8,135
Views
24
CrossRef citations to date
0
Altmetric
Review

Bioengineering strategies for nephrologists: kidney was not built in a day

, , , , , & show all
Pages 467-480 | Received 11 Nov 2019, Accepted 23 Dec 2019, Published online: 23 Jan 2020

References

  • Thomas B, Wulf S, Bikbov B, et al. Maintenance dialysis throughout the world in years 1990 and 2010. J Am Soc Nephrol. 2015 Nov;26(11):2621–2633.
  • Hart A, Smith JM, Skeans MA, et al. OPTN/SRTR 2017 annual data report: kidney. Am J Transplant. 2019 Feb;19(Suppl 2):19–123.
  • Rouchi AH, Mahdavi-Mazdeh M. When is transplantation with a “marginal kidney” justifiable? Ann Transplant. 2016 Jul;26(21):463–468.
  • Liyanage T, Ninomiya T, Jha V, et al. Worldwide access to treatment for end-stage kidney disease: a systematic review. Lancet. 2015 May 16;385(9981):1975–1982.
  • Locatelli F, Buoncristiani U, Canaud B, et al. Dialysis dose and frequency. Nephrol Dial Transplant. 2005 Feb;20(2):285–296.
  • Sladkova M, Alawadhi R, Jaragh Alhaddad R, et al. Segmental additive tissue engineering. Sci Rep. 2018 Jul 18;8(1):10895.
  • Zhou H, Kitano K, Ren X, et al. Bioengineering human lung grafts on porcine matrix. Ann Surg. 2018 Mar;267(3):590–598.
  • Marino D, Luginbuhl J, Scola S, et al. Bioengineering dermo-epidermal skin grafts with blood and lymphatic capillaries. Sci Transl Med. 2014 Jan 29;6(221):221ra14.
  • Hibino N, McGillicuddy E, Matsumura G, et al. Late-term results of tissue-engineered vascular grafts in humans. J Thorac Cardiovasc Surg. 2010 Feb;139(2):431–6, 436 e1–2.
  • Atala A, Bauer SB, Soker S, et al. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet. 2006 Apr 15;367(9518):1241–1246.
  • Wong BS, Yamada K, Okumi M, et al. Allosensitization does not increase the risk of xenoreactivity to alpha1,3-galactosyltransferase gene-knockout miniature swine in patients on transplantation waiting lists. Transplantation. 2006 Aug 15;82(3):314–319.
  • Reemtsma K, McCracken BH, Schlegel JU, et al. Heterotransplantation of the kidney: two clinical experiences. Science. 1964 Feb 14;143(3607):700–702.
  • Cooper DKC, Gaston R, Eckhoff D, et al. Xenotransplantation-the current status and prospects. Br Med Bull. 2018 Mar 1;125(1):5–14.
  • Baldan N, Rigotti P, Calabrese F, et al. Ureteral stenosis in HDAF pig-to-primate renal xenotransplantation: a phenomenon related to immunological events? Am J Transplant. 2004 Apr;4(4):475–481.
  • Dai Y, Vaught TD, Boone J, et al. Targeted disruption of the alpha1,3-galactosyltransferase gene in cloned pigs. Nat Biotechnol. 2002 Mar;20(3):251–255.
  • Lai L, Kolber-Simonds D, Park KW, et al. Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science. 2002 Feb 8;295(5557):1089–1092.
  • Yamada K, Yazawa K, Shimizu A, et al. Marked prolongation of porcine renal xenograft survival in baboons through the use of alpha1,3-galactosyltransferase gene-knockout donors and the cotransplantation of vascularized thymic tissue. Nat Med. 2005 Jan;11(1):32–34.
  • Rivard CJ, Tanabe T, Lanaspa MA, et al. Upregulation of CD80 on glomerular podocytes plays an important role in development of proteinuria following pig-to-baboon xeno-renal transplantation – an experimental study. Transpl Int. 2018 Oct;31(10):1164–1177.
  • Iwase H, Liu H, Wijkstrom M, et al. Pig kidney graft survival in a baboon for 136 days: longest life-supporting organ graft survival to date. Xenotransplantation. 2015 Jul-Aug;22(4):302–309.
