1,919
Views
32
CrossRef citations to date
0
Altmetric
Review

An overview of process development for antibody-drug conjugates produced by chemical conjugation technology

ORCID Icon & ORCID Icon
Pages 963-975 | Received 25 Sep 2020, Accepted 02 Nov 2020, Published online: 01 Dec 2020

References

  • Abdollahpour-Alitappeh M, Lotfinia M, Gharibi T, et al. Antibody-drug conjugates (ADCs) for cancer therapy: strategies, challenges, and successes. J Cell Physiol. 2019 May;234(5):5628–5642.
  • Khongorzul P, Ling CJ, Khan FU, et al. Antibody-drug conjugates: a comprehensive review. Mol Cancer Res. 2020 Jan;18(1):3–19.
  • Hartley JA. Antibody-drug conjugates (ADCs) delivering pyrrolobenzodiazepine (PBD) dimers for cancer therapy. Expert Opin Biol Ther. 2020 Jun 16: 1–13. DOI:10.1080/14712598.2020.1776255
  • Tarcsa E, Guffroy MR, Falahatpisheh H, et al. Antibody-drug conjugates as targeted therapies: are we there yet? A critical review of the current clinical landscape. Drug Discov Today. 2020. DOI:10.1016/j.ddtec.2020.07.002
  • Joubert N, Beck A, Dumontet C, et al. Antibody-drug conjugates: the last decade. Pharmaceuticals (Basel). 2020 Sep 14;13(9):245.
  • Gauzy-Lazo L, Sassoon I, Brun MP. Advances in antibody-drug conjugate design: current clinical landscape and future innovations. SLAS Discov. 2020 Sep;25(8):843–868.
  • Appelbaum FR, Bernstein ID. Gemtuzumab ozogamicin for acute myeloid leukemia. Blood. 2017 Nov 30;130(22):2373–2376.
  • Katz J, Janik JE, Younes A. Brentuximab Vedotin (SGN-35). Clin Cancer Res. 2011 Oct 15;17(20):6428–6436.
  • Senter PD, Sievers EL. The discovery and development of brentuximab vedotin for use in relapsed Hodgkin lymphoma and systemic anaplastic large cell lymphoma. Nat Biotechnol. 2012 Jul 10;30(7):631–637.
  • Wang L, Amphlett G, Blattler WA, et al. Structural characterization of the maytansinoid-monoclonal antibody immunoconjugate, huN901-DM1, by mass spectrometry. Protein Sci. 2005 Sep;14(9):2436–2446.
  • LoRusso PM, Weiss D, Guardino E, et al. Trastuzumab emtansine: a unique antibody-drug conjugate in development for human epidermal growth factor receptor 2-positive cancer. Clin Cancer Res. 2011 Oct 15;17(20):6437–6447.
  • Yurkiewicz IR, Muffly L, Liedtke M. Inotuzumab ozogamicin: a CD22 mAb-drug conjugate for adult relapsed or refractory B-cell precursor acute lymphoblastic leukemia. Drug Des Devel Ther. 2018;12:2293–2300.
  • Tilly H, Morschhauser F, Bartlett NL, et al. Polatuzumab vedotin in combination with immunochemotherapy in patients with previously untreated diffuse large B-cell lymphoma: an open-label, non-randomised, phase 1b–2 study. Lancet Oncol. 2019;20(7):998–1010.
  • Modi S, Saura C, Yamashita T, et al. Trastuzumab Deruxtecan in Previously Treated HER2-Positive Breast Cancer. N Engl J Med. 2020 Feb 13;382(7):610–621.
  • Ogitani Y, Aida T, Hagihara K, et al. DS-8201a, A Novel HER2-Targeting ADC with a Novel DNA topoisomerase i inhibitor, demonstrates a promising antitumor efficacy with differentiation from T-DM1. Clin Cancer Res. 2016 Oct 15;22(20):5097–5108.
  • Nagai Y, Oitate M, Shiozawa H, et al. Comprehensive preclinical pharmacokinetic evaluations of trastuzumab deruxtecan (DS-8201a), a HER2-targeting antibody-drug conjugate, in cynomolgus monkeys. Xenobiotica. 2019 Sep;49(9):1086–1096.
