1,087
Views
3
CrossRef citations to date
0
Altmetric
Review

CAR-T cells: the Chinese experience

ORCID Icon, ORCID Icon, , , &
Pages 1293-1308 | Received 15 Dec 2019, Accepted 29 Jun 2020, Published online: 14 Jul 2020

References

  • High KA, Roncarolo MG. Gene therapy. N Engl J Med. 2019;381(5):455–464.
  • Porteus MH. A new class of medicines through DNA editing. N Engl J Med. 2019;380(10):947–959.
  • June CH, Sadelain M. Chimeric antigen receptor therapy. N Engl J Med. 2018;379(1):64–73.
  • Neelapu SS, Locke FL, Bartlett NL, et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med. 2017;377(26):2531–2544.
  • Maude SL, Laetsch TW, Buechner J, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med. 2018;378(5):439–448.
  • Neelapu SS, Tummala S, Kebriaei P, et al. Chimeric antigen receptor T-cell therapy - assessment and management of toxicities. Nat Rev Clin Oncol. 2018;15(1):47–62.
  • Shah NN, Fry TJ. Mechanisms of resistance to CAR T cell therapy. Nat Rev Clin Oncol. 2019;16(6):372–385.
  • Hu YX, Yu J, Luo Y, et al. Superior therapeutic efficacy of chimeric antigen receptor modified T cells against CD19 over chemotherapy in relapsed/refractory acute lymphocytic leukemia. Blood. 2016;128(22):3978.
  • Deng BP, Chang AH, Yang J, et al. Safety and efficacy of low dose CD19 targeted chimeric antigen receptor T (CAR-T) cell immunotherapy in 47 cases with relapsed refractory B-cell acute lymphoblastic leukemia (B-ALL). Blood. 2016;128(22):649.
  • Hu YX, Wu Z, Luo Y, et al. Potent anti-leukemia activities of chimeric antigen receptor-modified T cells against CD19 in chinese patients with relapsed/refractory acute lymphocytic leukemia. Clin Cancer Res. 2017;23(13):3297–3306.
  • Zhang X, Lu X, Yang JF, et al. Efficacy and safety of CD19 chimeric antigen receptor (CAR) T cell therapy for B-cell acute lymphocytic leukemia (B-cell ALL) in a large cohort including patients with extramedullary disease(EMD), high leukemia burden, BCR-ABL (+) mutation,tp53 mutation, and post-transplant relapse. Blood. 2018;132(Supplement 1):280.
  • Hu YX, Wang JS, Zhang YL, et al. Comparison of Chimeric Antigen Receptor T Cells from Allogenic or Autologous Sources in Patients with Acute Lymphoblastic Leukemia. Blood. 2018;132(Supplement 1):2691.
  • Zhang RL, He Y, Yang DL, et al. Donor-derived second generation of CD19 CAR-T Cell therapy for relapsed B-cell acute lymphoblastic leukemia after allogenic stem cell transplantation. Blood. 2018;132(Supplement 1):2179.
  • Cao J, Wang G, Cheng H, et al. Potent anti-leukemia activities of humanized CD19-targeted Chimeric antigen receptor T (CAR-T) cells in patients with relapsed/refractory acute lymphoblastic leukemia. Am J Hematol. 2018;93(7):851–858.
  • Bao F, Hu K, Wan W, et al. [Application of CD19-CAR T cells in refractory relapsed acute B lymphocyte leukemia]. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2018;26(6):1604–1609.
  • Ma FT, Ho JY, Du H, et al. Evidence of long-lasting anti-CD19 activity of engrafted CD19 chimeric antigen receptor-modified T cells in a phase I study targeting pediatrics with acute lymphoblastic leukemia. Hematol Oncol. 2019;37(5):601–608.
  • Zuo YX, Jia YP, Wu J, et al. [Chimeric antigen receptors T cells for treatment of 48 relapsed or refractory acute lymphoblastic leukemia children: long term follow-up outcomes]. Zhonghua Xue Ye Xue Za Zhi. 2019;40(4):270–275.