  • Higginbotham L, Mathews D, Breeden CA, et al. Pre-transplant antibody screening and anti-CD154 costimulation blockade promote long-term xenograft survival in a pig-to-primate kidney transplant model. Xenotransplantation. 2015 May-Jun;22(3):221–230.
  • Kim SC, Mathews DV, Breeden CP, et al. Long-term survival of pig-to-rhesus macaque renal xenografts is dependent on CD4 T cell depletion. Am J Transplant. 2019 Aug;19(8):2174–2185.
  • Shaw BI, Kirk AD. Kidney xenotransplantation: steps toward clinical application. Clin J Am Soc Nephrol. 2019 Apr 5;14(4):620–622.
  • Naeimi Kararoudi M, Hejazi SS, Elmas E, et al. Clustered regularly interspaced short palindromic repeats/Cas9 gene editing technique in xenotransplantation. Front Immunol. 2018;9:1711.
  • Ekser B, Li P, Cooper DKC. Xenotransplantation: past, present, and future. Curr Opin Organ Transplant. 2017 Dec;22(6):513–521.
  • Niu D, Wei HJ, Lin L, et al. Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9. Science. 2017 Sep 22;357(6357):1303–1307.
  • Argaw T, Colon-Moran W, Wilson C. Susceptibility of porcine endogenous retrovirus to anti-retroviral inhibitors. Xenotransplantation. 2016 Mar;23(2):151–158.
  • Mann SP, Sun R, Hermeren G. Ethical considerations in crossing the xenobarrier. Methods Mol Biol. 2019;2005:175–193.
  • Schuurman HJ. Regulatory aspects of clinical xenotransplantation. Int J Surg. 2015 Nov;23(Pt B):312–321.
  • Rogers SA, Talcott M, Hammerman MR. Transplantation of pig metanephroi. Asaio J. 2003 Jan-Feb;49(1):48–52.
  • Takeda S, Rogers SA, Hammerman MR. Differential origin for endothelial and mesangial cells after transplantation of pig fetal renal primordia into rats. Transpl Immunol. 2006 Jan;15(3):211–215.
  • Dekel B, Burakova T, Ben-Hur H, et al. Engraftment of human kidney tissue in rat radiation chimera: II. Human fetal kidneys display reduced immunogenicity to adoptively transferred human peripheral blood mononuclear cells and exhibit rapid growth and development. Transplantation. 1997 Dec 15;64(11):1550–1558.
  • Wu J, Greely HT, Jaenisch R, et al. Stem cells and interspecies chimaeras. Nature. 2016 Dec 1;540(7631):51–59.
  • Chen J, Lansford R, Stewart V, et al. RAG-2-deficient blastocyst complementation: an assay of gene function in lymphocyte development. Proc Natl Acad Sci U S A. 1993 May 15;90(10):4528–4532.
  • Muller SM, Terszowski G, Blum C, et al. Gene targeting of VEGF-A in thymus epithelium disrupts thymus blood vessel architecture. Proc Natl Acad Sci U S A. 2005 Jul 26;102(30):10587–10592.
  • Fraidenraich D, Stillwell E, Romero E, et al. Rescue of cardiac defects in id knockout embryos by injection of embryonic stem cells. Science. 2004 Oct 8;306(5694):247–252.
  • Ueno H, Turnbull BB, Weissman IL. Two-step oligoclonal development of male germ cells. Proc Natl Acad Sci U S A. 2009 Jan 6;106(1):175–180.
  • Espejel S, Roll GR, McLaughlin KJ, et al. Induced pluripotent stem cell-derived hepatocytes have the functional and proliferative capabilities needed for liver regeneration in mice. J Clin Invest. 2010 Sep;120(9):3120–3126.
  • Kobayashi T, Yamaguchi T, Hamanaka S, et al. Generation of rat pancreas in mouse by interspecific blastocyst injection of pluripotent stem cells. Cell. 2010 Sep 3;142(5):787–799.