  • Nakada T, Masuda T, Naito H, et al. Novel antibody drug conjugates containing exatecan derivative-based cytotoxic payloads. Bioorg Med Chem Lett. 2016 Mar 15;26(6):1542–1545.
  • Moon SJ, Govindan SV, Cardillo TM, et al. Antibody conjugates of 7-ethyl-10-hydroxycamptothecin (SN-38) for targeted cancer chemotherapy. J Med Chem. 2008 Nov 13;51(21):6916–6926.
  • Goldenberg DM, Sharkey RM. Sacituzumab govitecan, a novel, third-generation, antibody-drug conjugate (ADC) for cancer therapy. Expert Opin Biol Ther. 2020 Aug;20(8):871–885.
  • Abramson HN. B-Cell Maturation Antigen (BCMA) as a target for new drug development in relapsed and/or refractory multiple myeloma. Int J Mol Sci. 2020 Jul 22;21(15):5192.
  • Chalouni C, Doll S. Fate of antibody-drug conjugates in cancer cells. J Exp Clin Cancer Res. 2018 Feb 6;37(1):20.
  • Abdou P, Wang Z, Chen Q, et al. Advances in engineering local drug delivery systems for cancer immunotherapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2020 Sep;12(5):e1632.
  • Reichert JM. Marketed therapeutic antibodies compendium. MAbs. 2012 May-Jun;4(3):413–415.
  • Klutz S, Holtmann L, Lobedann M, et al. Cost evaluation of antibody production processes in different operation modes. Chem Eng Sci. 2016;141:63–74.
  • Tawfiq Z, Caiazza NC, Kambourakis S, et al. Synthesis and biological evaluation of antibody drug conjugates based on an antibody expression system: conamax. ACS Omega. 2020 Apr 7;5(13):7193–7200.
  • Matsuda Y, Saikawa Y, Nakata M. An overview of the total synthesis of africane-type sesquiterpenoids. Tetrahedron Lett. 2018;59(25):2377–2386.
  • Li L, Chen Z, Zhang X, et al. Divergent Strategy in Natural Product Total Synthesis. Chem Rev. 2018 Apr 11;118(7):3752–3832.
  • Trost BM. The atom economy–a search for synthetic efficiency. Science. 1991 Dec 6;254(5037):1471–1477.
  • Burns NZ, Baran PS, Hoffmann RW. Redox economy in organic synthesis. Angew Chem Int Ed Engl. 2009;48(16):2854–2867.
  • Newhouse T, Baran PS, Hoffmann RW. The economies of synthesis. Chem Soc Rev. 2009 Nov;38(11):3010–3021.
  • Young IS, Baran PS. Protecting-group-free synthesis as an opportunity for invention. Nat Chem. 2009 Jun 1;(3):193–205. DOI:10.1038/nchem.216
  • Nicolaou KC, Rigol S. The role of organic synthesis in the emergence and development of antibody-drug conjugates as targeted cancer therapies. Angew Chem Int Ed Engl. 2019 Aug 12;58(33):11206–11241.
  • Lutz C, Simon W, Werner-Simon S, et al. Total synthesis of alpha- and beta-amanitin. Angew Chem Int Ed Engl. 2020 Jul 6;59(28):11390–11393.
  • Davison EK, Brimble MA. Natural product derived privileged scaffolds in drug discovery. Curr Opin Chem Biol. 2019 Oct;52:1–8.
  • Jang JH, Han SJ, Kim JY, et al. Synthesis and feasibility evaluation of a new trastuzumab conjugate integrated with paclitaxel and (89)Zr for theranostic application against HER2-expressing breast cancers. ChemistryOpen. 2019 Apr 8;(4):451–456. DOI:10.1002/open.201900037
  • Stefan N, Gebleux R, Waldmeier L, et al. Highly potent, anthracycline-based antibody-drug conjugates generated by enzymatic, site-specific conjugation. Mol Cancer Ther. 2017 May;16(5):879–892.
  • Akaiwa M, Dugal-Tessier J, Mendelsohn BA. Antibody-drug conjugate payloads; study of Auristatin derivatives. Chem Pharm Bull (Tokyo). 2020;68(3):201–211.
