565
Views
32
CrossRef citations to date
0
Altmetric
Review

Current advances in the algae-made biopharmaceuticals field

, , , &
Pages 751-766 | Received 20 Jun 2019, Accepted 04 Mar 2020, Published online: 20 Mar 2020

References

  • Finckh A, Neto D, Iannone F, et al. The impact of patient heterogeneity and socioeconomic factors on abatacept retention in rheumatoid arthritis across nine European countries. RMD Open. 2015;1(1):e000040.
  • Rader RA. (Re) defining biopharmaceutical. Nat Biotechnol. 2008;26(7):743–751.
  • Schellekens H. How similar ‘biosimilars’ need to be? Nat Biotechnol. 2004;22(11):1357–1359.
  • Dhara VG, Naik HM, Modjeska N, et al. Recombinant antibody production in CHO and NS0 Cells: differences and similarities. BioDrugs. 2018;32(6):571–584.
  • Kis Z, Shattuck R, Shah N, et al. Emerging technologies for low‐cost, rapid vaccine manufacture. Biotechnol J. 2019;14(1):1800376.
  • Ritacco FV, Wu Y, Khetan A. Cell culture media for recombinant protein expression in Chinese hamster ovary (CHO) cells: history, key components, and optimization strategies. Biotechnol Prog. 2018;34(6):1407–1426.
  • Sanchez-Garcia L, Martin L, Mangues R, et al. Recombinant pharmaceuticals from microbial cells: a 2015 update. Microb Cell Fact. 2016;15:33.
  • Sivakumar G, editor. New insights into cell culture technology. Rijeka, Croatia: InTech; 2017. p. 43–97.
  • Yan N, Fan C, Chen Y, et al. The potential for microalgae as bioreactors to produce pharmaceuticals. Int J Mol Sci. 2016;17(6):962.
  • Mayfield SP, Franklin SE, Lerner RA. Expression and assembly of a fully active antibody in algae. Proc Natl Acad Sci USA. 2003;100(2):438–442.
  • Gimpel JA, Henríquez V, Mayfield SP. In metabolic engineering of eukaryotic microalgae: potential and challenges come with great diversity. Front Microbiol. 2015a;6:1376.
  • Alam A, Jiang L, Kittleson GA, et al. Technoeconomic modeling of plant-based Griffithsin manufacturing. Front Bioeng Biotechnol. 2018;6:102.
  • Twyman RM, Stoger E, Schillberg S, et al. Molecular farming in plants: host systems and expression technology. Trends Biotechnol. 2003;21(12):570–578.
  • Draaisma RB, Wijffels RH, Slegers PM, et al. Food commodities from microalgae. Curr Opin Biotechnol. 2013;24(2):169–177.
  • Rasala BA, Mayfield SP. Photosynthetic biomanufacturing in green algae; production of recombinant proteins for industrial, nutritional, and medical uses. Photosynth Res. 2015;123:227–239.
  • Erdene-Ochir E, Shin BK, Kwon B, et al. Identification and characterisation of the novel endogenous promoter HASP1 and its signal peptide from Phaeodactylum tricornutum. Sci Rep. 2019 July 9;9(1):9941.
  • Zhang Z, He P, Zhou Y, et al. Anti-HBV effect of interferon-thymosin α1 recombinant proteins in transgenic Dunaliella salina in vitro and in vivo. Exp Ther Med. 2018 Aug;16(2):517–522.
  • Niu YF, Zhang MH, Xie WH, et al. A new inducible expression system in a transformed green alga, Chlorella vulgaris. Genet Mol Res. 2011 Oct 21;10(4):3427–3434.
  • Ramos-Vega A, Rosales-Mendoza S, Bañuelos-Hernández B, et al. Prospects on the use of Schizochytrium sp. to develop oral vaccines. Front Microbiol. 2018 Oct;25(9):2506.
  • Schroda M. The Chlamydomonas genome reveals its secrets: chaperone genes and the potential roles of their gene products in the chloroplast. Photosynth Res. 2004;82(3):221–240.
  • Breiman A, Fawcett TW, Ghirardi ML, et al. Plant organelles contain distinct peptidylprolyl cis, trans-isomerases. J Biol Chem. 1992;267(30):21293–21296.
  • Anyaogu DC, Mortensen UH. Manipulating the glycosylation pathway in bacterial and lower eukaryotes for production of therapeutic proteins. Curr Opin Biotechnol. 2015;36:122–128.