  • Yang F, Yang X, Bao X, et al. Anti-CD19 chimeric antigen receptor T-cells induce durable remission in relapsed Philadelphia chromosome-positive ALL with T315I mutation. Leuk Lymphoma. 2020;61(2):429–436.
  • Weng JY, Lai P, Qin L, et al. A novel generation 1928zT2 CAR T cells induce remission in extramedullary relapse of acute lymphoblastic leukemia. J Hematol Oncol. 2018;11(1). DOI:10.1186/s13045-018-0572-x.
  • He XY, Xiao X, Li Q, et al. Anti-CD19 CAR-T as a feasible and safe treatment against central nervous system leukemia after intrathecal chemotherapy in adults with relapsed or refractory B-ALL. Leukemia. 2019;33(8):2102–2104.
  • Wang DM, Shi R, Wang Q, et al. Extramedullary relapse of acute lymphoblastic leukemia after allogeneic hematopoietic stem cell transplantation treated by CAR T-cell therapy: a case report. Onco Targets Ther. 2018;11:6327–6332.
  • Tu SF, Deng L, Huang R, et al. A novel chimeric antigen receptor T cells therapy strategy that dual targeting CD19 and CD123 to treat relapsed acute lymphoblastic leukemia after allogeneic hematopoietic stem cell transplantation. Blood. 2018;132(Supplement 1):4051 . DOI:10.1182/blood-2018-99-118526.
  • Zhang C, Kong P-Y, Li S, et al. Donor-derived CAR-T cells serve as a reduced-intensity conditioning regimen for haploidentical stem cell transplantation in treatment of relapsed/refractory acute lymphoblastic leukemia: case report and review of the literature. J Immunother. 2018;41(6):306–311.
  • Hu YX, Sun J, Wu Z, et al. Predominant cerebral cytokine release syndrome in CD19-directed chimeric antigen receptor-modified T cell therapy. J Hematol Oncol. 2016;9(1). DOI:10.1186/s13045-016-0299-5.
  • Sun Y, Wang S, Zhao L, et al. IFN-gamma and TNF-alpha aggravate endothelial damage caused by CD123-targeted CAR T cell. Onco Targets Ther. 2019;12:4907–4925.
  • Hu YX, Feng JJ, Shao M, et al. Profile of capillary-leak syndrome in patients received chimeric antigen receptor T cell therapy. Blood. 2018;132(Supplement 1):5204.
  • Pan J, Yang JF, Deng BP, et al. High efficacy and safety of low-dose CD19-directed CAR-T cell therapy in 51 refractory or relapsed B acute lymphoblastic leukemia patients. Leukemia. 2017;31(12):2587–2593.
  • Wen SP, Niu ZY, Xing LN, et al. CAR-T bridging to allo-HSCT as a treatment strategy for relapsed adult acute B-lymphoblastic leukemia: a case report. Bmc Cancer. 2018;18(1):1143.
  • Cao J, Wang G, Zheng J, et al. Potent anti-leukemia activities of humanized CD19-targeted CAR-T cells in patients with relapsed/refractory acute lymphoblastic leukemia. Eur J Immunol. 2019;49:1719–1720.
  • Pan J, Niu Q, Deng B, et al. CD22 CAR T-cell therapy in refractory or relapsed B acute lymphoblastic leukemia. Leukemia. 2019;33(12):2854–2866.
  • Wang W, Hao M, Cheng Y, et al. JWCAR029 is a CD19-targeted CAR T cell product with process and quality controls delivered as a flat dose of CAR T cell to patients with NHL. Blood. 2018;132(Supplement 1):5387 . DOI:10.1182/blood-2018-99-114434.