  • Nicolaou KC, Rigol S. Perspectives from nearly five decades of total synthesis of natural products and their analogues for biology and medicine. Nat Prod Rep. 2020 Apr 22. DOI:10.1039/D0NP00003E
  • Duerr C, Friess W. Antibody-drug conjugates- stability and formulation. Eur J Pharm Biopharm. 2019 Jun;139:168–176.
  • Tsuchikama K, An Z. Antibody-drug conjugates: recent advances in conjugation and linker chemistries. Protein Cell. 2018 Jan 9;(1):33–46. DOI:10.1007/s13238-016-0323-0
  • Ou J, Si Y, Goh K, et al. Bioprocess development of antibody-drug conjugate production for cancer treatment. PLoS One. 2018;13(10):e0206246.
  • Rudnick SI, Lou J, Shaller CC, et al. Influence of affinity and antigen internalization on the uptake and penetration of Anti-HER2 antibodies in solid tumors. Cancer Res. 2011 Mar 15;71(6):2250–2259.
  • Panowski S, Bhakta S, Raab H, et al. Site-specific antibody drug conjugates for cancer therapy. MAbs. 2014 Jan-Feb;6(1):34–45.
  • Behrens CR, Liu B. Methods for site-specific drug conjugation to antibodies. MAbs. 2014 Jan-Feb;6(1):46–53.
  • Yamada K, Ito Y. Recent chemical approaches for site-specific conjugation of native antibodies: technologies toward next-generation antibody-drug conjugates. Chembiochem. 2019 Nov 4;20(21):2729–2737.
  • Wakankar A, Chen Y, Gokarn Y, et al. Analytical methods for physicochemical characterization of antibody drug conjugates. MAbs. 2011 Mar-Apr;3(2):161–172.
  • Yang K, Chen B, Gianolio DA, et al. Convergent synthesis of hydrophilic monomethyl dolastatin 10 based drug linkers for antibody-drug conjugation. Org Biomol Chem. 2019 Sep 21;17(35):8115–8124.
  • Junutula JR, Flagella KM, Graham RA, et al. Engineered thio-trastuzumab-DM1 conjugate with an improved therapeutic index to target human epidermal growth factor receptor 2-positive breast cancer. Clin Cancer Res. 2010 Oct 1;16(19):4769–4778.
  • Hamblett KJ, Senter PD, Chace DF, et al. Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin Cancer Res. 2004 Oct 15;10(20):7063–7070.
  • Dorywalska M, Strop P, Melton-Witt JA, et al. Effect of attachment site on stability of cleavable antibody drug conjugates. Bioconjug Chem. 2015 Apr 15;26(4):650–659.
  • Strop P, Liu SH, Dorywalska M, et al. Location matters: site of conjugation modulates stability and pharmacokinetics of antibody drug conjugates. Chem Biol. 2013 Feb 21;20(2):161–167.
  • Kallsten M, Hartmann R, Artemenko K, et al. Qualitative analysis of antibody-drug conjugates (ADCs): an experimental comparison of analytical techniques of cysteine-linked ADCs. Analyst. 2018 Nov 5;143(22):5487–5496.
  • Jackson DY. Processes for constructing homogeneous antibody drug conjugates. Org Process Res Dev. 2016;20(5):852–866.
  • Schmidhalter DRE, Schmid. R Progress in the development of single‐use solutions in antibody–drug conjugate (ADC) manufacturing. 2019 26 July.
  • Kommineni N, Pandi P, Chella N, et al. Antibody drug conjugates: development, characterization, and regulatory considerations. ?Polym Adv Technol. 2019;31(6):1177–1193.
  • Junutula JR, Raab H, Clark S, et al. Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat Biotechnol. 2008 Aug;26(8):925–932.
  • Zimmerman ES, Heibeck TH, Gill A, et al. Production of site-specific antibody-drug conjugates using optimized non-natural amino acids in a cell-free expression system. Bioconjug Chem. 2014 Feb 19;25(2):351–361.
