155
Views
5
CrossRef citations to date
0
Altmetric
Review

Biomedical applications of muscle-derived stem cells: from bench to bedside

Pages 1361-1371 | Received 07 Mar 2020, Accepted 06 Jul 2020, Published online: 11 Aug 2020

References

  • Asakura A. Stem cells in adult skeletal muscle. Trends Cardiovasc Med. 2003 Apr;13(3):123–128.
  • Costamagna D, Berardi E, Ceccarelli G, et al. adult stem cells and skeletal muscle regeneration. Curr Gene Ther. 2015;15(4):348–363.
  • Lee JY, Qu-Petersen Z, Cao B, et al. Clonal isolation of muscle-derived cells capable of enhancing muscle regeneration and bone healing. J Cell Biol. 2000;150(5):1085–1100.
  • Qu-Petersen Z, Deasy B, Jankowski R, et al. Identification of a novel population of muscle stem cells in mice: potential for muscle regeneration. J Cell Biol. 2002 May 27;157(5):851–864.
  • Torrente Y, Tremblay JP, Pisati F, et al. Intraarterial injection of muscle-derived CD34(+)Sca-1(+) stem cells restores dystrophin in mdx mice. J Cell Biol. 2001;152(2):335–348.
  • Romero-Ramos M, Vourc’h P, Young HE, et al. Neuronal differentiation of stem cells isolated from adult muscle. J Neurosci Res. 2002 Sep 15;69(6):894–907.
  • Williams JT, Southerland SS, Souza J, et al. Cells isolated from adult human skeletal muscle capable of differentiating into multiple mesodermal phenotypes. Am Surg. 1999 Jan;65(1):22–26.
  • Young HE, Steele TA, Bray RA, et al. Human reserve pluripotent mesenchymal stem cells are present in the connective tissues of skeletal muscle and dermis derived from fetal, adult, and geriatric donors. Anat Rec. 2001 Sep 1;264(1):51–62.
  • Tamaki T, Akatsuka A, Ando K, et al. Identification of myogenic-endothelial progenitor cells in the interstitial spaces of skeletal muscle. J Cell Biol. 2002 May 13;157(4):571–577.
  • Gussoni E, Soneoka Y, Strickland CD, et al. Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature. 1999 Sep 23;401(6751):390–394.
  • Jackson KA, Mi T, Goodell MA. Hematopoietic potential of stem cells isolated from murine skeletal muscle [see comments]. Proc Natl Acad Sci U S A. 1999;96(25):14482–14486.
  • Majka SM, Jackson KA, Kienstra KA, et al. Distinct progenitor populations in skeletal muscle are bone marrow derived and exhibit different cell fates during vascular regeneration. J Clin Invest. 2003 Jan;111(1):71–79.
  • Tamaki T, Akatsuka A, Okada Y, et al. Growth and differentiation potential of main- and side-population cells derived from murine skeletal muscle. Exp Cell Res. 2003 Nov 15;291(1):83–90.
  • Lee SJ, McPherron AC. Regulation of myostatin activity and muscle growth. Proc Natl Acad Sci U S A. 2001 Jul 31;98(16):9306–9311.
  • McPherron AC, Lawler AM, Lee SJ. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature. 1997;387(6628):83–90.
  • McPherron AC, Lee SJ. Double muscling in cattle due to mutations in the myostatin gene. Proc Natl Acad Sci U S A. 1997 Nov 11;94(23):12457–12461.
  • Mosher DS, Quignon P, Bustamante CD, et al. A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs. PLoS Genet. 2007 May 25;3(5):e79.
  • Allbrook D. Skeletal muscle regeneration. Muscle Nerve. 1981;4(3):234–245.
  • Bischoff R. The satellite cell and muscle regeneration. In: Andrew GE, Clara Franzini-Armstrong. Scintific basisi of myology. McGraw-Hill, Inc.; 1994. Vol. 1, p. 97–118.
  • Joyce NC, Harris DL, Mello DM. Mechanisms of mitotic inhibition in corneal endothelium: contact inhibition and TGF-beta2. Invest Ophthalmol Vis Sci. 2002 Jul;43(7):2152–2159.