  • Mócsai R, Figl R, Troschl C, et al. N-glycans of the microalga Chlorella vulgaris are of the oligomannosidic type but highly methylated. Sci Rep. 2019 Jan 23;9(1):331.
  • Tran M, Zhou B, Pettersson PL, et al. Synthesis and assembly of a full-length human monoclonal antibody in algal chloroplasts. Biotechnol Bioeng. 2009;104(4):663–673.
  • Ortega-Berlanga B, Bañuelos-Hernández B, Rosales-Mendoza S. Efficient expression of an Alzheimer’s disease vaccine candidate in the microalga Schizochytrium sp. using the Algevir system. Mol Biotechnol. 2018;60(5):362–368.
  • Kwon KC, Lamb A, Fox D, et al. An evaluation of microalgae as a recombinant protein oral delivery platform for fish using green fluorescent protein (GFP). Fish Shellfish Immunol. 2019 Apr;87:414–420. Epub 2019 Jan 28.
  • Chen Q. Expression and Purification of Pharmaceutical Proteins in Plants. Biol Eng. 2008;1(4):291–321.
  • McNulty MJ, Gleba Y, Tusé D, et al. Techno‐economic analysis of a plant‐based platform for manufacturing antimicrobial proteins for food safety. Biotechnol Prog. 2020;36(1):1-15:e2896.
  • Vazquez-Villegas P, Torres-Acosta MA, Garcia-Echauri SA, et al. Genetic manipulation of microalgae for the production of bioproducts. Front Biosci (Elite Ed). 2018;10:254–275.
  • Rosales-Mendoza S. Future directions for the development of Chlamydomonas-based vaccines. Expert Rev Vaccines. 2013;12(9):1011–1019.
  • Lauersen KJ, Huber I, Wichmann J, et al. Investigating the dynamics of recombinant protein secretion from a microalgal host. J Biotechnol. 2015;215:62–71.
  • Hempel F, Maier UG. An engineered diatom acting like a plasma cell secreting human IgG antibodies with high efficiency. Microb Cell Fact. 2012;11:126.
  • Rasala BA, Lee PA, Shen Z, et al. Robust expression and secretion of Xylanase1 in Chlamydomonas reinhardtii by fusion to a selection gene and processing with the FMDV 2A peptide. PLoS One. 2012;7:e43349.
  • Lauersen KJ, Vanderveer TL, Berger H, et al. Ice recrystallization inhibition mediated by a nuclear-expressed and -secreted recombinant ice-binding protein in the microalga Chlamydomonas reinhardtii. Appl Microbiol Biotechnol. 2013;97(22):9763–9772.
  • Bayne AC, Boltz D, Owen C, et al., Vaccination against influenza with recombinant hemagglutinin expressed by Schizochytrium sp. confers protective immunity. PLoS One. 8(4): e61790. 2013.
  • Dong B, Hu H, Li Z, et al. A novel bicistronic expression system composed of the intraflagellar transport protein gene ift25 and FMDV 2A sequence directs robust nuclear gene expression in Chlamydomonas reinhardtii. Appl Microbiol Biotechnol. 2017;101:4227–4245.
  • Shao N, Bock R. A codon-optimized luciferase from Gaussia princeps facilitates the in vivo monitoring of gene expression in the model alga Chlamydomonas reinhardtii. Curr Genet. 2008;53:381–388.
  • Molino JVD, de Carvalho JCM, Mayfield SP. Comparison of secretory signal peptides for heterologous protein expression in microalgae: expanding the secretion portfolio for Chlamydomonas reinhardtii. PLoS One. 2018 Feb 6;13(2):e0192433.
  • Kilian O 1, Benemann CS, Niyogi KK, et al. High-efficiency homologous recombination in the oil-producing alga Nannochloropsis sp. Proc Natl Acad Sci U S A. 2011 Dec 27;108(52):21265–21269. Epub 2011 Nov 28.
  • Levitan A, Trebitsh T, Kiss V, et al. Dual targeting of the protein disulfide isomerase RB60 to the chloroplast and the endoplasmic reticulum. Proc Natl Acad Sci USA. 2005;102(17):6225–6230.
  • Tran M, Henry RE, Siefker D, et al. Production of anti-cancer immunotoxins in algae: ribosome inactivating proteins as fusion partners. Biotechnol Bioeng. 2013b;110(11):2826–2835.