  • Yan ZX, Wang W, Zheng Z, et al. Efficacy and safety of JWCAR029 in adult patients with relapsed and refractory B-cell non-Hodgkin lymphoma. Blood. 2018;132(Supplement 1):4187 . DOI:10.1182/blood-2018-99-115769.
  • Ying ZT, Wang W, Wang X, et al. CD19 CAR T cell product exhibits high remission rate in adult relapsed and/or refractory B-cell non-Hodgkin lymphoma. Blood. 2018;132(Supplement 1):5388 . DOI:10.1182/blood-2018-99-114527.
  • Hu YX, Wang J, Pu C, et al. Delayed terminal ileal perforation in a relapsed/refractory B-cell lymphoma patient with rapid remission following chimeric antigen receptor T-cell therapy. Cancer Res Treat. 2018;50(4):1462–1466.
  • Jin AY, Feng J, Wang Z, et al. Severe dyspnea caused by rapid enlargement of cervical lymph node in a relapsed/refractory B-cell lymphoma patient following chimeric antigen receptor T-cell therapy. Bone Marrow Transplant. 2019;54(7):969–972.
  • Ding LJ, Hu YX, Zhao K, et al. Pleural cavity cytokine release syndrome in CD19-directed chimeric antigen receptor-modified T cell therapy A case report. Medicine (Baltimore). 2018;97(7):E9992.
  • Xiao X, He X, Li Q, et al. Plasma exchange can be an alternative therapeutic modality for severe cytokine release syndrome after chimeric antigen receptor-T cell infusion: a case report. Clin Cancer Res. 2019;25(1):29–34.
  • Liu YF, Chen X, Wang D, et al. Hemofiltration successfully eliminates severe cytokine release syndrome following CD19 CAR-T-cell therapy. J Immunother. 2018;41(9):406–410.
  • Wang JS, Hu YX, Zhang YL, et al. Quantification of non-hodgkin lymphoma disease burden using FDG PET-CT helps predict the severity of cytokine release syndrome. Blood. 2018;132(Supplement 1):2997.
  • Ying ZT, Huang XF, Xiang X, et al. A safe and potent anti-CD19 CAR T cell therapy. Nat Med. 2019;25(6): 947.
  • Zhang WY, Wang Y, Guo YL, et al. Treatment of CD20-directed chimeric antigen receptor-modified T cells in patients with relapsed or refractory B-cell non-Hodgkin lymphoma: an early phase IIa trial report. Signal Transduct Target Ther. 2016;1(1) . DOI:10.1038/sigtrans.2016.2.
  • Hu YX, Zhang YL, Wei GQ, et al. Novel CD19/CD22 dual targeting CAR-T cells have prominent anti-tumor activity aganist relapse/refractory B-cell lymphoma. Eur Soc Blood Marrow Transplant. 2019.
  • Ma TT, Shi J, Liu HS. Chimeric antigen receptor T cell targeting B cell maturation antigen immunotherapy is promising for multiple myeloma. Ann Hematol. 2019;98(4):813–822.
  • Brudno JN, Maric I, Hartman SD, et al. T cells genetically modified to express an anti-B-cell maturation antigen chimeric antigen receptor cause remissions of poor-prognosis relapsed multiple myeloma. J clin oncol. 2018;36(22): 2267-2280.
  • Tai YT, Anderson KC. B cell maturation antigen (BCMA)-based immunotherapy for multiple myeloma. Expert Opin Biol Ther. 2019;19(11);1143-1156. DOI:10.1080/14712598.2019.1641196
  • Zhao WH, Liu J, Wang BY, et al. A phase 1, open-label study of LCAR-B38M, a chimeric antigen receptor T cell therapy directed against B cell maturation antigen, in patients with relapsed or refractory multiple myeloma. J Hematol Oncol. 2018;11(1). DOI:10.1186/s13045-018-0681-6.
  • Xu J, Chen LJ, Yang SS, et al. leExploratory trial of a biepitopic CAR T-targeting B cell maturation antigen in relapsed/refractory multiple myeloma. Proc Natl Acad Sci U S A. 2019;116(19):9543–9551.
