521
Views
7
CrossRef citations to date
0
Altmetric
Review

Treatment of hematological malignancies with T cell redirected bispecific antibodies: current status and future needs

&
Pages 707-720 | Received 17 Feb 2019, Accepted 01 Apr 2019, Published online: 13 May 2019

References

  • Raso V, Griffin T. Hybrid antibodies with dual specificity for the delivery of ricin to immunoglobulin-bearing target cells. Cancer Res. 1981 Jun;41(6):2073–2078.
  • Titus JA, Perez P, Kaubisch A, et al. Human K/natural killer cells targeted with hetero-cross-linked antibodies specifically lyse tumor cells in vitro and prevent tumor growth in vivo. J Immunol. 1987 Nov;139(9):3153–3158.
  • Sen M, Wankowski DM, Garlie NK, et al. Use of anti-CD3 × anti-HER2/neu bispecific antibody for redirecting cytotoxicity of activated T cells toward HER2/neu + tumors. J Hematother Stem Cell Res. 2001 Apr;10(2):247–260.
  • Lum LG, Thakur A, Al-Kadhimi Z, et al. Targeted T-cell therapy in stage IV breast cancer: a phase I clinical trial. Clin Cancer Res. 2015 May;21(10):2305–2314.
  • Vaishampayan U, Thakur A, Rathore R, et al. Phase I study of anti-CD3 x anti-her2 bispecific antibody in metastatic castrate resistant prostate cancer patients. Prostate Cancer. 2015;2015:285193.
  • Lum LG, Choi M, Le TM, et al. Targeting advanced pancreatic cancer with activated T cells armed with anti-CD3 x anti-EGFR bispecific antibody. JCO. 2018 May 20;36(15_Suppl):4108–4108.
  • Yankelevich M, Kondadasula SV, Thakur A, et al. Anti-CD3 × anti-GD2 bispecific antibody redirects T-cell cytolytic activity to neuroblastoma targets. Pediatr Blood Cancer. 2012 Dec;59(7):1198–1205.
  • Lum LG, Thakur A, Pray C, et al. Multiple infusions of CD20-targeted T cells and low-dose IL-2 after SCT for high-risk non-Hodgkin’s lymphoma: A pilot study. Bone Marrow Transplant. 2014;49(1):73–79.
  • Lum LG, Thakur A, Liu Q, et al. CD20-targeted T cells after stem cell transplantation for high risk and refractory non-Hodgkin’s lymphoma. Biol Blood Marrow Transplant. 2013 Jun;19(6):925–933.
  • Lum LG, Thakur A, Kondadasula SV, et al. Targeting CD138-/CD20+ clonogenic myeloma precursor cells decreases these cells and induces transferable antimyeloma immunity. Biol Blood Marrow Transplant. 2016;22(5):869–878.
  • Byrne H, Conroy PJ, Whisstock JC, et al. A tale of two specificities: bispecific antibodies for therapeutic and diagnostic applications. Trends Biotechnol. 2013 Nov;31(11):621–632.
  • Johnson S, Burke S, Huang L, et al. Effector cell recruitment with novel Fv-based dual-affinity re-targeting protein leads to potent tumor cytolysis and in vivo B-cell depletion. J Mol Biol. 2010 Jun;399(3):436–449.
  • Moore PA, Zhang W, Rainey GJ, et al. Application of dual affinity retargeting molecules to achieve optimal redirected T-cell killing of B-cell lymphoma. Blood. 2011 Apr;117(17):4542–4551.
  • Reusch U, Harrington KH, Gudgeon CJ, et al. Characterization of CD33/CD3 tetravalent bispecific tandem diabodies (TandAbs) for the treatment of acute myeloid leukemia. Clin Cancer Res. 2016;22(23):5829–5838.
  • Sun LL, Ellerman D, Mathieu M, et al. Anti-CD20/CD3 T cell-dependent bispecific antibody for the treatment of B cell malignancies. Sci Transl Med. 2015 May 13;7(287):287ra70.
  • Kim D, Wang J, Willingham SB, et al. Anti-CD47 antibodies promote phagocytosis and inhibit the growth of human myeloma cells. Leukemia. 2012;26(12):2538–2545.