  • Pavel M, Renna M, Park SJ, et al. Contact inhibition controls cell survival and proliferation via YAP/TAZ-autophagy axis. Nat Commun. 2018 Jul 27;9(1):2961.
  • Forcales SV. Potential of adipose-derived stem cells in muscular regenerative therapies. Front Aging Neurosci. 2015;7:123.
  • Jang S, Cho HH, Kim SH, et al. Transplantation of human adipose tissue-derived stem cells for repair of injured spiral ganglion neurons in deaf guinea pigs. Neural Regen Res. 2016 Jun;11(6):994–1000.
  • Kim DY, Sung JH. Regulatory role of microRNAs in the proliferation and differentiation of adipose-derived stem cells. Histol Histopathol. 2016 Jul;4:11798.
  • Trivedi HL, Vanikar AV, Thakker U, et al. Human adipose tissue-derived mesenchymal stem cells combined with hematopoietic stem cell transplantation synthesize insulin. Transplant Proc. 2008 May;40(4):1135–1139.
  • Asakura A, Komaki M, Rudnicki M. Muscle satellite cells are multipotential stem cells that exhibit myogenic, osteogenic, and adipogenic differentiation. Differentiation. 2001 Oct;68(4–5):245–253.
  • Mitchell KJ, Pannerec A, Cadot B, et al. Identification and characterization of a non-satellite cell muscle resident progenitor during postnatal development. Nat Cell Biol. 2010 Mar;12(3):257–266.
  • Tamaki T, Uchiyama Y, Okada Y, et al. Functional recovery of damaged skeletal muscle through synchronized vasculogenesis, myogenesis, and neurogenesis by muscle-derived stem cells. Circulation. 2005 Nov 1;112(18):2857–2866.
  • Tamaki T, Okada Y, Uchiyama Y, et al. Synchronized reconstitution of muscle fibers, peripheral nerves and blood vessels by murine skeletal muscle-derived CD34(-)/45 (-) cells. Histochem Cell Biol. 2007 Oct;128(4):349–360.
  • Tedesco FS, Dellavalle A, Diaz-Manera J, et al. Repairing skeletal muscle: regenerative potential of skeletal muscle stem cells. J Clin Invest. 2010 Jan 4;120(1):11–19.
  • Deasy BM, Feduska JM, Payne TR, et al. Effect of VEGF on the regenerative capacity of muscle stem cells in dystrophic skeletal muscle. Mol Ther. 2009 Oct;17(10):1788–1798.
  • Tamaki T, Okada Y, Uchiyama Y, et al. Clonal multipotency of skeletal muscle-derived stem cells between mesodermal and ectodermal lineage. Stem Cells. 2007 Sep;25(9):2283–2290.
  • Usas A, Huard J. Muscle-derived stem cells for tissue engineering and regenerative therapy. Biomaterials. 2007 Dec;28(36):5401–5406.
  • Vella JB, Thompson SD, Bucsek MJ, et al. Murine and human myogenic cells identified by elevated aldehyde dehydrogenase activity: implications for muscle regeneration and repair. PLoS One. 2011;6(12):e29226.
  • Uchiyama Y, Tamaki T, Hirata M, et al. Osteogenic differentiation of skeletal muscle-derived multipotent stem cells in a murine model of tibial bone fracture. Stem Cell Res Th. 2016;1:1.
  • Choi YH, Stamm C, Hammer PE, et al. Cardiac conduction through engineered tissue. Am J Pathol. 2006 Jul;169(1):72–85.
  • Menasche P. Skeletal myoblasts as a therapeutic agent. Prog Cardiovasc Dis. 2007 Jul-Aug;50(1):7–17.
  • Tamaki T, Akatsuka A, Okada Y, et al. Cardiomyocyte formation by skeletal muscle-derived multi-myogenic stem cells after transplantation into infarcted myocardium. PLoS ONE. 2008;3(3):e1789.