  • Mori M, Furuhashi K, Danielsson JA, et al. Generation of functional lungs via conditional blastocyst complementation using pluripotent stem cells. Nat Med. 2019 Nov;25(11):1691–1698.
  • Usui J, Kobayashi T, Yamaguchi T, et al. Generation of kidney from pluripotent stem cells via blastocyst complementation. Am J Pathol. 2012 Jun;180(6):2417–2426.
  • Yamaguchi T, Sato H, Kato-Itoh M, et al. Interspecies organogenesis generates autologous functional islets. Nature. 2017 Feb 9;542(7640):191–196.
  • Isotani A, Hatayama H, Kaseda K, et al. Formation of a thymus from rat ES cells in xenogeneic nude mouse<–>rat ES chimeras. Genes Cells. 2011 Apr;16(4):397–405.
  • Goto T, Hara H, Sanbo M, et al. Generation of pluripotent stem cell-derived mouse kidneys in Sall1-targeted anephric rats. Nat Commun. 2019 Feb 5;10(1):451.
  • Theunissen TW, Friedli M, He Y, et al. Molecular criteria for defining the naive human pluripotent state. Cell Stem Cell. 2016 Oct 6;19(4):502–515.
  • Theunissen TW, Powell BE, Wang H, et al. Systematic identification of culture conditions for induction and maintenance of naive human pluripotency. Cell Stem Cell. 2014 Oct 2;15(4):471–487.
  • Gafni O, Weinberger L, Mansour AA, et al. Derivation of novel human ground state naive pluripotent stem cells. Nature. 2013 Dec 12;504(7479):282–286.
  • Wu J, Platero-Luengo A, Sakurai M, et al. Interspecies chimerism with mammalian pluripotent stem cells. Cell. 2017 Jan 26;168(3):473–486 e15.
  • Kobayashi T, Kato-Itoh M, Nakauchi H. Targeted organ generation using Mixl1-inducible mouse pluripotent stem cells in blastocyst complementation. Stem Cells Dev. 2015 Jan 15;24(2):182–189.
  • Li Z, Araoka T, Wu J, et al. 3D culture supports long-term expansion of mouse and human nephrogenic progenitors. Cell Stem Cell. 2016 Oct 6;19(4):516–529.
  • Fujimoto T, Yamanaka S, Tajiri S, et al. In vivo regeneration of interspecies chimeric kidneys using a nephron progenitor cell replacement system. Sci Rep. 2019 May 6;9(1):6965.
  • Yamanaka S, Saito Y, Fujimoto T, et al. Kidney regeneration in later-stage mouse embryos via transplanted renal progenitor cells. J Am Soc Nephrol. 2019 Sep 23;30:2293–2305.
  • MacKay SM, Funke AJ, Buffington DA, et al. Tissue engineering of a bioartificial renal tubule. Asaio J. 1998 May-Jun;44(3):179–183.
  • Humes HD, MacKay SM, Funke AJ, et al. Tissue engineering of a bioartificial renal tubule assist device: in vitro transport and metabolic characteristics. Kidney Int. 1999 Jun;55(6):2502–2514.
  • Humes HD, Fissell WH, Weitzel WF, et al. Metabolic replacement of kidney function in uremic animals with a bioartificial kidney containing human cells. Am J Kidney Dis. 2002 May;39(5):1078–1087.
  • Tumlin J, Wali R, Williams W, et al. Efficacy and safety of renal tubule cell therapy for acute renal failure. J Am Soc Nephrol. 2008 May;19(5):1034–1040.
  • Humes HD, Weitzel WF, Bartlett RH, et al. Initial clinical results of the bioartificial kidney containing human cells in ICU patients with acute renal failure. Kidney Int. 2004 Oct;66(4):1578–1588.
  • Pino CJ, Westover AJ, Buffington DA, et al. Bioengineered renal cell therapy device for clinical translation. Asaio J. 2017 May/Jun;63(3):305–315.
  • Buffington DA, Pino CJ, Chen L, et al. Bioartificial renal epithelial cell system (BRECS): a compact, cryopreservable extracorporeal renal replacement device. Cell Med. 2012 Jan;4(1):33–43.