  • Stanglmaier M, Faltin M, Ruf P, et al. Bi20 (fBTA05), a novel trifunctional bispecific antibody (anti‐CD20 × anti‐CD3), mediates efficient killing of B‐cell lymphoma cells even with very low CD20 expression levels. Int J Cancer. 2008 Sep;123(5):1181–1189.
  • Bassan R, Hoelzer D. Modern therapy of acute lymphoblastic leukemia. J Clin Oncol. 2011;29(5):532–543.
  • Kantarjian H, Thomas D, O’Brien S, et al. Long-term follow-up results of hyperfractionated cyclophosphamide, vincristine, doxorubicin, and dexamethasone (Hyper-CVAD), a dose-intensive regimen, in adult acute lymphocytic leukemia. Cancer. 2004;101(12):2788–2801.
  • Tavernier E, Boiron J-M, Huguet F, et al., GET-LALA Group, Swiss Group for Clinical Cancer Research SAKK, and Australasian Leukaemia and Lymphoma Group. Outcome of treatment after first relapse in adults with acute lymphoblastic leukemia initially treated by the LALA-94 trial. Leukemia. 2007 Sep;21(9):1907–1914.
  • Oriol A, Vives S, Hernandez-Rivas JM, et al., Programa Español de Tratamiento en Hematologia Group. Outcome after relapse of acute lymphoblastic leukemia in adult patients included in four consecutive risk-adapted trials by the PETHEMA Study Group. Haematologica. 2010 Apr;95(4):589–596.
  • Thomas DA, Kantarjian H, Smith TL, et al. Primary refractory and relapsed adult acute lymphoblastic leukemia: characteristics, treatment results, and prognosis with salvage therapy. Cancer. 1999 Oct;86(7):1216–1230.
  • Kantarjian HM, DiNardo CD, Nogueras-Gonzalez GM, et al. Results of second salvage therapy in 673 adults with acute myelogenous leukemia treated at a single institution since 2000. Cancer. 2018 Jun;124(12):2534–2540.
  • Kantarjian HM, Thomas D, Ravandi F, et al. Defining the course and prognosis of adults with acute lymphocytic leukemia in first salvage after induction failure or short first remission duration. Cancer. 2010 Dec;116(24):5568–5574.
  • Topp MS, Gökbuget N, Stein AS, et al. Safety and activity of blinatumomab for adult patients with relapsed or refractory B-precursor acute lymphoblastic leukaemia: A multicentre, single-arm, phase 2 study. Lancet Oncol. 2015;16(1):57–66.
  • Kantarjian H, Stein A, Gökbuget N, et al. Blinatumomab versus chemotherapy for advanced acute lymphoblastic leukemia. N Engl J Med. 2017;376(9):836–847.
  • Gokbuget N, Kneba M, Raff T, et al. Adult patients with acute lymphoblastic leukemia and molecular failure display a poor prognosis and are candidates for stem cell transplantation and targeted therapies. Blood. 2012 Aug;120(9):1868–1876.
  • Gökbuget N, Dombret H, Bonifacio M, et al. Blinatumomab for minimal residual disease in adults with B-cell precursor acute lymphoblastic leukemia. Blood. 2018;131(14):1522–1531.
  • Salogub G, Mayer J, Folber F, et al. A phase 1 study investigating AFM11 in patients with relapsed/refractory B cell precursor acute lymphoblastic leukemia: preliminary results. Blood. 2018;132(suppl 1):3969.
  • Harrington KH, Gudgeon CJ, Laszlo GS, et al. The broad anti-AML activity of the CD33/CD3 BiTE antibody construct, AMG 330, is impacted by disease stage and risk. PLoS One. 2015;10(8):1–13.
  • Walter RB, Appelbaum FR, Estey EH, et al. Acute myeloid leukemia stem cells and CD33-targeted immunotherapy acute myeloid leukemia stem cells and CD33-targeted immunotherapy. Drug Discov Today. 2005;10(18):1237–1244.
  • Krupka C, Kufer P, Kischel R, et al. CD33 target validation and sustained depletion of AML blasts in long-term cultures by bispecific T-cell-engaging antibody AMG 330. Blood. 2014;123(3):356–365.