  • Raje N, Berdeja J, Lin Y, et al. Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma. N Engl J Med. 2019;380(18):1726–1737.
  • Cohen AD, Garfall AL, Stadtmauer EA, et al. B cell maturation antigen-specific CAR T cells are clinically active in multiple myeloma. J Clin Invest. 2019;129(6):2210–2221.
  • Hu YX, Zhang YL, Wei GQ, et al. High expansion level and long term persistence of BCMA CAR-T cells contribute to potent anti-tumor activity against heavily treated multiple myeloma patients. Bone Marrow Transplant. 2019;54:37–38.
  • Li CR, Wang QX, Zhu H, et al. T Cells Expressing Anti B-Cell Maturation Antigen Chimeric Antigen Receptors for Plasma Cell Malignancies. Blood. 2018;132(Supplement 1):1013.
  • Li CR, Zhou X, Wang J, et al. Clinical responses and pharmacokinetics of fully human BCMA Targeting CAR T cell therapy in relapsed/refractory multiple myeloma. Clin Lymphoma Myeloma Leukemia. 2019;19(10):E23–E24.
  • Hao SG, Jin J, Yu K, et al. CT053, anti-BCMA CAR T-cell therapy for relapsed/refractory multiple myeloma: proof of concept results from a phase I study. Clin Lymphoma Myeloma Leukemia. 2019;19(10):E54–E55.
  • Li C, Mei H, Hu Y, et al. Improved efficacy and safety of a dual-target CAR-T cell therapy targeting BCMA and CD38 for relapsed/refractory multiple myeloma from a phase I study. Eur J Immunol. 2019;49:1723–1724.
  • Gao HP, Li K, Tu H, et al. Development of T cells redirected to glypican-3 for the treatment of hepatocellular carcinoma. Clin Cancer Res. 2014;20(24):6418–6428.
  • Ma HL, Chen S, He Y, et al. Redirecting T cells to glypican-3 with 28.41BB.zeta and 28.zeta-41BBL CARs for hepatocellular carcinoma treatment. Protein Cell. 2018;9(7):664–669.
  • Wu XQ, Luo H, Shi B, et al. Combined antitumor effects of sorafenib and GPC3-CAR T cells in mouse models of hepatocellular carcinoma. Mol Ther. 2019;27(8):1483–1494.
  • Zhai B, Shi D, Gao H, et al. A phase I study of anti-GPC3 chimeric antigen receptor modified T cells (GPC3 CAR-T) in Chinese patients with refractory or relapsed GPC3+hepatocellular carcinoma (r/r GPC3+HCC). J clin oncol. 2017;35(Supplement 15):3049. DOI:10.1200/JCO.2017.35.15_suppl.3049.
  • Wang Y, Chen M, Wu Z, et al. CD133-directed CAR T cells for advanced metastasis malignancies: A phase I trial. Oncoimmunology. 2018;7(7):E1440169.
  • Chen MH, Sun R, Shi B, et al. Antitumor efficacy of chimeric antigen receptor T cells against EGFRvIII-expressing glioblastoma in C57BL/6 mice. Biomed Pharmacother. 2019;113 . DOI:10.1016/j.biopha.2019.108734.
  • Tang X, Zhao S, Zhang Y, et al. B7-H3 as a novel CAR-T therapeutic target for glioblastoma. Molecular Therapy-Oncolytics. 2019;14:279–287.
  • Zhang RY, Wei D, Liu ZK, et al. Doxycycline inducible chimeric antigen receptor T cells targeting CD147 for hepatocellular carcinoma therapy. Front Cell Dev Biol. 2019;7 . DOI:10.3389/fcell.2019.00233.
  • Feng KC, Liu Y, Guo Y, et al. Phase I study of chimeric antigen receptor modified T cells in treating HER2-positive advanced biliary tract cancers and pancreatic cancers. Protein Cell. 2018;9(10):838–847.