  • Westover AJ, Buffington DA, Johnston KA, et al. A bio-artificial renal epithelial cell system conveys survival advantage in a porcine model of septic shock. J Tissue Eng Regen Med. 2017 Mar;11(3):649–657.
  • Johnston KA, Westover AJ, Rojas-Pena A, et al. Development of a wearable bioartificial kidney using the bioartificial renal epithelial cell system (BRECS). J Tissue Eng Regen Med. 2017 Nov;11(11):3048–3055.
  • Jansen J, Fedecostante M, Wilmer MJ, et al. Bioengineered kidney tubules efficiently excrete uremic toxins. Sci Rep. 2016 May 31;6:26715.
  • Dang BV, Taylor RA, Charlton AJ, et al. Towards portable artificial kidneys: the role of advanced microfluidics and membrane technologies in implantable systems. IEEE Rev Biomed Eng. 2019 Aug 5;1.
  • Salani M, Roy S, Fissell WHT. Innovations in wearable and implantable artificial kidneys. Am J Kidney Dis. 2018 Nov;72(5):745–751.
  • van Gelder MK, Mihaila SM, Jansen J, et al. From portable dialysis to a bioengineered kidney. Expert Rev Med Devices. 2018 May;15(5):323–336.
  • Roy S, Goldman K, Marchant R, et al. Implanted renal replacement for end-stage renal disease. Panminerva Med. 2011 Sep;53(3):155–166.
  • Fissell WH, Roy S. The implantable artificial kidney. Semin Dial. 2009 Nov-Dec;22(6):665–670.
  • Fissell WH, Dubnisheva A, Eldridge AN, et al. High-performance silicon nanopore hemofiltration membranes. J Memb Sci. 2009 Jan 5;326(1):58–63.
  • Kim S, Feinberg B, Kant R, et al. Diffusive silicon nanopore membranes for hemodialysis applications. PLoS One. 2016;11(7):e0159526.
  • Kensinger C, Karp S, Kant R, et al. First implantation of silicon nanopore membrane hemofilters. Asaio J. 2016 Jul-Aug;62(4):491–495.
  • Fissell WH, Manley S, Westover A, et al. Differentiated growth of human renal tubule cells on thin-film and nanostructured materials. Asaio J. 2006 May-Jun;52(3):221–227.
  • Hussein KH, Saleh T, Ahmed E, et al. Biocompatibility and hemocompatibility of efficiently decellularized whole porcine kidney for tissue engineering. J Biomed Mater Res A. 2018 Jul;106(7):2034–2047.
  • Figliuzzi M, Bonandrini B, Remuzzi A. Decellularized kidney matrix as functional material for whole organ tissue engineering. J Appl Biomater Funct Mater. 2017 Nov 10;15(4):e326–e333.
  • Wainwright DJ. Use of an acellular allograft dermal matrix (AlloDerm) in the management of full-thickness burns. Burns. 1995 Jun;21(4):243–248.
  • Nishinakamura R. Stem cells in the embryonic kidney. Kidney Int. 2008 Apr;73(8):913–917.
  • Song JJ, Guyette JP, Gilpin SE, et al. Regeneration and experimental orthotopic transplantation of a bioengineered kidney. Nat Med. 2013 May;19(5):646–651.
  • Kim D, Dressler GR. Nephrogenic factors promote differentiation of mouse embryonic stem cells into renal epithelia. J Am Soc Nephrol. 2005 Dec;16(12):3527–3534.
  • Ross EA, Williams MJ, Hamazaki T, et al. Embryonic stem cells proliferate and differentiate when seeded into kidney scaffolds. J Am Soc Nephrol. 2009 Nov;20(11):2338–2347.
  • Bonandrini B, Figliuzzi M, Papadimou E, et al. Recellularization of well-preserved acellular kidney scaffold using embryonic stem cells. Tissue Eng Part A. 2014 May;20(9–10):1486–1498.
  • Batchelder CA, Martinez ML, Tarantal AF. Natural scaffolds for renal differentiation of human embryonic stem cells for kidney tissue engineering. PLoS One. 2015;10(12):e0143849.