  • Wolf E, Hofmeister R, Kufer P, et al. BiTEs: bispecific antibody constructs with unique anti-tumor activity. Drug Discov Today. 2005;10(18):1237–1244.
  • Jitschin R, Saul D, Braun M, et al. CD33/CD3-bispecific T-cell engaging (BiTE ®) antibody construct targets monocytic AML myeloid-derived suppressor cells. J Immunother Cancer. 2018;6(116):1–6.
  • Ravandi F, Stein S, Kantarjian H, et al. First-in-human study of AMG 330, an anti-CD33 bispecific T-cell engager (BiTE ®) antibody construct, in relapsed/refractory acute myeloid leukemia (R/R AML). Blood. 2018;132(suppl 1):25.
  • Hoseini SS, Guo H, Wu Z, et al. A potent tetravalent T-cell–engaging bispecific antibody against CD33 in acute myeloid leukemia. Blood Adv. 2018;2(11):1250–1258.
  • Westervelt P, Roboz G, Cortes J, et al. Phase 1 first-in-human trial of AMV564, a bivalent bispecific (2 × 2) CD33/CD3 T-cell engager, in patients with relapsed/refractory acute myeloid leukemia (AML). Blood. 2018;132(suppl 1):1455.
  • Muñoz L, Nomdedéu JF, López O, et al. Interleukin-3 receptor alpha chain (CD123) is widely expressed in hematologic malignancies. Haematologica. 2001 Dec;86(12):1261–1269.
  • Testa U, Riccioni R, Militi S, et al. Elevated expression of IL-3Ralpha in acute myelogenous leukemia is associated with enhanced blast proliferation, increased cellularity, and poor prognosis. Blood. 2002 Sep;100(8):2980–2988.
  • Al-Hussaini M, Rettig MP, Ritchey JK, et al. Targeting CD123 in acute myeloid leukemia using a T-cCell-directed dual-affinity retargeting platform. Blood. 2016;127(1):122–131.
  • Uy GL, Rettig MP, Godwin J, et al. Phase 1 cohort expansion of flotetuzumab, a CD123 × CD3 bispecific dart ® protein in patients with relapsed/refractory acute myeloid leukemia (AML). Blood. 2018;132(suppl 1);764.
  • Ravandi F, Bashey A, Foran JM, et al. Complete responses in relapsed/refractory acute myeloid leukemia (AML) patients on a weekly dosing schedule of XmAb14045, a CD123 x CD3 T cell-engaging bispecific antibody: initial results of a phase 1 study. Blood. 2018;132(Suppl 1):763 LP–763.
  • van Rhenen A, van Dongen GAMS, Kelder A, et al. The novel AML stem cell associated antigen CLL-1 aids in discrimination between normal and leukemic stem cells. Blood. 2007 Oct;110(7):2659–2666.
  • Lu H, Zhou Q, Deshmukh V, et al. Targeting human C-type lectin-like molecule-1 (CLL1) with a bispecific antibody for acute myeloid leukemia immunotherapy. Angew Chem Int Ed Engl. 2014;53(37):9841–9845.
  • Leong SR, Sukumaran S, Hristopoulos M, et al. An anti-CD3/anti-CLL-1 bispecific antibody for the treatment of acute myeloid leukemia. Blood. 2017;129(5):609–618.
  • Liu F, Cao Y, Pinz K, et al. First-in-human CLL1-CD33 compound CAR T cell therapy induces complete remission in patients with refractory acute myeloid leukemia : update on phase 1 clinical trial. Blood. 2018;132(suppl 1):901.
  • Waldhauer I, Steinle A. NK cells and cancer immunosurveillance. Oncogene. 2008 Oct;27(45):5932–5943.
  • Vallera DA, Felices M, McElmurry R, et al. IL15 trispecific killer engagers (TriKE) make natural killer cells specific to CD33+targets while also inducing persistence, in vivo expansion, and enhanced function. Clin Cancer Res. 2016;22(14):3440–3450.
  • Sarhan D, Brandt L, Felices M, et al. 161533 TriKE stimulates NK-cell function to overcome myeloid-derived suppressor cells in MDS. Blood Adv. 2018;2(12):1459–1469.
  • Weiner GJ. Rituximab: mechanism of action. Semin Hematol. 2010 Apr;47(2):115–123.