  • Xu JJ, Tian K, Zhang H, et al. Chimeric antigen receptor-T cell therapy for solid tumors require new clinical regimens. Expert Rev Anticancer Ther. 2017;17(12):1099–1106.
  • Pan ZY, Di S, Shi B, et al. Increased antitumor activities of glypican-3-specific chimeric antigen receptor-modified T cells by coexpression of a soluble PD1-CH3 fusion protein. Cancer Immunol Immunother. 2018;67(10):1621–1634.
  • Liu Y, Di S, Shi B, et al. Armored inducible expression of IL-12 enhances antitumor activity of glypican-3-targeted chimeric antigen receptor-engineered T cells in hepatocellular carcinoma. J Iimmunol. 2019;203(1):198–207.
  • Zhang ER, Yang PW, Gu JY, et al. Recombination of a dual-CAR-modified T lymphocyte to accurately eliminate pancreatic malignancy. J Hematol Oncol. 2018;11(1).
  • Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. Ca-a Cancer J Clinicians. 2019;69(1):7–34.
  • Wang Y, Xu Y, Li S, et al. Targeting FLT3 in acute myeloid leukemia using ligand-based chimeric antigen receptor-engineered T cells. J Hematol Oncol. 2018;11 . DOI:10.1186/s13045-018-0603-7.
  • Liu F, Cao Y, Pinz K, et al. First-in-human CLL1-CD33 compound CAR T cell therapy induces complete remission in patients with refractory acute myeloid leukemia: update on phase 1 clinical trial. Blood. 2018;132(Supplement 1):901. DOI:10.1182/blood-2018-99-110579.
  • Wang CM, Wu Z-Q, Wang Y, et al. Autologous T cells expressing CD30 chimeric antigen receptors for relapsed or refractory hodgkin lymphoma: an open-label phase I trial. Clin Cancer Res. 2017;23(5):1156–1166.
  • Lv J, Li P. Mesothelin as a biomarker for targeted therapy. Biomark Res. 2019;7(1).
  • Xu JY, Ye ZL, Jiang DQ, et al. Mesothelin-targeting chimeric antigen receptor–modified T cells by piggyBac transposon system suppress the growth of bile duct carcinoma. Tumor Biol. 2017;39(4). DOI:10.1177/1010428317695949.
  • He JC, Zhang Z, Lv S, et al. Engineered CAR T cells targeting mesothelin by piggyBac transposon system for the treatment of pancreatic cancer. Cell Immunol. 2018;329:31–40.
  • Ye L, Lou YQ, Lu LM, et al. Mesothelin-targeted second generation CAR-T cells inhibit growth of mesothelin-expressing tumors in vivo. Exp Ther Med. 2019;17(1):739–747.
  • Lv J, Zhao RC, Wu D, et al. Mesothelin is a target of chimeric antigen receptor T cells for treating gastric cancer. J Hematol Oncol. 2019;12(1).
  • Hu WH, Zi Z, Jin Y, et al. CRISPR/Cas9-mediated PD-1 disruption enhances human mesothelin-targeted CAR T cell effector functions. Cancer Immunology, Immunotherapy. 2019;68(3):365–377.
  • Zhang ZW, Jiang DQ, Yang H, et al. Modified CAR T cells targeting membrane-proximal epitope of mesothelin enhances the antitumor function against large solid tumor. Cell Death Dis. 2019;10(7):476.
  • Nabavinia MS, Gholoobi A, Charbgoo F, et al. Anti-MUC1 aptamer: A potential opportunity for cancer treatment. Med Res Rev. 2017;37(6):1518–1539.
  • You F, Jiang L, Zhang B, et al. Phase 1 clinical trial demonstrated that MUC1 positive metastatic seminal vesicle cancer can be effectively eradicated by modified Anti-MUC1 chimeric antigen receptor transduced T cells. Sci China Life Sci. 2016;59(4):386–97.