  • Nakayama KH, Lee CC, Batchelder CA, et al. Tissue specificity of decellularized rhesus monkey kidney and lung scaffolds. PLoS One. 2013;8(5):e64134.
  • Nakayama KH, Batchelder CA, Lee CI, et al. Renal tissue engineering with decellularized rhesus monkey kidneys: age-related differences. Tissue Eng Part A. 2011 Dec;17(23–24):2891–2901.
  • Du C, Narayanan K, Leong MF, et al. Functional kidney bioengineering with pluripotent stem-cell-derived renal progenitor cells and decellularized kidney scaffolds. Adv Healthc Mater. 2016 Aug;5(16):2080–2091.
  • Ciampi O, Bonandrini B, Derosas M, et al. Engineering the vasculature of decellularized rat kidney scaffolds using human induced pluripotent stem cell-derived endothelial cells. Sci Rep. 2019 May 29;9(1):8001.
  • Remuzzi A, Figliuzzi M, Bonandrini B, et al. Experimental evaluation of kidney regeneration by organ scaffold recellularization. Sci Rep. 2017 Mar 7;7:43502.
  • Caralt M, Uzarski JS, Iacob S, et al. Optimization and critical evaluation of decellularization strategies to develop renal extracellular matrix scaffolds as biological templates for organ engineering and transplantation. Am J Transplant. 2015 Jan;15(1):64–75.
  • Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011 Apr;32(12):3233–3243.
  • Stahl EC, Bonvillain RW, Skillen CD, et al. Evaluation of the host immune response to decellularized lung scaffolds derived from alpha-Gal knockout pigs in a non-human primate model. Biomaterials. 2018;187:93–104.
  • Little MH, Combes AN. Kidney organoids: accurate models or fortunate accidents. Genes Dev. 2019 Oct 1; 33(19–20):1319–1345.
  • Nishinakamura R. Human kidney organoids: progress and remaining challenges. Nat Rev Nephrol. 2019 Oct;15(10):613–624.
  • Mulder J, Sharmin S, Chow T, et al. Generation of infant- and pediatric-derived urinary induced pluripotent stem cells competent to form kidney organoids. Pediatr Res. 2019 Oct 19.
  • Hwang JW, Desterke C, Feraud O, et al. iPSC-derived embryoid bodies as models of C-met-mutated hereditary papillary renal cell carcinoma. Int J Mol Sci. 2019 Sep 30;20:19.
  • van den Berg CW, Ritsma L, Avramut MC, et al. Renal subcapsular transplantation of PSC-derived kidney organoids induces neo-vasculogenesis and significant glomerular and tubular maturation in vivo. Stem Cell Reports. 2018 Mar 13;10(3):751–765.
  • Tanigawa S, Islam M, Sharmin S, et al. Organoids from nephrotic disease-derived iPSCs identify impaired NEPHRIN localization and slit diaphragm formation in kidney podocytes. Stem Cell Reports. 2018 Sep 11;11(3):727–740.
  • Wu H, Uchimura K, Donnelly EL, et al. Comparative analysis and refinement of human PSC-derived kidney organoid differentiation with single-cell transcriptomics. Cell Stem Cell. 2018 Dec 6;23(6):869–881 e8.
  • Takasato M, Er PX, Chiu HS, et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature. 2015 Oct 22;526(7574):564–568.
  • Homan KA, Gupta N, Kroll KT, et al. Flow-enhanced vascularization and maturation of kidney organoids in vitro. Nat Methods. 2019 Mar;16(3):255–262.
  • Taguchi A, Nishinakamura R. Higher-order kidney organogenesis from pluripotent stem cells. Cell Stem Cell. 2017 Dec 7; 21(6):730–746 e6.
  • Yokote S, Matsunari H, Iwai S, et al. Urine excretion strategy for stem cell-generated embryonic kidneys. Proc Natl Acad Sci U S A. 2015 Oct 20;112(42):12980–12985.
