943
Views
12
CrossRef citations to date
0
Altmetric
Review

HIV-1 cure strategies: why CRISPR?

, , , , &
Pages 781-793 | Received 12 Aug 2020, Accepted 14 Dec 2020, Published online: 07 Feb 2021

References

  • Marino J, Wigdahl B, Nonnemacher MR. Extracellular HIV-1 tat mediates increased glutamate in the cns leading to onset of senescence and progression of HAND. Front Aging Neurosci. 2020;12:168.
  • Marino J, Maubert ME, Mele AR, et al. Functional impact of HIV-1 Tat on cells of the CNS and its role in HAND. Cell Mol Life Sci. 2020 Jun;77(24):23.
  • Arainga M, Edagwa B, Mosley RL, et al. A mature macrophage is a principal HIV-1 cellular reservoir in humanized mice after treatment with long acting antiretroviral therapy. Retrovirology. 2017 Mar 9;14(1):17.
  • Barouch DH, Deeks SG. Immunologic strategies for HIV-1 remission and eradication. Science. 2014 Jul 11;345(6193):169–174.
  • Deeks SGHIV. Shock and kill. Nature. 2012 Jul 25;487(7408):439–440.
  • Kim Y, Anderson JL, Lewin SR. Getting the “Kill” into “Shock and Kill”: strategies to eliminate latent HIV. Cell Host Microbe. 2018 Jan 10;23(1):14–26.
  • Policicchio BB, Xu C, Brocca-Cofano E, et al. Multi-dose romidepsin reactivates replication competent siv in post-antiretroviral rhesus macaque controllers. PLoS Pathog. 2016 Sep;12(9):e1005879.
  • Archin NM, Kirchherr JL, Sung JA, et al. Interval dosing with the HDAC inhibitor vorinostat effectively reverses HIV latency. J Clin Invest. 2017 Aug 1;127(8):3126–3135.
  • Barton K, Hiener B, Winckelmann A, et al. Broad activation of latent HIV-1 in vivo. Nat Commun. 2016 Sep 8;7(1):12731.
  • Wu G, Swanson M, Talla A, et al. HDAC inhibition induces HIV-1 protein and enables immune-based clearance following latency reversal. JCI Insight. 2017 Aug 17;2(16):16.
  • Tsai P, Wu G, Baker CE, et al. In vivo analysis of the effect of panobinostat on cell-associated HIV RNA and DNA levels and latent HIV infection. Retrovirology. 2016 May 21;13(1):36.
  • Ren Y, Huang SH, Patel S, et al. BCL-2 antagonism sensitizes cytotoxic T cell-resistant HIV reservoirs to elimination ex vivo. J Clin Invest. 2020 May 1;130(5):2542–2559.
  • Hanke T. Aiming for protective T-cell responses: a focus on the first generation conserved-region HIVconsv vaccines in preventive and therapeutic clinical trials. Expert Rev Vaccines. 2019 Oct;18(10):1029–1041.
  • Korber B, Fischer W. T cell-based strategies for HIV-1 vaccines. Hum Vaccin Immunother. 2020 Mar 3;16(3):713–722.
  • Mothe B, Manzardo C, Sanchez-Bernabeu A, et al. Therapeutic vaccination refocuses t-cell responses towards conserved regions of hiv-1 in early treated individuals (BCN 01 study). EClinicalMedicine. 2019;11:65–80.
  • Mothe B, Rosas-Umbert M, Coll P, et al. HIVconsv vaccines and romidepsin in early-treated hiv-1-infected individuals: safety, immunogenicity and effect on the viral reservoir (study BCN02). Front Immunol. 2020;11:823.
  • Malbec M, Porrot F, Rua R, et al. Broadly neutralizing antibodies that inhibit HIV-1 cell to cell transmission. J Exp Med. 2013 Dec 16;210(13):2813–2821.