  • Doron L, Segal N, Shapira M. Transgene expression in microalgae-from tools to applications. Front Plant Sci. 2016;7:505.
  • Bock R, Warzecha H. Solar-powered factories for new vaccines and antibiotics. Trends Biotechnol. 2010;28(5):246–252.
  • Murakami M, Kiuchi T, Nishihara M, et al. Chemical synthesis of erythropoietin glycoforms for insights into the relationship between glycosylation pattern and bioactivity. Sci Adv. 2016 Jan 15;2(1):1500678.
  • Wada R, Matsui M, Kawasaki N. Influence of N-glycosylation on effector functions and thermal stability of glycoengineered IgG1 monoclonal antibody with homogeneous glycoforms. mAbs. 2019;11(2):350–372.
  • Gimpel JA, Hyun JS, Schoepp NG, et al., Production of recombinant proteins in microalgae at pilot greenhouse scale. Biotechnol Bioeng. 112(2): 339–345. 2015b.
  • Dyo YM, Purton S. The algal chloroplast as a synthetic biology platform for production of therapeutic proteins. Microbiology. 2018;164(2):113–121.
  • Rasala BA, Chao SS, Pier M, et al. Enhanced genetic tools for engineering multigene traits into green algae. PLoS One. 2014;9(4):e94028.
  • Barahimipour R, Neupert J, Bock R. Efficient expression of nuclear transgenes in the green alga Chlamydomonas: synthesis of an HIV antigen and development of a new selectable marker. Plant Mol Biol. 2016;90:403–418.
  • Fuhrmann M, Oertel W, Hegemann P. A synthetic gene coding for the green fluorescent protein (GFP) is a versatile reporter in Chlamydomonas reinhardtii. Plant J. 1999;19:353–361.
  • Lee S, Lee YJ, Choi S, et al. Development of an alcohol-inducible gene expression system for recombinant protein expression in Chlamydomonas reinhardtii. Appl Phycol. 2018;30(4):2297–2304.
  • Cerutti H, Casas-Mollano JA. On the origin and functions of RNA-mediated silencing: from protists to man. Curr Genet. 2006;50(2):81–99.
  • Kurniasih SD, Yamasaki T, Kong F, et al. UV-mediated Chlamydomonas mutants with enhanced nuclear transgene expression by disruption of DNA methylation-dependent and independent silencing systems. Plant Mol Biol. 2016;92(6):629–641.
  • Neupert J, Karcher D, Bock R. Generation of Chlamydomonas strains that efficiently express nuclear transgenes. Plant J. 2009;57(6):1140–1150.
  • Baier T, Wichmann J, Kruse O, et al. Intron-containing algal transgenes mediate efficient recombinant gene expression in the green microalga Chlamydomonas reinhardtii. Nucleic Acids Res. 2018b;46:136909–136919.
  • Ramos‐Martinez EM, Fimognari L, Sakuragi Y. High‐yield secretion of recombinant proteins from the microalga Chlamydomonas reinhardtii. Plant Biotech J. 2017;15(9):1214–1224.
  • Gomord V, Fitchette AC, Menu‐Bouaouiche L, et al. Plant‐specific glycosylation patterns in the context of therapeutic protein production. Plant Biotechnol J. 2010;8(5):564–587.
  • Bañuelos-Hernández B, Monreal-Escalante E, González-Ortega O. Algevir: an expression system for microalgae based on viral vectors. Front Microbiol. 2017;30(8):1100.
  • Márquez-Escobar VA, Bañuelos-Hernández B, Rosales-Mendoza S. Expression of a Zika virus antigen in microalgae: towards mucosal vaccine development. J Biotechnol. 2018;282:86–91.
  • Patel VK, Soni N, Prasad V, et al. CRISPR–Cas9 system for genome engineering of photosynthetic microalgae. Mol Biotechnol. 2019;61:541–561.
  • Encarnação T, Pais AA, Campos MG, et al. Cyanobacteria and microalgae: a renewable source of bioactive compounds and other chemicals. Sci Prog. 2015;98(Pt 2):145–168.
  • Carrera-Pacheco SE, Hankamer B. Oey M Optimising light conditions increases recombinant protein production in Chlamydomonas reinhardtii chloroplasts. Algal Res. 2018;32:329–340
  • Lizzul AM, Lekuona-Amundarain A, Purton S, et al. Characterization of Chlorella sorokiniana, UTEX 1230. Biology (Basel). 2018;7(2):pii: E25.