  • Suzuki K, Koyanagi-Aoi M, Uehara K, et al. Directed differentiation of human induced pluripotent stem cells into mature stratified bladder urothelium. Sci Rep. 2019 Jul 19;9(1):10506.
  • Mills CG, Lawrence ML, Munro DAD, et al. Asymmetric BMP4 signalling improves the realism of kidney organoids. Sci Rep. 2017 Nov 1;7(1):14824.
  • Phipson B, Er PX, Combes AN, et al. Evaluation of variability in human kidney organoids. Nat Methods. 2019 Jan;16(1):79–87.
  • Suh JH, Miner JH. The glomerular basement membrane as a barrier to albumin. Nat Rev Nephrol. 2013 Aug;9(8):470–477.
  • Reiser J, Sever S. Podocyte biology and pathogenesis of kidney disease. Annu Rev Med. 2013;64:357–366.
  • Ortiz A, Sanchez-Nino MD, Izquierdo MC, et al. Translational value of animal models of kidney failure. Eur J Pharmacol. 2015 Jul 15;759:205–220.
  • Rothbauer M, Rosser JM, Zirath H, et al. Tomorrow today: organ-on-a-chip advances towards clinically relevant pharmaceutical and medical in vitro models. Curr Opin Biotechnol. 2019;55:81–86.
  • Zhou M, Zhang X, Wen X, et al. Development of a functional glomerulus at the organ level on a chip to mimic hypertensive nephropathy. Sci Rep. 2016 Aug 25;6:31771.
  • Wang L, Tao T, Su W, et al. A disease model of diabetic nephropathy in a glomerulus-on-a-chip microdevice. Lab Chip. 2017 May 16;17(10):1749–1760.
  • Petrosyan A, Cravedi P, Villani V, et al. A glomerulus-on-a-chip to recapitulate the human glomerular filtration barrier. Nat Commun. 2019 Aug 13;10(1):3656.
  • Musah S, Dimitrakakis N, Camacho DM, et al. Directed differentiation of human induced pluripotent stem cells into mature kidney podocytes and establishment of a Glomerulus Chip. Nat Protoc. 2018 Jul;13(7):1662–1685.
  • Musah S, Mammoto A, Ferrante TC, et al. Mature induced-pluripotent-stem-cell-derived human podocytes reconstitute kidney glomerular-capillary-wall function on a chip. Nat Biomed Eng. 2017;1.
  • Essig M, Terzi F, Burtin M, et al. Mechanical strains induced by tubular flow affect the phenotype of proximal tubular cells. Am J Physiol Renal Physiol. 2001 Oct;281(4):F751–62.
  • Ashammakhi N, Wesseling-Perry K, Hasan A, et al. Kidney-on-a-chip: untapped opportunities. Kidney Int. 2018 Dec;94(6):1073–1086.
  • Nieskens TT, Wilmer MJ. Kidney-on-a-chip technology for renal proximal tubule tissue reconstruction. Eur J Pharmacol. 2016 Nov;5(790):46–56.
  • Ng CP, Zhuang Y, Lin AWH, et al. A fibrin-based tissue-engineered renal proximal tubule for bioartificial kidney devices: development, characterization and in vitro transport study. Int J Tissue Eng. 2013;2013:10.
  • Weber EJ, Chapron A, Chapron BD, et al. Development of a microphysiological model of human kidney proximal tubule function. Kidney Int. 2016 Sep;90(3):627–637.
  • Jenkinson SE, Chung GW, van Loon E, et al. The limitations of renal epithelial cell line HK-2 as a model of drug transporter expression and function in the proximal tubule. Pflugers Arch. 2012 Dec;464(6):601–611.
  • Narayanan K, Schumacher KM, Tasnim F, et al. Human embryonic stem cells differentiate into functional renal proximal tubular-like cells. Kidney Int. 2013 Apr;83(4):593–603.
  • Lazzeri E, Ronconi E, Angelotti ML, et al. Human urine-derived renal progenitors for personalized modeling of genetic kidney disorders. J Am Soc Nephrol. 2015 Aug;26(8):1961–1974.