  • Roy G, Reier J, Garcia A, et al. Development of a high yielding expression platform for the introduction of non-natural amino acids in protein sequences. MAbs. 2020 Jan-Dec;12(1):1684749.
  • Schneider H, Deweid L, Avrutina O, et al. Recent progress in transglutaminase-mediated assembly of antibody-drug conjugates. Anal Biochem. 2020 Apr 15;595:113615.
  • van Geel R, Wijdeven MA, Heesbeen R, et al. Chemoenzymatic conjugation of toxic payloads to the globally conserved N-Glycan of native mAbs provides homogeneous and highly efficacious antibody-drug conjugates. Bioconjug Chem. 2015 Nov 18;26(11):2233–2242.
  • Duivelshof BL, Desligniere E, Hernandez-Alba O, et al. Glycan-mediated technology for obtaining homogeneous site-specific conjugated antibody-drug conjugates: synthesis and analytical characterization by using complementary middle-up LC/HRMS analysis. Anal Chem. 2020 Jun 16;92(12):8170–8177.
  • Pirzer T, Becher KS, Rieker M, et al. Generation of potent Anti-HER1/2 immunotoxins by protein ligation using split inteins. ACS Chem Biol. 2018 Aug 17;13(8):2058–2066.
  • Falck G, Muller KM. Enzyme-based labeling strategies for antibody-drug conjugates and antibody mimetics. Antibodies (Basel). 2018 Jan 4;7(1).
  • Rickert M, Strop P, Lui V, et al. Production of soluble and active microbial transglutaminase in Escherichia coli for site-specific antibody drug conjugation. Protein Sci. 2016 Feb;25(2):442–455.
  • Duarte L, Matte CR, Bizarro CV, et al. Review transglutaminases: part II-industrial applications in food, biotechnology, textiles and leather products. World J Microbiol Biotechnol. 2019 Dec 26;36(1):11.
  • Ding HX, Leverett CA, Kyne RE Jr., et al. Synthetic approaches to the 2013 new drugs. Bioorg Med Chem. 2015 May 1;23(9):1895–1922.
  • Doronina SO, Toki BE, Torgov MY, et al. Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nat Biotechnol. 2003 Jul;21(7):778–784.
  • Matsuda Y, Tawfiq Z, Leung M, et al. Insight into temperature dependency and design of experiments towards process development for cysteine‐based antibody‐drug conjugates. ChemistrySelect. 2020;5(28):8435–8439.
  • Kato K, Hamaguchi Y, Fukui H, et al. Development of the procedure for enzyme-labelling and solid phases in enzyme immunoassay. Rinsho Kagaku Shinpojiumu. 1977 Aug 1;16:10–14.
  • Ab O, Whiteman KR, Bartle LM, et al. IMGN853, a Folate Receptor-alpha (FRalpha)-targeting antibody-drug conjugate, exhibits potent targeted antitumor activity against fralpha-expressing tumors. Mol Cancer Ther. 2015 Jul;14(7):1605–1613.
  • Chari RV. Targeted cancer therapy: conferring specificity to cytotoxic drugs. Acc Chem Res. 2008 Jan;41(1):98–107.
  • Lazar AC, Wang L, Blattler WA, et al. Analysis of the composition of immunoconjugates using size-exclusion chromatography coupled to mass spectrometry. Rapid Commun Mass Spectrom. 2005;19(13):1806–1814.
  • Lhospice F, Bregeon D, Belmant C, et al. Site-specific conjugation of monomethyl Auristatin E to Anti-CD30 antibodies improves their pharmacokinetics and therapeutic index in rodent models. Mol Pharm. 2015 Jun 1;12(6):1863–1871.
  • Matsuda Y, Robles V, Malinao MC, et al. Comparison of analytical methods for antibody-drug conjugates produced by chemical site-specific conjugation: first-generation AJICAP. Anal Chem. 2019 Oct 15;91(20):12724–12732.
  • Marcoux J, Champion T, Colas O, et al. Native mass spectrometry and ion mobility characterization of trastuzumab emtansine, a lysine-linked antibody drug conjugate. Protein Sci. 2015 Aug;24(8):1210–1223.