  • Schuster FR, Stanglmaier M, Woessmann W, et al. Immunotherapy with the trifunctional anti-CD20 x anti-CD3 antibody FBTA05 (Lymphomun) in paediatric high-risk patients with recurrent CD20-positive B cell malignancies. Br J Haematol. 2015;169(1):90–102.
  • Smith EJ, Olson K, Haber LJ, et al. A novel, native-format bispecific antibody triggering T-cell killing of B-cells is robustly active in mouse tumor models and cynomolgus monkeys. Sci Rep. 2015;5(November):1–12.
  • Bannerji R, Ufkin M, Yan X, et al. Emerging clinical activity of REGN1979, an anti-CD20 x anti-CD3 bispecific antibody, in patients with relapsed/refractory B-cell non-Hodgkin lymphoma (follicular lymphoma, diffuse large B-cell lymphoma, and other B-cell non-Hodgkin lymphoma. Blood. 2018;132(suppl 1):1690.
  • Budde LE, Sehn LH, Assouline S, et al. Mosunetuzumab, a full-length bispecific CD20/CD3 antibody, displays clinical activity in relapsed/refractory B-cell non-Hodgkin lymphoma (NHL): interim safety and efficacy results from a phase 1 study. Blood. 2018;132(Suppl 1):399.
  • Bacac M, Umaña P, Herter S, et al. CD20 Tcb (RG6026), a novel 2:1 T cell bispecific antibody for the treatment of B cell malignancies. Blood. 2016;128(22):1836.
  • Hutchings M. CD20-Tcb (RG6026), a novel ‘2:1’ format T-cell-engaging bispecific antibody, induces complete remissions in relapsed/refractory B-cell non-hodgkin’s lymphoma: preliminary results from a phase I first in human tria. Blood. 2018;132(suppl 1):226.
  • Goebeler ME, Knop S, Viardot A, et al. Bispecific T-cell engager (BiTE) antibody construct Blinatumomab for the treatment of Patients with relapsed/refractory non-Hodgkin lymphoma: final results from a phase I study. J Clin Oncol. 2016;34(10):1104–1111.
  • Viardot A, Goebeler M, Hess G, et al. Treatment of relapsed/refractory diffuse large b-cell lymphoma with the bispecific T-Cell engager (bite) antibody construct blinatumomab: primary analysis results from an open-label, phase 2 study. Blood. 2016;124(21):no pagination.
  • Rothe A, Sasse S, Topp MS, et al. A phase 1 study of the bispecific anti-CD30/CD16A antibody construct AFM13 in patients with relapsed or refractory Hodgkin lymphoma. Blood. 2015;125(26):4024–4032.
  • Laâbi Y, Gras MP, Carbonnel F, et al. A new gene, BCM, on chromosome 16 is fused to the interleukin 2 gene by a t(4;16)(q26;p13) translocation in a malignant T cell lymphoma. Embo J. 1992 Nov;11(11):3897–3904.
  • Moreaux J, Legouffe E, Jourdan E, et al. BAFF and APRIL protect myeloma cells from apoptosis induced by interleukin 6 deprivation and dexamethasone. Blood. 2004 Apr;103(8):3148–3157.
  • Sanchez E, Li M, Kitto A, et al. Serum B-cell maturation antigen is elevated in multiple myeloma and correlates with disease status and survival. Br J Haematol. 2012;158(6):727–738.
  • Hipp S, Deegen P, Wahl J, et al. BI 836909, a novel bispecific T cell engager for the treatment of multiple myeloma induces highly specific and efficacious lysis of multiple myeloma cells in vitro and shows anti-tumor activity in vivo. Blood. 2015;126(23):2999.
  • Topp MS, Duell J, Zugmaier G, et al. Treatment with AMG 420, an anti-B-cell maturation antigen (BCMA) bispecific T-cell engager (BiTE Â ®) antibody construct, induces minimal residual disease (MRD) negative complete responses in relapsed and/or refractory (R/R) multiple myeloma. Blood. 2018;132(suppl 1):1010.