  • Tamaki T, Uchiyama Y, Okada Y, et al. Clonal differentiation of skeletal muscle-derived CD34(-)/45(-) stem cells into cardiomyocytes in vivo. Stem Cells Dev. 2010 Apr;19(4):503–512.
  • Tamaki T. Skeletal muscle-derived stem cells: role in cellular cardiomyoplasty. In: editor, Hayat MA. Stem Cells and Cancer Stem Cells, Therapeutic Applications in Disease and Injury. Vol. 2. New York: Spriger; 2012. 323–330.
  • Kazuno A, Maki D, Yamato I, et al. regeneration of transected recurrent laryngeal nerve using hybrid-transplantation of skeletal muscle-derived stem cells and bioabsorbable scaffold. J Clin Med. 2018 12; 7(9): Sep.
  • Saito K, Tamaki T, Hirata M, et al. reconstruction of multiple facial nerve branches using skeletal muscle-derived multipotent stem cell sheet-pellet transplantation. PLoS One. 2015;10(9):e0138371.
  • Tamaki T. Bridging long gap peripheral nerve injury using skeletal muscle-derived multipotent stem cells. Neural Regen Res. 2014 Jul 15;9(14):1333–1336.
  • Tamaki T, Hirata M, Soeda S, et al. Preferential and comprehensive reconstitution of severely damaged sciatic nerve using murine skeletal muscle-derived multipotent stem cells. PLoS One. 2014;9(3): e91257.
  • Boldrin L, Muntoni F, Morgan JE. Are human and mouse satellite cells really the same? J Histochem Cytochem. 2010 Nov;58(11):941–955.
  • Mierzejewski B, Archacka K, Grabowska I, et al. Human and mouse skeletal muscle stem and progenitor cells in health and disease. Semin Cell Dev Biol. 2020 Jan 28;104:93–104.
  • Tamaki T. Therapeutic capacities of human and mouse skeletal muscle-derived stem cells for a long gap peripheral nerve injury. Neural Regen Res. 2017 Nov;12(11):1811–1813.
  • Alexander MS, Rozkalne A, Colletta A, et al. CD82 is a marker for prospective isolation of human muscle satellite cells and is linked to muscular dystrophies. Cell Stem Cell. 2016 Dec 1;19(6):800–807.
  • Zheng B, Cao B, Crisan M, et al. Prospective identification of myogenic endothelial cells in human skeletal muscle. Nat Biotechnol. 2007 Sep;25(9):1025–1034.
  • Zheng B, Chen CW, Li G, et al. Isolation of myogenic stem cells from cultures of cryopreserved human skeletal muscle. Cell Transplant. 2012;21(6):1087–1093.
  • Pisani DF, Dechesne CA, Sacconi S, et al. Isolation of a highly myogenic CD34-negative subset of human skeletal muscle cells free of adipogenic potential. Stem Cells. 2010 Apr;28(4):753–764.
  • Law PK, Goodwin TG, Fang QW, et al. Myoblast transfer therapy for Duchenne muscular dystrophy. Acta Paediatr Jpn. 1991 Apr;33(2):206–215.
  • Huard J, Bouchard JP, Roy R, et al. Human myoblast transplantation: preliminary results of 4 cases. Muscle Nerve. 1992 May;15(5):550–560.
  • Karpati G, Ajdukovic D, Arnold D, et al. Myoblast transfer in Duchenne muscular dystrophy. Ann Neurol. 1993 Jul;34(1):8–17.
  • Gussoni E, Pavlath GK, Lanctot AM, et al. Normal dystrophin transcripts detected in Duchenne muscular dystrophy patients after myoblast transplantation. Nature. 1992 Apr 2;356(6368):435–438.
  • Tremblay JP, Malouin F, Roy R, et al. Results of a triple blind clinical study of myoblast transplantations without immunosuppressive treatment in young boys with Duchenne muscular dystrophy. Cell Transplant. 1993 Mar-Apr;2(2):99–112.
  • Meng J, Adkin CF, Xu SW, et al. Contribution of human muscle-derived cells to skeletal muscle regeneration in dystrophic host mice. PLoS One. 2011;6(3):e17454.