  • Huang J, Kang BH, Ishida E, et al. Identification of a Cd4-binding-site antibody to hiv that evolved near-pan neutralization breadth. Immunity. 2016 Nov 15;45(5):1108–1121.
  • Nishimura Y, Gautam R, Chun TW, et al. Early antibody therapy can induce long-lasting immunity to SHIV. Nature. 2017 Mar 23;543(7646):559–563.
  • Gautam R, Nishimura Y, Gaughan N, et al. A single injection of crystallizable fragment domain-modified antibodies elicits durable protection from SHIV infection. Nat Med. 2018 May;24(5):610–616.
  • Badamchi-Zadeh A, Tartaglia LJ, Abbink P, et al. Therapeutic efficacy of vectored PGT121 gene delivery in hiv-1-infected humanized mice. J Virol. 2018 Apr 1;92(7):7.
  • Li H, Zony C, Chen P, et al. Reduced potency and incomplete neutralization of broadly neutralizing antibodies against cell-to-cell transmission of HIV-1 with transmitted founder envs. J Virol. 2017 May 1;91(9):9.
  • Martinez-Navio JM, Fuchs SP, Pedreno-Lopez S, et al. Host anti-antibody responses following adeno-associated virusmediated delivery of antibodies against HIV and SIV in rhesus monkeys. Mol Ther. 2016 Feb;24(1):76–86.
  • Stefic K, Bouvin-Pley M, Braibant M, et al. Impact of HIV-1 diversity on its sensitivity to neutralization. Vaccines (Basel). 2019 Jul 25;7(3):3.
  • Debyser Z, Vansant G, Bruggemans A, et al. Insight in HIV integration site selection provides a block-and-lock strategy for a functional cure of HIV infection. Viruses. 2018 Dec 26;11(1):1.
  • Mediouni S, Chinthalapudi K, Ekka MK, et al. Didehydro-cortistatin a inhibits HIV-1 by specifically binding to the unstructured basic region of tat. mBio. 2019 Feb 5;10(1):1.
  • Spector C, Mele AR, Wigdahl B, et al. Genetic variation and function of the HIV-1 Tat protein. Med Microbiol Immunol. 2019 Apr;208(2):131–169.
  • Vansant G, Bruggemans A, Janssens J, et al. Block-and-lock strategies to cure HIV infection. Viruses. 2020 Jan 10;12(1):1.
  • Imamichi H, Dewar RL, Adelsberger JW, et al. Defective HIV-1 proviruses produce novel protein-coding RNA species in HIV-infected patients on combination antiretroviral therapy. Proc Nat Acad Sci. 2016;113(31):8783–8788.
  • Paiardini M, Muller-Trutwin M. HIV-associated chronic immune activation. Immunol Rev. 2013 Jul;254(1):78–101.
  • Kessing CF, Nixon CC, Li C, et al. In vivo suppression of HIV rebound by didehydro-cortistatin A, a “block-and-lock” strategy for HIV-1 treatment. Cell Rep. 2017 Oct 17;21(3):600–611.
  • Ahlenstiel CL, Symonds G, Kent SJ, et al. Block and lock HIV cure strategies to control the latent reservoir. Front Cell Infect Microbiol. 2020;10:424.
  • Qi J, Ding C, Jiang X, et al. Advances in developing CAR T-cell therapy for HIV cure. Front Immunol. 2020;11:361.
  • Hale M, Mesojednik T, Romano Ibarra GS, et al. Engineering HIV-resistant, anti-HIV chimeric antigen receptor T cells. Mol Ther. 2017 Mar 1;25(3):570–579.
  • Anthony-Gonda K, Bardhi A, Ray A, et al. Multispecific anti-HIV duoCAR-T cells display broad in vitro antiviral activity and potent in vivo elimination of HIV-infected cells in a humanized mouse model. Sci Transl Med. 2019 Aug 7;11(504):504.
  • Ollerton MT, Berger EA, Connick E, et al. HIV-1-specific chimeric antigen receptor T cells fail to recognize and eliminate the folli-cular dendritic cell HIV reservoir in vitro. J Virol. 2020 May 4;94(10):10.