  • Loera-Quezada MM, Leyva-González MA, Velázquez-Juárez G, et al. A novel genetic engineering platform for the effective management of biological contaminants for the production of microalgae. Plant Biotechnol J. 2016;14(10):2066–2076.
  • Sandoval-Vargas JM, Macedo-Osorio KS, Durán-Figueroa NV, et al. Chloroplast engineering of Chlamydomonas reinhardtii to use phosphite as phosphorus source. Algal Res. 2018;33:291–297.
  • Poehlein A, Daniel R, Schink B, et al. Life based on phosphite: a genome-guided analysis of Desulfotignum phosphitoxidans. BMC Genomics. 2013;14(1):753.
  • Ravi A, Guo S, Rasala B, et al., Separation options for phosphorylated osteopontin from transgenic microalgae Chlamydomonas reinhardtii. Int J Mol Sci. 19(2): pii: E585. 2018.
  • Lomonossoff GP, D’Aoust MA. Plant-produced biopharmaceuticals: a case of technical developments driving clinical deployment. Science. 2016;353(6305):1237–1240.
  • Su J, Zhu L, Sherman A, et al. Low cost industrial production of coagulation factor IX bioencapsulated in lettuce cells for oral tolerance induction in hemophilia B. Biomaterials. 2015;70:84–93.
  • Gregory JA, Shepley-McTaggart A, Umpierrez M, et al., Immunotherapy using algal-produced Ara h 1 core domain suppresses peanut allergy in mice. Plant Biotechnol J. 14(7): 1541–1550. 2016.
  • Demurtas OC, Massa S, Ferrante P. A Chlamydomonas - derived Human Papillomavirus 16 E7 vaccine induces specific tumor protection. PLoS One. 2013;8(4):e61473.
  • Geng D, Wang Y, Wang P, et al. Stable expression of hepatitis B surface antigen gene in Dunaliella salina (Chlorophyta). J Appl Phycol. 2003;15:451–456.
  • Wang XF, Brandsma M, Tremblay R, et al. A novel expression platform for the production of diabetes-associated autoantigen human glutamic acid decarboxylase (hGAD65). BMC Biotechnol. 2008;8:87.
  • Dauvillée D, Delhaye S, Gruyer S, et al. Engineering the chloroplast targeted malarial vaccine antigens in Chlamydomonas starch granules. PLoS One. 2010;5(12):e15424.
  • Gregory JA, Li F, Tomosada LM, et al. Algae produced Pfs25 elicits antibodies that inhibit malaria transmission. PLoS One. 2012;7(5):e37179.
  • Kumar A, Falcao VR, Sayre RT. Evaluating nuclear transgene expression systems in Chlamydomonas reinhardtii. Algal Res. 2013;2(4):321–332.
  • Soria-Guerra RE, Ramirez-Alonso JI, Ibañez-Salazar A, et al. Expression of an HBcAg-based antigen carrying angiotensin II in Chlamydomonas reinhardtii as a candidate hypertension vaccine. Plant Cell Tissue Organ Cult. 2014;116:133–139.
  • Beltrán-López JI, Romero-Maldonado A, Monreal-Escalante E, et al. Chlamydomonas reinhardtii chloroplasts express an orally immunogenic protein targeting the p210 epitope implicated in atherosclerosis immunotherapies. Plant Cell Rep. 2016;35(5):1133–1141.
  • Hirschl S, Ralser C, Asam C, et al. Expression and characterization of functional recombinant Bet v 1.0101 in the chloroplast of Chlamydomonas reinhardtii. Int Arch Allergy Immunol. 2017;173(1):44–50.
  • Shamriz S, Ofoghi H. Engineering the chloroplast of Chlamydomonas reinhardtii to express the recombinant PfCelTOS-Il2 antigen-adjuvant fusion protein. J Biotechnol. 2018;266:111–117.
  • Feng S, Feng W, Zhao L, et al. Preparation of transgenic Dunaliella salina for immunization against white spot syndrome virus in crayfish. Arch Virol. 2014;159:519–525.
  • Tran M, Van C, Barrera DJ, et al., Production of unique immunotoxin cancer therapeutics in algal chloroplasts. Proc Natl Acad Sci USA. 110(1): E15–E22. 2013.
  • Barrera DJ, Rosenberg JN, Chiu JG, et al., Algal chloroplast produced camelid VH H antitoxins are capable of neutralizing botulinum neurotoxin. Plant Biotechnol J. 13(1): 117–124. 2015.