  • Meng J, Bencze M, Asfahani R, et al. The effect of the muscle environment on the regenerative capacity of human skeletal muscle stem cells. Skelet Muscle. 2015;5(3):11.
  • Mendell JR, Kissel JT, Amato AA, et al. Myoblast transfer in the treatment of Duchenne’s muscular dystrophy. N Engl J Med. 1995 Sep 28;333(13):832–838.
  • Miller RG, Sharma KR, Pavlath GK, et al. Myoblast implantation in Duchenne muscular dystrophy: the San Francisco study. Muscle Nerve. 1997 Apr;20(4):469–478.
  • Morandi L, Bernasconi P, Gebbia M, et al. Lack of mRNA and dystrophin expression in DMD patients three months after myoblast transfer. Neuromuscul Disord. 1995 Jul;5(4):291–295.
  • Skuk D, Goulet M, Tremblay JP. Use of repeating dispensers to increase the efficiency of the intramuscular myogenic cell injection procedure. Cell Transplant. 2006;15(7):659–663.
  • O’Connor RS, Pavlath GK. Point:Counterpoint: Satellite cell addition is/is not obligatory for skeletal muscle hypertrophy. J Appl Physiol. 2007 Sep;103(3):1099–1100.
  • Relaix F, Zammit PS. Satellite cells are essential for skeletal muscle regeneration: the cell on the edge returns centre stage. Development. 2012 Aug;139(16):2845–2856.
  • Cossu G, Bianco P. Mesoangioblasts–vascular progenitors for extravascular mesodermal tissues. Curr Opin Genet Dev. 2003 Oct;13(5):537–542.
  • Dellavalle A, Sampaolesi M, Tonlorenzi R, et al. Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells. Nat Cell Biol. 2007 Mar;9(3):255–267.
  • Sun C, Serra C, Lee G, et al. Stem cell-based therapies for Duchenne muscular dystrophy. Exp Neurol. 2020 Jan;323:113086.
  • Tedesco FS, Cossu G. Stem cell therapies for muscle disorders. Curr Opin Neurol. 2012 Oct;25(5):597–603.
  • Galvez BG, Sampaolesi M, Brunelli S, et al. Complete repair of dystrophic skeletal muscle by mesoangioblasts with enhanced migration ability. J Cell Biol. 2006 Jul 17;174(2):231–243.
  • Sampaolesi M, Blot S, D’Antona G, et al. Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs. Nature. 2006 Nov 30;444(7119):574–579.
  • Cossu G, Previtali SC, Napolitano S, et al. Intra-arterial transplantation of HLA-matched donor mesoangioblasts in Duchenne muscular dystrophy. EMBO Mol Med. 2015 Dec;7(12):1513–1528.
  • Mitterberger M, Marksteiner R, Margreiter E, et al. Myoblast and fibroblast therapy for post-prostatectomy urinary incontinence: 1-year followup of 63 patients. J Urol. 2008 Jan;179(1):226–231.
  • Mitterberger M, Pinggera GM, Marksteiner R, et al. Adult stem cell therapy of female stress urinary incontinence. Eur Urol. 2008 Jan;53(1):169–175.
  • Strasser H, Marksteiner R, Margreiter E, et al. RETRACTED: autologous myoblasts and fibroblasts versus collagen for treatment of stress urinary incontinence in women: a randomised controlled trial. Lancet. 2007 Jun 30;369(9580):2179–2186.
  • Strasser H, Marksteiner R, Margreiter E, et al. RETRACTED ARTICLE: transurethral ultrasonography-guided injection of adult autologous stem cells versus transurethral endoscopic injection of collagen in treatment of urinary incontinence. World J Urol. 2007 Aug;25(4):385–392.
  • Smaldone MC, Chancellor MB. Muscle derived stem cell therapy for stress urinary incontinence. World J Urol. 2008 Aug;26(4):327–332.
  • Carr LK, Steele D, Steele S, et al. 1-year follow-up of autologous muscle-derived stem cell injection pilot study to treat stress urinary incontinence. Int Urogynecol J Pelvic Floor Dysfunct. 2008 Jun;19(6):881–883.