  • Brodie SJ, Lewinsohn DA, Patterson BK, et al. In vivo migration and function of transferred HIV-1-specific cytotoxic T cells. Nat Med. 1999 Jan;5(1):34–41. .
  • Tan R, Xu X, Ogg GS, et al. Rapid death of adoptively transferred T cells in acquired immunodeficiency syndrome. Blood. 1999 Mar 1;93(5):1506–1510.
  • Porter DL, Levine BL, Kalos M, et al. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med. 2011 Aug 25;365(8):725–733.
  • Wykes MN, Lewin SR. Immune checkpoint blockade in infectious diseases. Nat Rev Immunol. 2018 Feb;18(2):91–104.
  • Porichis F, Hart MG, Massa A, et al. Immune checkpoint blockade restores HIV-specific CD4 T cell help for NK cells. J Immunol. 2018 Aug 1;201(3):971–981.
  • Bradley T, Kuraoka M, Yeh CH, et al. Immune checkpoint modulation enhances HIV-1 antibody induction. Nat Commun. 2020 Feb 19;11(1):948.
  • Allen AG, Chung CH, Atkins A, et al. Gene editing of HIV-1 co-receptors to prevent and/or cure virus infection. Front Microbiol. 2018;9:2940.
  • Binda CS, Klaver B, Berkhout B, et al. CRISPR-cas9 dual-gRNA attack causes mutation, excision and inversion of the HIV-1 proviral DNA. Viruses. 2020 Mar 18;12(3):3.
  • Wang W, Ye C, Liu J, et al. CCR5 gene disruption via lentiviral vectors expressing cas9 and single guided RNA renders cells resistant to HIV-1 infection. PLoS One. 2014;9(12):e115987..
  • Liu Z, Chen S, Jin X, et al. Genome editing of the HIV co-receptors CCR5 and CXCR4 by CRISPR-cas9 protects CD4(+) T cells from HIV-1 infection. Cell Biosci. 2017;7(1):47 .
  • Wang Q, Chen S, Xiao Q, et al. Genome modification of CXCR4 by staphylococcus aureus cas9 renders cells resistance to HIV-1 infection. Retrovirology. 2017 Nov 15;14(1):51.
  • Yu S, Yao Y, Xiao H, et al. Simultaneous knockout of CXCR4 and CCR5 genes in CD4+ T cells via CRISPR/cas9 confers resistance to both X4- and R5-tropic human immunodeficiency virus type 1 infection. Hum Gene Ther. 2018 Jan;29(1):51–67. .
  • Xu L, Yang H, Gao Y, et al. CRISPR/cas9-mediated CCR5 ablation in human hematopoietic stem/progenitor cells confers HIV-1 resistance in vivo. Mol Ther. 2017 Aug 2;25(8):1782–1789.
  • Hu W, Kaminski R, Yang F, et al. RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection. Proc Natl Acad Sci U S A. 2014 Aug 5;111(31):11461–11466.
  • Ophinni Y, Inoue M, Kotaki T, et al. CRISPR/cas9 system targeting regulatory genes of HIV-1 inhibits viral replication in infected T-cell cultures. Sci Rep. 2018 May 17;8(1):7784.
  • Kaminski R, Bella R, Yin C, et al. Excision of HIV-1 DNA by gene editing: a proof-of-concept in vivo study. Gene Ther. 2016 Aug;23(8–9):690–695. .
  • Kaminski R, Chen Y, Fischer T, et al. Elimination of HIV-1 genomes from human T-lymphoid cells by CRISPR/cas9 gene editing. Sci Rep. 2016 Mar 4;6(1):22555.
  • Bella R, Kaminski R, Mancuso P, et al. Removal of HIV DNA by CRISPR from patient blood engrafts in humanized mice. Mol Ther Nucleic Acids. 2018 Sep;12(12):275–282.