  • Chen L, Wang L, Shion H, et al. In-depth structural characterization of Kadcyla(R) (ado-trastuzumab emtansine) and its biosimilar candidate. MAbs. 2016 Oct 8;(7):1210–1223. DOI:10.1080/19420862.2016.1204502
  • Willner D, Trail PA, Hofstead SJ, et al. (6-Maleimidocaproyl)hydrazone of doxorubicin–a new derivative for the preparation of immunoconjugates of doxorubicin. Bioconjug Chem. 1993 Nov-Dec;4(6):521–527.
  • Hamann PR, Hinman LM, Beyer CF, et al. An anti-CD33 antibody-calicheamicin conjugate for treatment of acute myeloid leukemia. Choice of linker. Bioconjug Chem. 2002 Jan-Feb;13(1):40–46.
  • Francisco JA, Cerveny CG, Meyer DL, et al. cAC10-vcMMAE, an anti-CD30-monomethyl auristatin E conjugate with potent and selective antitumor activity. Blood. 2003 Aug 15;102(4):1458–1465.
  • Nadkarni DV, Jiang Q, Friese O, et al. Process development and structural characterization of an Anti-Notch 3 antibody–drug conjugate. Org Process Res Dev. 2018;22(3):286–295.
  • Matsuda Y, Yamada K, Okuzumi T, et al. Gram-scale antibody–drug conjugate synthesis by site-specific chemical conjugation: AJICAP first generation. Org Process Res Dev. 2019;23(12):2647–2654.
  • Haverick M, Mengisen S, Shameem M, et al. Separation of mAbs molecular variants by analytical hydrophobic interaction chromatography HPLC: overview and applications. MAbs. 2014 Jul-Aug;6(4):852–858.
  • Cusumano A, Guillarme D, Beck A, et al. Practical method development for the separation of monoclonal antibodies and antibody-drug-conjugate species in hydrophobic interaction chromatoraphy, part 2: optimization of the phase system. J Pharm Biomed Anal. 2016 Mar 20;121:161–173.
  • D’Atri V, Pell R, Clarke A, et al. Is hydrophobic interaction chromatography the most suitable technique to characterize site-specific antibody-drug conjugates? J Chromatogr A. 2019 Feb 8;1586:149–153.
  • Janin-Bussat MC, Dillenbourg M, Corvaia N, et al. Characterization of antibody drug conjugate positional isomers at cysteine residues by peptide mapping LC-MS analysis. J Chromatogr B Analyt Technol Biomed Life Sci. 2015 Feb 15;981–982:9–13.
  • Tawfiq Z, Matsuda Y, Alfonso MJ, et al. Analytical comparison of antibody-drug conjugates based on good manufacturing practice strategies. Anal Sci. 2020 Jul 10;36(7):871–875.
  • Lyon RP, Bovee TD, Doronina SO, et al. Reducing hydrophobicity of homogeneous antibody-drug conjugates improves pharmacokinetics and therapeutic index. Nat Biotechnol. 2015 Jul;33(7):733–735.
  • Yurkovetskiy A, Choi S, Hiller A, et al. Fully degradable hydrophilic polyals for protein modification. Biomacromolecules. 2005 Sep-Oct;6(5):2648–2658.
  • Yurkovetskiy AV, Yin M, Bodyak N, et al. A polymer-based antibody-vinca drug conjugate platform: characterization and preclinical efficacy. Cancer Res. 2015 Aug 15;75(16):3365–3372.
  • Podust VN, Balan S, Sim BC, et al. Extension of in vivo half-life of biologically active molecules by XTEN protein polymers. J Control Release. 2016 Oct 28;240:52–66.
  • Schneider H, Deweid L, Pirzer T, et al. Dextramabs: a novel format of antibody-drug conjugates featuring a multivalent polysaccharide scaffold. ChemistryOpen. 2019 Mar 8;(3):354–357. DOI:10.1002/open.201900066
  • Okamoto H, Oitate M, Hagihara K, et al. Pharmacokinetics of trastuzumab deruxtecan (T-DXd), a novel anti-HER2 antibody-drug conjugate, in HER2-positive tumour-bearing mice. Xenobiotica. 2020 Oct;50(10):1242–1250.