  • Wei X, Lai Y, Li J, et al. PSCA and MUC1 in non-small-cell lung cancer as targets of chimeric antigen receptor T cells. Oncoimmunology. 2017;6(3):e1284722.
  • Ying ZT, He T, Wang X, et al. Parallel comparison of 4-1BB or CD28 co-stimulated CD19-targeted CAR-T cells for B cell non-Hodgkin’s lymphoma. Molecular Therapy-Oncolytics. 2019;15:60–68.
  • Li SQ, Zhang J, Wang M, et al. Treatment of acute lymphoblastic leukaemia with the second generation of CD19 CAR-T containing either CD28 or 4-1BB. Br J Haematol. 2018;181(3):360–371.
  • Chang LJ, Dong L, Liu YC, et al. Safety and efficacy evaluation of 4SCAR19 chimeric antigen receptor-modified T cells targeting B cell acute lymphoblastic leukemia - three-year follow-up of a multicenter phase I/II study. Blood. 2016;128(22):587.
  • Lai X, Liu JQ, Dong L, et al. CD19 epitope escape after 4SCAR19 T cell therapy resulted in re-establishment of chemo-sensitivity in adult B-cell acute lymphocytic leukemia patients. Blood. 2016;128(22):1633.
  • Chang LJ, Li Y, Tu S, et al. Phase I/II Trial of multi-target chimeric antigen receptor modified T Cells (4SCAR2.0) against relapsed or refractory lymphomas. Blood. 2018;132(Supplement 1):225. DOI:10.1182/blood-2018-99-114396.
  • Liu YR, Chen Z, Fang HL, et al. Durable remission achieved from bcma-directed CAR-T therapy against relapsed or refractory multiple myeloma. Blood. 2018;132(Supplement 1):956.
  • Yan ZL, Cao J, Cheng H, et al. A combination of humanised anti-CD19 and anti-BCMA CAR T cells in patients with relapsed or refractory multiple myeloma: a single-arm, phase 2 trial. Lancet Haematol. 2019;6(10):E521–E529.
  • Huang L, Wang N, Li CR, et al. Sequential infusion of anti-CD22 and anti-CD19 chimeric antigen receptor T cells for adult patients with refractory/relapsed B-cell acute lymphoblastic leukemia. Blood. 2017;130(Supplement 1):846.
  • Huang L, Wang N, Cao Y, et al. CAR22/19 cocktail therapy for patients with refractory/relapsed B-cell malignancies. Blood. 2018;132(Supplement 1):1408.
  • Yang JF, Li JQ, Zhang X, et al. A feasibility and safety study of CD19 and CD22 chimeric antigen receptors-modified T cell cocktail for therapy of B cell acute lymphoblastic leukemia. Blood. 2018;132(Supplement 1):277.
  • Pan J, Zuo S, Deng B, et al. Sequential CD19-22 CAR T therapy induces sustained remission in children with r/r B-ALL. Blood. 2020;135(5):387–391.
  • Liu SY, Deng BP, Lin YH, et al. Sequential CD19-and CD22-CART cell therapies for relapsed B-cell acute lymphoblastic leukemia after allogeneic hematopoietic stem cell transplantation. Blood. 2018;132(Supplement 1):2126.
  • Yang F, Zhang J, Zhang X, et al. Delayed remission following sequential infusion of humanized CD19-and CD22-modified CAR-T cells in a patient with relapsed/refractory acute lymphoblastic leukemia and prior exposure to murine-derived CD19-directed CAR-T cells. Onco Targets Ther. 2019;12:2187–2191.
  • Zhang JP, Zhang R, Tsao ST, et al. Sequential allogeneic and autologous CAR-T-cell therapy to treat an immune-compromised leukemic patient. Blood Adv. 2018;2(14):1691–1695.
