP, van den Brand M, et al. Local intracoronary administration of antisense oligonucleotide against c-myc for the prevention of in-stent restenosis: results of the randomized investigation by the Thoraxcenter of antisense DNA using local delivery and IVUS after coronary stenting (ITALICS) trial. J Am Coll Cardiol 2002;39(2):281–287.
  • Paulis L, Steckelings UM, Unger T. Key advances in antihypertensive treatment. Nat Rev Cardiol. 2012;9(5):276–285.
  • Unger T, Paulis L, Sica DA. Therapeutic perspectives in hypertension: novel means for renin-angiotensin-aldosterone system modulation and emerging device-based approaches. Eur. Heart J. 2011;32(22):2739–2747.
  • Perreault S, Lamarre DBlais L, et al. Persistence with treatment in newly treated middle-aged patients with essential hypertension. Ann Pharmacother. 2005;39(9):1401–1408.
  • Peixoto AJ, White WB. Circadian blood pressure: clinical implications based on the pathophysiology of its variability. Kidney Int. 2007;71(9):855–860.
  • Casetta I, Granieri E, Portaluppi F, et al. Circadian variability in hemorrhagic stroke. Jama. 2002;287(10):1266–1267.
  • Rutanen J, Rissanen TT, Markkanen JE, et al. Adenoviral catheter-mediated intramyocardial gene transfer using the mature form of vascular endothelial growth factor-D induces transmural angiogenesis in porcine heart. Circulation. 2004;109(8):1029–1035.
  • Rissanen TT, Markkanen JE, Arve K, et al. Fibroblast growth factor 4 induces vascular permeability, angiogenesis and arteriogenesis in a rabbit hindlimb ischemia model. Faseb J. 2003;17(1):100–102.
  • Thirion C, Lochmüller H, Ruzsics Z, et al. Adenovirus vectors based on human adenovirus type 19a have high potential for human muscle-directed gene therapy. Hum Gene Ther. 2006;17(2):193–205.
  • Gruchała M, Bhardwaj S, Pajusola K, et al. Gene transfer into rabbit arteries with adeno-associated virus and adenovirus vectors. J Gene Med. 2004;6(5):545–554.
  • Ylä-Herttuala S, Alitalo K. Gene transfer as a tool to induce therapeutic vascular growth. Nat Med. 2003;9(6):694–701.
  • Kusumanto YH, van Weel V, Mulder NH, et al. Treatment with intramuscular vascular endothelial growth factor gene compared with placebo for patients with diabetes mellitus and critical limb ischemia: a double-blind randomized trial. Hum Gene Ther. 2006;17(6):683–691.
  • Rajagopalan S, Mohler ER 3rd, Lederman RJ, et al. Regional angiogenesis with vascular endothelial growth factor in peripheral arterial disease: a phase II randomized, double-blind, controlled study of adenoviral delivery of vascular endothelial growth factor 121 in patients with disabling intermittent claudication. Circulation. 2003;108(16):1933–1938.
  • Alexander JH, Hafley G, Harrington RA, et al. Efficacy and safety of edifoligide, an E2F transcription factor decoy, for prevention of vein graft failure following coronary artery bypass graft surgery: PREVENT IV: a randomized controlled trial. JAMA 2005;294(19):2446–2454.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.