  • Lipinski M, Parks DR, Rouse RV, et al. Human trophoblast cell-surface antigens defined by monoclonal antibodies. Proc Natl Acad Sci U S A. 1981 Aug;78(8):5147–5150.
  • Cubas R, Li M, Chen C, et al. Trop2: a possible therapeutic target for late stage epithelial carcinomas. Biochim Biophys Acta. 2009 Dec;1796(2):309–314.
  • Badescu G, Bryant P, Bird M, et al. Bridging disulfides for stable and defined antibody drug conjugates. Bioconjug Chem. 2014 Jun 18;25(6):1124–1136.
  • Bryant P, Pabst M, Badescu G, et al. In vitro and in vivo evaluation of cysteine rebridged Trastuzumab-MMAE antibody drug conjugates with defined drug-to-antibody ratios. Mol Pharm. 2015 Jun 1;12(6):1872–1879.
  • Zhang Y, Zang C, An G, et al. Cysteine-specific protein multi-functionalization and disulfide bridging using 3-bromo-5-methylene pyrrolones. Nat Commun. 2020 Feb 21;11(1):1015.
  • Nunes JP, Morais M, Vassileva V, et al. Functional native disulfide bridging enables delivery of a potent, stable and targeted antibody-drug conjugate (ADC). Chem Commun (Camb). 2015 Jul 7;51(53):10624–10627.
  • Bahou C, Richards DA, Maruani A, et al. Highly homogeneous antibody modification through optimisation of the synthesis and conjugation of functionalised dibromopyridazinediones. Org Biomol Chem. 2018 Feb 21;16(8):1359–1366.
  • Koniev O, Dovgan I, Renoux B, et al. Reduction-rebridging strategy for the preparation of ADPN-based antibody-drug conjugates. Medchemcomm. 2018 May 1;9(5):827–830.
  • Huang R, Sheng Y, Wei D, et al. Bis(vinylsulfonyl)piperazines as efficient linkers for highly homogeneous antibody-drug conjugates. Eur J Med Chem. 2020 Mar 15;190:112080.
  • Kruljec N, Bratkovic T. Alternative Affinity Ligands for Immunoglobulins. Bioconjug Chem. 2017 Aug 16;28(8):2009–2030.
  • Shen M, Rusling J, Dixit CK. Site-selective orientated immobilization of antibodies and conjugates for immunodiagnostics development. Methods. 2017 Mar 1;116:95–111.
  • Braisted AC, Wells JA. Minimizing a binding domain from protein A. Proc Natl Acad Sci U S A. 1996 Jun 11;93(12):5688–5692.
  • Starovasnik MA, Braisted AC, Wells JA. Structural mimicry of a native protein by a minimized binding domain. Proc Natl Acad Sci U S A. 1997 Sep 16;94(19):10080–10085.
  • DeLano WL, Ultsch MH, de Vos AM, et al. Convergent solutions to binding at a protein-protein interface. Science. 2000 Feb 18;287(5456):1279–1283.
  • Shiraiwa K, Cheng R, Nonaka H, et al. Chemical Tools for Endogenous Protein Labeling and Profiling. Cell Chem Biol. 2020 Aug 20;27(8):970–985.
  • Konrad A, Karlstrom AE, Hober S. Covalent immunoglobulin labeling through a photoactivable synthetic Z domain. Bioconjug Chem. 2011 Dec 21;22(12):2395–2403.
  • Perols A, Karlstrom AE. Site-specific photoconjugation of antibodies using chemically synthesized IgG-binding domains. Bioconjug Chem. 2014 Mar 19;25(3):481–488.
  • Hui JZ, Tamsen S, Song Y, et al. LASIC: light activated site-specific conjugation of native IgGs. Bioconjug Chem. 2015 Aug 19;26(8):1456–1460.
  • Yu C, Tang J, Loredo A, et al. Proximity-induced site-specific antibody conjugation. Bioconjug Chem. 2018 Nov 21;29(11):3522–3526.
  • Kishimoto S, Nakashimada Y, Yokota R, et al. Site-specific chemical conjugation of antibodies by using affinity peptide for the development of therapeutic antibody format. Bioconjug Chem. 2019 Mar 20;30(3):698–702.