  • Sun M, Qian K, Su N, et al. Foot-and-mouth disease virus VP1 protein fused with cholera toxin B subunit expressed in Chlamydomonas reinhardtii chloroplast. Biotechnol Lett. 2003;25:1087–1092.
  • He DM, Qian KX, Shen GF, et al. Recombination and expression of classical swine fever virus (CSFV) structural protein E2 gene in Chlamydomonas reinhardtii chroloplasts. Colloids Surf B Biointerfaces. 2007;55:26–30.
  • Yang Z, Wang J, Cheng X, et al. Making porcine circovirus vaccine to prevent/treat porcine circovirus infection involves coding porcine circovirus type 2 antigen gene in Chlamydomonas chloroplasts, constructing chloroplasts in expression box; selecting antigen; screening. Patent CN103007269-A. 2013.
  • Davis A, Crum LT, Corbeil LB, et al. Expression of Histophilus somni IbpA DR2 protective antigen in the diatom Thalassiosira pseudonana. Appl Microbiol Biotechnol. 2017;101(13):5313–5324.
  • Hempel F, Lau J, Klingl A, et al. Algae as protein factories: expression of a human antibody and the respective antigen in the diatom Phaeodactylum tricornutum. PLoS One. 2011;6(12):e28424.
  • Vanier G, Stelter S, Vanier J, et al. Alga-made anti-Hepatitis B antibody binds to human fcγ receptors. Biotechnol J. 2018;13(4):e1700496.
  • Stoffels L, Taunt HN, Charalambous B, et al. Synthesis of bacteriophage lytic proteins against Streptococcus pneumoniae in the chloroplast of Chlamydomonas reinhardtii. Plant Biotechnol J. 2017;15(9):1130–1140.
  • Rasala BA, Muto M, Lee PA, et al. Production of therapeutic proteins in algae, analysis of expression of seven human proteins in the chloroplast of Chlamydomonas reinhardtii. Plant Biotechnol J. 2010;8(6):719–733.
  • Chávez MN, Schenck TL, Hopfner U, et al. Towards autotrophic tissue engineering: photosynthetic gene therapy for regeneration. Biomaterials. 2016;75:25–36.
  • Xue L, Pan W, Jiang G, et al. Transgenic Dunaliella salina as a bioreactor. US patent application. US20030066107 A1. 2003.
  • Yang Z, Lih Y, Chen F, et al. Expression of human soluble TRAIL in Chlamydomonas reinhardtii chloroplast. Chin Sci Bull. 2006;51(14):1703–1709.
  • Somchai P, Jitrakorn S, Thitamadee S, et al. Use of microalgae Chlamydomonas reinhardtii for production of double-stranded RNA against shrimp virus. Aquacult Rep. 2016;3:178–183.
  • Kim DH, Kim YT, Cho JJ, et al. Stable integration and functional expression of flounder growth hormone gene in transformed microalga, Chlorella ellipsoidea. Mar Biotechnol. 2002;4(1):63–73.
  • Li SS, Tsai HJ. Transgenic microalgae as a non-antibiotic bactericide producer to defend against bacterial pathogen infection in the fish digestive tract. Fish Shellfish Immunol. 2009;26(2):316–325.
  • Hawkins RL, Nakamura M. Expression of human growth hormone by the eukaryotic alga, Chlorella. Curr Microbiol. 1999;38(6):335–341.
  • Chen Y, Wang YQ, Sun YR, et al. Highly efficient expression of rabbit neutrophil peptide-1 gene in Chlorella ellipsoidea cells. Curr Genet. 2001;39(5–6):365–370.
  • Eichler-Stahlberg A, Weisheit W, Ruecker O, et al. Strategies to facilitate transgene expression in Chlamydomonas reinhardtii. Planta. 2009;229(4):873–883.
  • Michelet L, Lefebvre-Legendre L, Burr SE, et al. Enhanced chloroplast transgene expression in a nuclear mutant of Chlamydomonas. Plant Biotechnol J. 2011;9:565–574.
  • Chai XJ, Chen HX, Xu WQ, et al. Expression of soybean Kunitz trypsin inhibitor gene SKTI in Dunaliella salina. J Appl Phycol. 2013;25(1):139–144.
  • Wannathong T, Waterhouse JC, Young RE, et al. New tools for chloroplast genetic engineering allow the synthesis of human growth hormone in the green alga Chlamydomonas reinhardtii. Appl Microbiol Biotechnol. 2016;100(12):5467–5477.