  • Darcis G, Binda CS, Klaver B, et al. The impact of HIV-1 genetic diversity on CRISPR-cas9 antiviral activity and viral escape. Viruses. 2019 Mar 13;11(3):3.
  • Campbell LA, Coke LM, Richie CT, et al. Gesicle-mediated delivery of CRISPR/cas9 ribonucleoprotein complex for inactivating the HIV provirus. Mol Ther. 2019 Jan 2;27(1):151–163.
  • Ebina H, Misawa N, Kanemura Y, et al. Harnessing the CRISPR/cas9 system to disrupt latent HIV-1 provirus. Sci Rep. 2013;3(1):2510. .
  • Lebbink RJ, de Jong DC, Wolters F, et al. A combinational CRISPR/cas9 gene-editing approach can halt HIV replication and prevent viral escape. Sci Rep. 2017 Feb 8;7(1):41968.
  • Dash PK, Kaminski R, Bella R, et al. Sequential LASER ART and CRISPR treatments eliminate HIV-1 in a subset of infected humanized mice. Nat Commun. 2019 Jul 2;10(1):2753.
  • Liao HK, Gu Y, Diaz A, et al Use of the CRISPR/Cas9 system as an intracellular defense against HIV-1 infection in human cells. Nat Commun. 2015 Mar 10;6(1):6413.
  • Yin C, Zhang T, Li F, et al. Functional screening of guide RNAs targeting the regulatory and structural HIV-1 viral genome for a cure of AIDS. AIDS. 2016 May 15;30(8):1163–1173.
  • Wang Z, Pan Q, Gendron P, et al. CRISPR/cas9-derived mutations both inhibit HIV-1 replication and accelerate viral escape. Cell Rep. 2016 Apr 19;15(3):481–489.
  • Su H, Sravanam S, Gorantla S, et al. Amplification of replication competent HIV-1 by adoptive transfer of human cells from infected humanized mice. Front Cell Infect Microbiol. 2020;10:38.
  • Saayman SM, Lazar DC, Scott TA, et al. Potent and targeted activation of latent HIV-1 using the CRISPR/dCas9 activator complex. Mol Ther. 2016 Mar;24(3):488–498.
  • Roychoudhury P, De Silva Feelixge H, Reeves D, et al. Viral diversity is an obligate consideration in CRISPR/Cas9 designs for targeting the HIV reservoir. BMC Biol. 2018 Jul 11;16(1):75.
  • Limsirichai P, Gaj T, Schaffer DV. CRISPR-mediated activation of latent HIV-1 expression. Mol Ther. 2016 Mar;24(3):499–507.
  • Kunze C, Borner K, Kienle E, et al. Synthetic AAV/CRISPR vectors for blocking HIV-1 expression in persistently infected astrocytes. Glia. 2018 Feb;66(2):413–427.
  • Kaushik A, Yndart A, Atluri V, et al. Magnetically guided non-invasive CRISPR-Cas9/gRNA delivery across blood-brain barrier to eradicate latent HIV-1 infection. Sci Rep. 2019 Mar 8;9(1):3928.
  • Kaminski R, Chen Y, Salkind J, et al. Negative feedback regulation of HIV-1 by gene editing strategy. Sci Rep. 2016 Aug 16;6(1):31527.
  • Dampier W, Sullivan NT, Chung CH, et al. Designing broad-spectrum anti-HIV-1 gRNAs to target patient-derived variants. Sci Rep. 2017 Oct 31;7(1):14413.
  • Dampier W, Nonnemacher MR, Sullivan NT, et al. HIV excision utilizing CRISPR/cas9 technology: attacking the proviral quasispecies in reservoirs to achieve a cure. MOJ Immunol. 2014 Oct 17;1(4):4.
  • Charlesworth CT, Deshpande PS, Dever DP, et al. Identification of preexisting adaptive immunity to cas9 proteins in humans. Nat Med. 2019 Feb;25(2):249–254.