  • Feng K-C, Guo Y-L, Liu Y, et al. Cocktail treatment with EGFR-specific and CD133-specific chimeric antigen receptor-modified T cells in a patient with advanced cholangiocarcinoma. J Hematol Oncol. 2017;10(1). DOI:10.1186/s13045-016-0378-7.
  • Wei J, Zhu X, Mao X, et al. Severe early hepatitis B reactivation in a patient receiving anti-CD19 and anti-CD22 CAR T cells for the treatment of diffuse large B-cell lymphoma. J Immunother Cancer. 2019;7(1). DOI:10.1186/s40425-019-0790-y.
  • Shi XL, Yan L, Shang J, et al. Tandom autologous transplantation and combined infusion of CD19 and bcma-specific chimeric antigen receptor t cells for high risk MM: initial safety and efficacy report from a clinical pilot study. Blood. 2018;132(Supplement 1):1009.
  • Zhao YL, Zhang J, Liu D, et al. CD19-CAR-T therapy followed by allogeneic hematopoietic stem cell transplantation in refractory/relapsed and high risk B-cell acute lymphoblastic leukemia. Blood. 2018;132(Supplement 1):2660.
  • Hu YX, Yi L, Jimin S, et al. CD19 targeted CAR-T therapy followed by haploidentical HSCT for refractory/relapsed acute leukemia: superior therapeutic efficacy. Biol Blood Marrow Transplant. 2018;24(3):S231–S231.
  • Wang J, Deng Q, Jiang YY, et al. CAR-T 19 combined with reduced-dose PD-1 blockade therapy for treatment of refractory follicular lymphoma: A case report. Oncol Lett. 2019;18(5):4415–4420.
  • Zah E, Lin M-Y, Silva-Benedict A, et al. T cells expressing CD19/CD20 bispecific chimeric antigen receptors prevent antigen escape by malignant B cells. Cancer Immunol Res. 2016;4(6):498–508.
  • Chen KH, Wada M, Pinz KG, et al. A compound chimeric antigen receptor strategy for targeting multiple myeloma. Leukemia. 2018;32(2):402–412.
  • Jia HJ, Wang Z, Wang Y, et al. Haploidentical CD19/CD22 bispecific CAR-T cells induced MRD-negative remission in a patient with relapsed and refractory adult B-ALL after haploidentical hematopoietic stem cell transplantation. J Hematol Oncol. 2019;12(1) . DOI:10.1186/s13045-019-0741-6.
  • Zhang R, Deng Q, Jiang YY, et al. Effect and changes in PD-1 expression of CD19 CAR-T cells from T cells highly expressing PD-1 combined with reduced-dose PD-1 inhibitor. Oncol Rep. 2019;41(6):3455–3463.
  • Li SJ, Xue L, Wang M, et al. Decitabine enhances cytotoxic effect of T cells with an anti-CD19 chimeric antigen receptor in treatment of lymphoma. Onco Targets Ther. 2019;12:5627–5638.
  • Li YW, Chen C, Xie YP, et al. Achievement of disease control with dasatinib after CAR T-cell therapy for relapsed Philadelphia chromosome-positive acute lymphoblastic leukemia: a case report and literature review. Int J Clin Exp Med. 2018;11(2):1086–1092.
  • Qu CJ, Ping NN, Wu Q, et al. Radiotherapy priming chimeric antigen receptor T Cell therapy is a safe and promising approach in relapsed/refractory diffuse large B cell lymphoma patients with high tumor burden. Blood. 2018;132(Supplement 1):2961.
  • Rosenbaum L. Tragedy, Perseverance, and Chance - The Story of CAR-T Therapy. N Engl J Med. 2017;377(14):1313–1315.
  • Green AK, Saltz LB. Can we afford that CAR? Confronting the effect of novel immunotherapies on future health care costs. J Clin Oncol. 2018;36(13):1381–1382.
  • Cyranoski D. Chinese hospitals set to sell experimental cell therapies. Nature. 2019;569(7755):170–171.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.