  • Ronconi E, Sagrinati C, Angelotti ML, et al. Regeneration of glomerular podocytes by human renal progenitors. J Am Soc Nephrol. 2009 Feb;20(2):322–332.
  • Sciancalepore AG, Sallustio F, Girardo S, et al. A bioartificial renal tubule device embedding human renal stem/progenitor cells. PLoS One. 2014;9(1):e87496.
  • Schutgens F, Rookmaaker MB, Margaritis T, et al. Tubuloids derived from human adult kidney and urine for personalized disease modeling. Nat Biotechnol. 2019 Mar;37(3):303–313.
  • Vriend J, Peters JGP, Nieskens TTG, et al. Flow stimulates drug transport in a human kidney proximal tubule-on-a-chip independent of primary cilia. Biochim Biophys Acta Gen Subj. 2019 Sep 11;1864(1):129433.
  • Raghavan V, Rbaibi Y, Pastor-Soler NM, et al. Shear stress-dependent regulation of apical endocytosis in renal proximal tubule cells mediated by primary cilia. Proc Natl Acad Sci U S A. 2014 Jun 10;111(23):8506–8511.
  • Maggiorani D, Dissard R, Belloy M, et al. Shear stress-induced alteration of epithelial organization in human renal tubular cells. PLoS One. 2015;10(7):e0131416.
  • Ferrell N, Ricci KB, Groszek J, et al. Albumin handling by renal tubular epithelial cells in a microfluidic bioreactor. Biotechnol Bioeng. 2012 Mar;109(3):797–803.
  • Zhou M, Ma H, Lin H, et al. Induction of epithelial-to-mesenchymal transition in proximal tubular epithelial cells on microfluidic devices. Biomaterials. 2014 Feb;35(5):1390–1401.
  • Wei Z, Amponsah PK, Al-Shatti M, et al. Engineering of polarized tubular structures in a microfluidic device to study calcium phosphate stone formation. Lab Chip. 2012 Oct 21;12(20):4037–4040.
  • Baudoin R, Griscom L, Monge M, et al. Development of a renal microchip for in vitro distal tubule models. Biotechnol Prog. 2007 Sep-Oct;23(5):1245–1253.
  • Weinberg E, Kaazempur-Mofrad M, Borenstein J. Concept and computational design for a bioartificial nephron-on-a-chip. Int J Artif Organs. 2008 Jun;31(6):508–514.
  • Sakuta Y, Takehara I, Tsunoda KI, et al. Development of a microfluidic system comprising dialysis and secretion components for a bioassay of renal clearance. Anal Sci. 2018 Sep 10;34(9):1073–1078.
  • Theobald J, Abu El Maaty MA, Kusterer N, et al. In vitro metabolic activation of vitamin D3 by using a multi-compartment microfluidic liver-kidney organ on chip platform. Sci Rep. 2019 Mar 15;9(1):4616.
  • Lasagni L, Ballerini L, Angelotti ML, et al. Notch activation differentially regulates renal progenitors proliferation and differentiation toward the podocyte lineage in glomerular disorders. Stem Cells. 2010 Sep;28(9):1674–1685.
  • Peired AJ, Antonelli G, Angelotti ML, et al. Acute kidney injury promotes development of papillary renal cell adenoma and carcinoma from renal progenitor cells. Sci Transl Med. 2020.
  • Vriend J, Nieskens TTG, Vormann MK, et al. Screening of drug-transporter interactions in a 3d microfluidic renal proximal tubule on a chip. Aaps J. 2018 Jul 26;20(5):87.
  • Lee J, Kim S. Kidney-on-a-chip: a new technology for predicting drug efficacy, interactions, and drug-induced nephrotoxicity. Curr Drug Metab. 2018;19(7):577–583.
  • Wilmer MJ, Ng CP, Lanz HL, et al. Kidney-on-a-chip technology for drug-induced nephrotoxicity screening. Trends Biotechnol. 2016 Feb;34(2):156–170.
  • Kim S, LesherPerez SC, Kim BC, et al. Pharmacokinetic profile that reduces nephrotoxicity of gentamicin in a perfused kidney-on-a-chip. Biofabrication. 2016 Mar 24;8(1):015021.