  • Wagner DL, Amini L, Wendering DJ, et al. High prevalence of streptococcus pyogenes cas9-reactive T cells within the adult human population. Nat Med. 2019 Feb;25(2):242–248.
  • Simhadri VL, McGill J, McMahon S, et al. Prevalence of pre-existing antibodies to CRISPR-Associated nuclease cas9 in the USA population. Mol Ther Methods Clin Dev. 2018 Sep 21;10:105–112.
  • Brouwer S, Barnett TC, Rivera-Hernandez T, et al. Streptococcus pyogenes adhesion and colonization. FEBS Letters. 2016 Nov;590(21):3739–3757.
  • Jenul C, Horswill AR. Regulation of staphylococcus aureus virulence. Microbiol Spectr. 2018 Feb;6:1.
  • Chandran S, Tang Q, Sarwal M, et al. Polyclonal regulatory T cell therapy for control of inflammation in kidney transplants. Am J Transplant. 2017 Nov;17(11):2945–2954.
  • Reuter MA, Del Rio Estrada PM, Buggert M, et al. HIV-specific CD8(+) T cells exhibit reduced and differentially regulated cytolytic activity in lymphoid tissue. Cell Rep. 2017 Dec 19;21(12):3458–3470.
  • Chew WL, Tabebordbar M, Cheng JK, et al. A multifunctional AAV-CRISPR-cas9 and its host response. Nat Methods. 2016 Oct;13(10):868–874.
  • Sugimoto C, Merino KM, Hasegawa A, et al. Critical role for monocytes/macrophages in rapid progression to AIDS in pediatric simian immunodeficiency virus-infected rhesus macaques. J Virol. 2017 Sep 1;91:17.
  • Xu K, Acharya P, Kong R, et al. Epitope-based vaccine design yields fusion peptide-directed antibodies that neutralize diverse strains of HIV-1. Nat Med. 2018 Jun;24(6):857–867.
  • Whitney JB, Hill AL, Sanisetty S, et al. Rapid seeding of the viral reservoir prior to SIV viraemia in rhesus monkeys. Nature. 2014 Aug 7;512(7512):74–77.
  • Marsden MD, Zack JA. Humanized mouse models for human immunodeficiency virus infection. Annu Rev Virol. 2017 Sep 29;4(1):393–412.
  • Wang Z, Wang W, Cui YC, et al. HIV-1 employs multiple mechanisms to resist cas9/single guide RNA targeting the viral primer binding site. J Virol. 2018 Oct 15;92(20):20.
  • Yoder KE, Bundschuh R. Host double strand break repair generates HIV-1 strains resistant to CRISPR/cas9. Sci Rep. 2016 Jul 12;6(1):29530.
  • Wang G, Zhao N, Berkhout B, et al. A combinatorial CRISPR-cas9 attack on HIV-1 DNA extinguishes all infectious provirus in infected T cell cultures. Cell Rep. 2016 Dec 13;17(11):2819–2826.
  • Gao Z, Fan M, Das AT, et al. Extinction of all infectious HIV in cell culture by the CRISPR-Cas12a system with only a single crRNA. Nucleic Acids Res. 2020 Jun 4;48(10):5527–5539.
  • Wang G, Zhao N, Berkhout B, et al. CRISPR-Cas9 can inhibit HIV-1 replication but NHEJ repair facilitates virus escape. Mol Ther. 2016 Mar;24(3):522–526.
  • Zhao N, Wang G, Das AT, et al. Combinatorial CRISPR-cas9 and RNA interference attack on HIV-1 DNA and RNA can lead to cross- resistance. Antimicrob Agents Chemother. 2017 Dec;61(12):12.
  • Dampier W, Sullivan NT, Mell JC, et al. Broad-spectrum and personalized guide RNAs for CRISPR/cas9 HIV-1 therapeutics. AIDS Res Hum Retroviruses. 2018 Nov;34(11):950–960.