  • Nakajima N, Tamaki T, Hirata M, et al. purified human skeletal muscle-derived stem cells enhance the repair and regeneration in the damaged urethra. Transplantation. 2017 Oct;101(10):2312–2320.
  • Atkins BZ, Lewis CW, Kraus WE, et al. Intracardiac transplantation of skeletal myoblasts yields two populations of striated cells in situ. Ann Thorac Surg. 1999;67(1):124–129.
  • Okada M, Payne TR, Zheng B, et al. Myogenic endothelial cells purified from human skeletal muscle improve cardiac function after transplantation into infarcted myocardium. J Am Coll Cardiol. 2008 Dec 2;52(23):1869–1880.
  • Pouzet B, Vilquin JT, Hagege AA, et al. Intramyocardial transplantation of autologous myoblasts: can tissue processing be optimized? Circulation. 2000 Nov 7;102(19 Suppl 3):III210–5.
  • Taylor DA, Atkins BZ, Hungspreugs P, et al. Regenerating functional myocardium: improved performance after skeletal myoblast transplantation. Nat Med. 1998 Aug;4(8):929–933.
  • Leobon B, Garcin I, Menasche P, et al. Myoblasts transplanted into rat infarcted myocardium are functionally isolated from their host. Proc Natl Acad Sci U S A. 2003 Jun 24;100(13):7808–7811.
  • Reinecke H, Poppa V, Murry CE. Skeletal muscle stem cells do not transdifferentiate into cardiomyocytes after cardiac grafting. J Mol Cell Cardiol. 2002 Feb;34(2):241–249.
  • Duckers HJ, Houtgraaf J, Hehrlein C, et al. Final results of a phase IIa, randomised, open-label trial to evaluate the percutaneous intramyocardial transplantation of autologous skeletal myoblasts in congestive heart failure patients: the SEISMIC trial. EuroIntervention. 2011 Feb;6(7):805–812.
  • Ohkawara H, Miyagawa S, Fukushima S, et al. Development of a vitrification method for preserving human myoblast cell sheets for myocardial regeneration therapy. BMC Biotechnol. 2018 Sep 10;18(1):56.
  • Shudo Y, Miyagawa S, Ohkura H, et al. Addition of mesenchymal stem cells enhances the therapeutic effects of skeletal myoblast cell-sheet transplantation in a rat ischemic cardiomyopathy model. Tissue Eng Part A. 2014 Feb;20(3–4):728–739.
  • Deumens R, Bozkurt A, Meek MF, et al. Repairing injured peripheral nerves: bridging the gap. Prog Neurobiol. 2010 Nov;92(3):245–276.
  • Dubovy P. Schwann cells and endoneurial extracellular matrix molecules as potential cues for sorting of regenerated axons: a review. Anat Sci Int. 2004 Dec;79(4):198–208.
  • Pfister BJ, Gordon T, Loverde JR, et al. Biomedical engineering strategies for peripheral nerve repair: surgical applications, state of the art, and future challenges. Crit Rev Biomed Eng. 2011;39(2):81–124.
  • Dezawa M, Ishikawa H, Hoshino M, et al. Potential of bone marrow stromal cells in applications for neuro-degenerative, neuro-traumatic and muscle degenerative diseases. Curr Neuropharmacol. 2005 Oct;3(4):257–266.
  • Radtke C, Wewetzer K, Reimers K, et al. Transplantation of olfactory ensheathing cells as adjunct cell therapy for peripheral nerve injury. Cell Transplant. 2011;20(2):145–152.
  • Kingham PJ, Kalbermatten DF, Mahay D, et al. Adipose-derived stem cells differentiate into a Schwann cell phenotype and promote neurite outgrowth in vitro. Exp Neurol. 2007 Oct;207(2):267–274.
  • Uemura T, Takamatsu K, Ikeda M, et al. Transplantation of induced pluripotent stem cell-derived neurospheres for peripheral nerve repair. Biochem Biophys Res Commun. 2012 Mar 2;419(1):130–135.