  • Faè M, Accossato S, Cella R, et al. Comparison of transplastomic Chlamydomonas reinhardtii and Nicotiana tabacum expression system for the production of a bacterial endoglucanase. Appl Microbiol Biotechnol. 2017;101(10):4085–4092.
  • Dong B, Cheng RQ, Liu QY, et al. Multimer of the antimicrobial peptide Mytichitin-A expressed in Chlamydomonas reinhardtii exerts a broader antibacterial spectrum and increased potency. J Biosci Bioeng. 2017b;125(2):175–179.
  • Baier T, Kros D, Feiner RC, et al. Engineered fusion proteins for efficient protein secretion and purification of a human growth factor from the green microalga Chlamydomonas reinhardtii. ACS Synth Biol. 2018a;7(11):2547–2557.
  • Dreesen IA, Charpin-El, Hamri G, Fussenegger M. Heat-stable oral alga-based vaccine protects mice from Staphylococcus aureus infection. J Biotechnol. 2010;145:273–280.
  • Gregory JA, Topol AB, Doerner DZ, et al. Alga-produced cholera toxin-Pfs25 fusion proteins as oral vaccines. Appl Environ Microbiol. 2013;79(13):3917–3925.
  • Roth J, Zuber C, Park S, et al. Protein N-glycosylation, protein folding, and protein quality control. Mol Cells. 2010;30(6):497–506.
  • Van Ree R, Cabanes-Macheteau M, Akkerdaas J, et al. Beta (1,2)-xylose and alpha (1,3)-fucose residues have a strong contribution in IgE binding to plant glycoallergens. J Biol Chem. 2000;275(15):11451–11458.
  • Shaaltiel Y, Bartfeld D, Hashmueli S, et al. Production of glucocerebrosidase with terminal mannose glycans for enzyme replacement therapy of Gaucher’s disease using a plant cell system. Plant Biotechnol J. 2007;5(5):579–590.
  • Bosch D, Schots A. Plant glycans: friend or foe in vaccine development? Expert Rev Vaccines. 2010;9(8):835–842.
  • Wang Q, Yin B, Chung CY, et al. Glycoengineering of CHO cells to improve product quality. Methods Mol Biol. 2017;1603:25–44.
  • Cockburn I, Long G. The importance of patents to innovation: updated cross-industry comparisons with biopharmaceuticals. Expert Opin Ther Pat. 2015;25(7):739–742.
  • Chichester JA, Green BJ, Jones RM, et al. Safety and immunogenicity of a plant-produced Pfs25 virus-like particle as a transmission blocking vaccine against malaria: a Phase 1 dose-escalation study in healthy adults. Vaccine. 2018;36(39):5865–5871.
  • Mor TS. Molecular pharming’s foot in the FDA’s door: protalix’s trailblazing story. Biotechnol Lett. 2015;37(11):2147–2150.
  • Pillet S, Aubin É, Trépanier S, et al. Humoral and cell-mediated immune responses to H5N1 plant-made virus-like particle vaccine are differentially impacted by alum and GLA-SE adjuvants in a Phase 2 clinical trial. NPJ Vaccines. 2018;3:3.
  • Kesik-Brodacka M. Progress in biopharmaceutical development. Biotechnol Appl Biochem. 2018;65(3):306–322.
  • McCamish M, Yoon W, McKay J. Biosimilars: biologics that meet patients’ needs and healthcare economics. Am J Manag Care. 2016;22(13 Suppl):S439–S442.
  • Stevenson JG. Clinical data and regulatory issues of biosimilar products. Am J Manag Care. 2015;21(16 Suppl):s320–s330.
  • Daller J. Biosimilars: a consideration of the regulations in the united states and european union. Regul Toxicol Pharmacol. 2016;76:199–208.
  • Klimyuk V, Pogue G, Herz S, et al. Production of recombinant antigens and antibodies in Nicotiana benthamiana using ‘magnifection’technology: GMP-compliant facilities for small-and large-scale manufacturing. Curr Top Microbiol Immunol. 2014;375:127–154.
  • Pillet S, Couillard J, Trépanier S, et al. Immunogenicity and safety of a quadrivalent plant-derived virus like particle influenza vaccine candidate—Two randomized Phase II clinical trials in 18 to 49 and≥ 50 years old adults. PloS One. 2019;14(6):e0216533.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.