  • Lesokhin AM, Raje N, Gasparetto CJ, et al. A phase I, open-label study to evaluate the safety, pharmacokinetic, pharmacodynamic, and clinical activity of PF-06863135, a B-cell maturation antigen/CD3 bispecific antibody, in patients with relapsed/refractory advanced multiple myeloma. Blood. 2018;132(suppl 1):3229.
  • Dilillo DJ, Olson K, Mohrs K, et al. REGN5458, a bispecific BCMAxCD3 T cell engaging antibody, demonstrates robust in vitro and in vivo anti-tumor Efficacy in multiple myeloma models, comparable to that of BCMA CAR T cells. Blood. 2018;132(suppl 1):1944.
  • Chu SY, Miranda Y, Phung S, et al. Immunotherapy with long-lived anti-CD38 × anti-CD3 bispecific antibodies stimulates potent T cell-mediated killing of human myeloma cell lines and CD38+ cells in monkeys: a potential therapy for multiple myeloma. Blood. 2014;124(21):4727.
  • Veillette A, Guo H. CS1, a SLAM family receptor involved in immune regulation, is a therapeutic target in multiple myeloma. Crit Rev Oncol Hematol. 2013 Oct;88(1):168–177.
  • López-Larrea C, Suárez-Alvarez B, López-Soto A, et al. The NKG2D receptor: sensing stressed cells. Trends Mol Med. 2008 Apr;14(4):179–189.
  • Spear P, Wu M-R, Sentman M-L, et al. NKG2D ligands as therapeutic targets. Cancer Immun. 2013;13:8.
  • Verneris MR, Karimi M, Karami M, et al. Role of NKG2D signaling in the cytotoxicity of activated and expanded CD8+ T cells. Blood. 2004 Apr;103(8):3065–3072.
  • Chan WK, Kang S, Youssef Y, et al. A CS1-NKG2D bispecific antibody collectively activates cytolytic immune cells against multiple myeloma. Cancer Immunol Res. 2018 Jul;6(7):776–787.
  • Piccione EC, Juarez S, Liu J, et al. A bispecific antibody targeting CD47 and CD20 selectively binds and eliminates dual antigen expressing lymphoma cells. MAbs. 2015;7(5):946–956.
  • Buatois V, Johnson Z, Salgado-Pires S, et al. Preclinical development of a bispecific antibody that safely and effectively targets CD19 and CD47 for the treatment of B cell lymphoma and leukemia. Mol Cancer Ther. 2018;17(8):1739–1751.
  • Xu L, Wang S, Li J, et al. CD47/SIRPα blocking enhances CD19/CD3-bispecific T cell engager antibody-mediated lysis of B cell malignancies. Biochem Biophys Res Commun. 2019;509(3):739–745.
  • van Bommel PE, He Y, Schepel I, et al. CD20-selective inhibition of CD47-SIRPα ‘don’t eat me’ signaling with a bispecific antibody-derivative enhances the anticancer activity of daratumumab, alemtuzumab and obinutuzumab. Oncoimmunology. 2018;7(2):1–8.
  • Boyd-Kirkup J, Thakkar D, Brauer P, et al. HMBD004, a novel anti-CD47xCD33 bispecific antibody displays potent anti-tumor effects in pre-clinical models of AML. Blood. 2017;130(Suppl 1):1378.
  • Krupka C, Kufer P, Kischel R, et al. Blockade of the PD-1/PD-L1 axis augments lysis of AML cells by the CD33/CD3 BiTE antibody construct AMG 330: reversing a T-cell-induced immune escape mechanism. Leukemia. 2016;30(2):484–491.
  • Laszlo GS, Gudgeon CJ, Harrington KH, et al. T-cell ligands modulate the cytolytic activity of the CD33/CD3 BiTE antibody construct, AMG 330. Blood Cancer J. 2015;5(8):e340–346.
  • Herrmann M, Krupka C, Deiser K, et al. Bifunctional PD-1 x αCD3 x αCD33 fusion protein reverses adaptive immune escape in acute myeloid leukemia. Blood. 2018;132(23):blood-2018–05-849802.
  • Burges A, Wimberger P, Kümper C, et al. Effective relief of malignant ascites in patients with advanced ovarian cancer by a trifunctional anti-EpCAM x anti-CD3 antibody: a phase I/II study. Clin Cancer Res. 2007 Jul;13(13):3899–3905.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.