  • Adler M, Ramm S, Hafner M, et al. A quantitative approach to screen for nephrotoxic compounds in vitro. J Am Soc Nephrol. 2016 Apr;27(4):1015–1028.
  • Jang KJ, Mehr AP, Hamilton GA, et al. Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment. Integr Biol (Camb). 2013 Sep;5(9):1119–1129.
  • Sakolish CM, Philip B, Mahler GJ. A human proximal tubule-on-a-chip to study renal disease and toxicity. Biomicrofluidics. 2019 Jan;13(1):014107.
  • Sakolish C, Weber EJ, Kelly EJ, et al. Technology transfer of the microphysiological systems: a case study of the human proximal tubule tissue chip. Sci Rep. 2018 Oct 5;8(1):14882.
  • Choucha-Snouber L, Aninat C, Grsicom L, et al. Investigation of ifosfamide nephrotoxicity induced in a liver-kidney co-culture biochip. Biotechnol Bioeng. 2013 Feb;110(2):597–608.
  • Vernetti L, Gough A, Baetz N, et al. Functional coupling of human microphysiology systems: intestine, liver, kidney proximal tubule, blood-brain barrier and skeletal muscle. Sci Rep. 2017 Feb 8;7:42296.
  • Maschmeyer I, Lorenz AK, Schimek K, et al. A four-organ-chip for interconnected long-term co-culture of human intestine, liver, skin and kidney equivalents. Lab Chip. 2015 Jun 21;15(12):2688–2699.
  • Ramme AP, Koenig L, Hasenberg T, et al. Autologous induced pluripotent stem cell-derived four-organ-chip. Future Sci OA. 2019 Sep 10;5(8):FSO413.
  • Skardal A, Mack D, Kapetanovic E, et al. Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds. Stem Cells Transl Med. 2012 Nov;1(11):792–802.
  • Cui X, Breitenkamp K, Finn MG, et al. Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Eng Part A. 2012 Jun;18(11–12):1304–1312.
  • Poldervaart MT, Wang H, van der Stok J, et al. Sustained release of BMP-2 in bioprinted alginate for osteogenicity in mice and rats. PLoS One. 2013;8(8):e72610.
  • Datta S, Das A, Chowdhury AR, et al. Bioink formulations to ameliorate bioprinting-induced loss of cellular viability. Biointerphases. 2019 Oct 14;14(5):051006.
  • Vijayavenkataraman S, Yan WC, Lu WF, et al. 3D bioprinting of tissues and organs for regenerative medicine. Adv Drug Deliv Rev. 2018;132:296–332.
  • Gungor-Ozkerim PS, Inci I, Zhang YS, et al. Bioinks for 3D bioprinting: an overview. Biomater Sci. 2018 May 1;6(5):915–946.
  • Ong CS, Yesantharao P, Huang CY, et al. 3D bioprinting using stem cells. Pediatr Res. 2018 Jan;83(1–2):223–231.
  • Murphy SV, Skardal A, Atala A. Evaluation of hydrogels for bio-printing applications. J Biomed Mater Res A. 2013 Jan;101(1):272–284.
  • King SM, Higgins JW, Nino CR, et al. 3D proximal tubule tissues recapitulate key aspects of renal physiology to enable nephrotoxicity testing. Front Physiol. 2017;8:123.
  • Homan KA, Kolesky DB, Skylar-Scott MA, et al. Bioprinting of 3D convoluted renal proximal tubules on perfusable chips. Sci Rep. 2016 Oct 11;6:34845.
  • Lin NYC, Homan KA, Robinson SS, et al. Renal reabsorption in 3D vascularized proximal tubule models. Proc Natl Acad Sci U S A. 2019 Mar 19;116(12):5399–5404.
  • Higgins JW, Chambon A, Bishard K, et al. Bioprinted pluripotent stem cell-derived kidney organoids provide opportunities for high content screening. bioRxiv. 2018;505396.
  • Yang Q, Gao B, Xu F. Recent advances in 4D bioprinting. Biotechnol J. 2019 Sep 4:e1900086.