  • Tamaki T, Soeda S, Hashimoto H, et al. 3D reconstitution of nerve-blood vessel networks using skeletal muscle-derived multipotent stem cell sheet pellets. Regen Med. 2013 Jul;8(4):437–451.
  • Hoshi A, Tamaki T, Tono K, et al. Reconstruction of radical prostatectomy-induced urethral damage using skeletal muscle-derived multipotent stem cells. Transplantation. 2008 Jun 15;85(11):1617–1624.
  • Nitta M, Tamaki T, Tono K, et al. Reconstitution of experimental neurogenic bladder dysfunction using skeletal muscle-derived multipotent stem cells. Transplantation. 2010 May 15;89(9):1043–1049.
  • Soeda S, Tamaki T, Hashimoto H, et al. functional nerve-vascular reconstitution of the bladder-wall; application of patch transplantation of skeletal muscle-derived multipotent stem cell sheet-pellets. J Stem Cell Res Ther. 2013;3(3):142.
  • Hashimoto H, Tamaki T, Hirata M, et al. Reconstitution of the complete rupture in musculotendinous junction using skeletal muscle-derived multipotent stem cell sheet-pellets as a “bio-bond”. PeerJ. 2016;4:e2231.
  • Nakazato K, Tamaki T, Hirata M, et al. Three-dimensional reconstitution of nerve blood vessel units on damaged trachea and bronchial stump using hybrid-transplantation of skeletal muscle-derived stem cells and bioabsorbable polyglyconate felt. J Regen Med. 2015 Oct 01;4(1).
  • Tamaki T, Uchiyama Y, Hirata M, et al. Therapeutic isolation and expansion of human skeletal muscle-derived stem cells for the use of muscle-nerve-blood vessel reconstitution. Front Physiol. 2015;6:165.
  • Tamaki T, Okada Y, Uchiyama Y, et al. Skeletal muscle-derived CD34+/45- and CD34-/45- stem cells are situated hierarchically upstream of Pax7+ cells. Stem Cells Dev. 2008 Aug;17(4):653–667.
  • Tamaki T, Uchiyama Y, Akatsuka A. Plasticity and physiological role of stem cells derived from skeletal muscle interstitium: contribution to muscle fiber hyperplasia and therapeutic use. Curr Pharm Des. 2010;16(8):956–967.
  • Tamaki T, Hirata M, Nakajima N, et al. A long-gap peripheral nerve injury therapy using human skeletal muscle-derived stem cells (Sk-SCs): an achievement of significant morphological, numerical and functional recovery. PLoS One. 2016;11(11): e0166639.
  • Seta H, Maki D, Kazuno A, et al. Voluntary exercise positively affects the recovery of long-nerve gap injury following tube-bridging with human skeletal muscle-derived stem cell transplantation. J Clin Med. 2018 Apr 2;7(4):67.
  • Tamaki T. Paracrine effect of skeletal muscle-derived stem cell transplantation: the case of peripheral nerve long-gap injury therapy. Stem Cell Res Th. 20161(1):1–5.
  • Morosetti R, Mirabella M, Gliubizzi C, et al. MyoD expression restores defective myogenic differentiation of human mesoangioblasts from inclusion-body myositis muscle. Proc Natl Acad Sci U S A. 2006 Nov 7;103(45):16995–17000.
  • Morosetti R, Mirabella M, Gliubizzi C, et al. Isolation and characterization of mesoangioblasts from facioscapulohumeral muscular dystrophy muscle biopsies. Stem Cells. 2007 Dec;25(12):3173–3182.
  • Pannerec A, Formicola L, Besson V, et al. Defining skeletal muscle resident progenitors and their cell fate potentials. Development. 2013 Jul;140(14):2879–2891.
  • Tamaki T, Tono K, Uchiyama Y, et al. Origin and hierarchy of basal lamina-forming and -non-forming myogenic cells in mouse skeletal muscle in relation to adhesive capacity and Pax7 expression in vitro. Cell Tissue Res. 2011 Jan 29;344(1):147–168.
  • Sunderland S. The anatomy and physiology of nerve injury. Muscle Nerve. 1990 Sep;13(9):771–784.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.