  • Sullivan NT, Dampier W, Chung CH, et al. Novel gRNA design pipeline to develop broad-spectrum CRISPR/Cas9 gRNAs for safe targeting of the HIV-1 quasispecies in patients. Sci Rep. 2019 Nov 19;9(1):17088.
  • Doench JG, Fusi N, Sullender M, et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol. 2016 Feb;34(2):184–191.
  • Hsu PD, Scott DA, Weinstein JA, et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol. 2013 Sep;31(9):827–832.
  • Chung CH, Allen AG, Sullivan NT, et al. Computational analysis concerning the impact of DNA accessibility on CRISPR-cas9 cleavage efficiency. Mol Ther. 2020 Jan 8;28(1):19–28.
  • Link RW, Nonnemacher MR, Wigdahl B, et al. Prediction of human immunodeficiency virus type 1 subtype-specific off-target effects arising from CRISPR-cas9 gene editing therapy. CRISPR J. 2018 Aug;1(4):294–302.
  • Hou P, Chen S, Wang S, et al. Genome editing of CXCR4 by CRISPR/cas9 confers cells resistant to HIV-1 infection. Sci Rep. 2015 Oct 20;5(1):15577.
  • Cameron P, Fuller CK, Donohoue PD, et al. Mapping the genomic landscape of CRISPR-cas9 cleavage. Nat Methods. 2017 Jun;14(6):600–606.
  • Kim D, Bae S, Park J, et al. Digenome-seq: genome-wide profiling of CRISPR-cas9 off-target effects in human cells. Nat Methods. 2015 Mar;12(3):237–243. 1 p following 243.
  • Tsai SQ, Nguyen NT, Malagon-Lopez J, et al. CIRCLE-seq: a highly sensitive in vitro screen for genome-wide CRISPR-cas9 nuclease off-targets. Nat Methods. 2017 Jun;14(6):607–614.
  • Frock RL, Hu J, Meyers RM, et al. Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases. Nat Biotechnol. 2015 Feb;33(2):179–186.
  • Hu J, Meyers RM, Dong J, et al. Detecting DNA double-stranded breaks in mammalian genomes by linear amplification-mediated high-throughput genome-wide translocation sequencing. Nat Protoc. 2016 May;11(5):853–871.
  • Yan WX, Mirzazadeh R, Garnerone S, et al. BLISS is a versatile and quantitative method for genome-wide profiling of DNA double-strand breaks. Nat Commun. 2017 May;8(1):15058.
  • Tsai SQ, Zheng Z, Nguyen NT, et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-cas nucleases. Nat Biotechnol. 2015 Feb;33(2):187–197.
  • Wienert B, Wyman SK, Yeh CD, et al. CRISPR off-target detection with DISCOVER-seq. Nat Protoc. 2020 May;15(5):1775–1799.
  • Akcakaya P, Bobbin ML, Guo JA, et al. In vivo CRISPR editing with no detectable genome-wide off-target mutations. Nature. 2018 Sep;561(7723):416–419.
  • Chung CH, Allen AG, Atkins AJ, et al. Safe CRISPR-cas9 inhibition of HIV-1with high specificity and broad-spectrum activity by targeting LTR NF-kB binding sites. Molecular Therapy. Nucleic Acids. 2020;21:965–982.
  • Kaushik A, Jayant RD, Nikkhah-Moshaie R, et al. Magnetically guided central nervous system delivery and toxicity evaluation of magneto-electric nanocarriers. Sci Rep. 2016 May;6(1):25309.
  • Clayton KL, Collins DR, Lengieza J, et al. Resistance of HIV-infected macrophages to CD8(+) T lymphocyte-mediated killing drives activation of the immune system. Nat Immunol. 2018 May;19(5):475–486.
  • Huang SH, Ren Y, Thomas AS, et al. Latent HIV reservoirs exhibit inherent resistance to elimination by CD8+ T cells. J Clin Invest. 2018 Feb 1;128(2):876–889.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.