  • Yamada K, Shikida N, Shimbo K, et al. AJICAP: affinity peptide mediated regiodivergent functionalization of native antibodies. Angew Chem Int Ed Engl. 2019 Apr 16;58(17):5592–5597.
  • Matsuda Y, Clancy C, Tawfiq Z, et al. Good manufacturing practice strategy for antibody-drug conjugate synthesis using site-specific chemical conjugation: first-generation AJICAP. ACS Omega. 2019 Dec 10;4(24):20564–20570.
  • Matsuda Y, Malinao MC, Robles V, et al. Proof of site-specificity of antibody-drug conjugates produced by chemical conjugation technology: AJICAP first generation. J Chromatogr B Analyt Technol Biomed Life Sci. 2020 Mar 1;1140:121981.
  • Satomaa T, Pynnonen H, Vilkman A, et al. Hydrophilic auristatin glycoside payload enables improved antibody-drug conjugate efficacy and biocompatibility. Antibodies (Basel). 2018 Mar 22;7(2).
  • Chen L, Cohen J, Song X, et al. Improved variants of SrtA for site-specific conjugation on antibodies and proteins with high efficiency. Sci Rep. 2016 Aug 18;6:31899.
  • Ravasco J, Faustino H, Trindade A, et al. Bioconjugation with maleimides: a useful tool for chemical biology. Chemistry. 2019 Jan 2;25(1):43–59.
  • Patterson JT, Asano S, Li X, et al. Improving the serum stability of site-specific antibody conjugates with sulfone linkers. Bioconjug Chem. 2014 Aug 20;25(8):1402–1407.
  • Lu X, Nobrega RP, Lynaugh H, et al. Deamidation and isomerization liability analysis of 131 clinical-stage antibodies. MAbs. 2019 Jan;11(1):45–57.
  • Matsuda Y, Kliman M, Mendelsohn BA. Application of native ion exchange mass spectrometry to intact and subunit analysis of site-specific antibody-drug conjugates produced by AJICAP first generation technology. J Am Soc Mass Spectrom. 2020 Jul 1. DOI:10.1021/jasms.0c00129
  • Muller E, Sevilla M, Endres P. Evaluation of hydrophobic-interaction chromatography resins for purification of antibody-drug conjugates using a mimetic model with adjustable hydrophobicity. J Sep Sci. 2020 Jun;43(12):2255–2263.
  • Matsuda Y, Leung M, Okuzumi T, et al. A purification strategy utilizing hydrophobic interaction chromatography to obtain homogeneous species from a site-specific antibody drug conjugate produced by AJICAP first generation. Antibodies (Basel). 2020 May 18;9(2).
  • Shim H. Bispecific antibodies and antibody-drug conjugates for cancer therapy: technological considerations. Biomolecules. 2020 Feb 26;10(3):360.
  • Strohl WR. Fusion proteins for half-life extension of biologics as a strategy to make biobetters. BioDrugs. 2015 Aug;29(4):215–239.
  • Muguruma K, Yakushiji F, Kawamata R, et al. Novel hybrid compound of a plinabulin prodrug with an IgG binding peptide for generating a tumor selective noncovalent-type antibody-drug conjugate. Bioconjug Chem. 2016 Jul 20;27(7):1606–1613.
  • Seki Y, Ishiyama T, Sasaki D, et al. Transition metal-free tryptophan-selective bioconjugation of proteins. J Am Chem Soc. 2016 Aug 31;138(34):10798–10801.
  • Ban H, Gavrilyuk J, Barbas CF 3rd. Tyrosine bioconjugation through aqueous ene-type reactions: a click-like reaction for tyrosine. J Am Chem Soc. 2010 Feb 10;132(5):1523–1525.
  • Ohata J, Ball ZT. A hexa-rhodium metallopeptide catalyst for site-specific functionalization of natural antibodies. J Am Chem Soc. 2017 Sep 13;139(36):12617–12622.
  • Dhanjee HH, Saebi A, Buslov I, et al. Protein-protein cross-coupling via palladium-protein oxidative addition complexes from cysteine residues. J Am Chem Soc. 2020 May 20;142(20):9124–9129.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.