259
Views
4
CrossRef citations to date
0
Altmetric
Review

Merits of the ‘good’ viruses: the potential of virus-based therapeutics

, , &
Pages 731-740 | Received 23 Oct 2020, Accepted 14 Dec 2020, Published online: 30 Dec 2020

References

  • Forterre P. Defining life: the virus viewpoint. Origins Life Evol Biosphere. 2010;40(2):151–160.
  • Raoult D, Forterre P. Redefining viruses: lessons from mimivirus. Nature Rev Microbiol. 2008;6(4):315–319.
  • Mietzsch M, Agbandje-McKenna A-M The good that viruses do. Annu Rev Virol. 2017;4(1):iii–v. %M 28961414 %U.
  • Kingwell K. Bacteriophage therapies re-enter clinical trials. Nat Rev Drug Discov. . 2015;14:515-516.
  • Patel MR, Kratzke RA. Oncolytic virus therapy for cancer: the first wave of translational clinical trials. Transl Res. 2013;161(4):355–364. %@ 1931–5244.
  • Dunbar CE, High KA, Joung JK, et al. Gene therapy comes of age. Science. 2018;359(6372):eaan4672.
  • Zhao Q, Li S, Yu H, et al. Virus-like particle-based human vaccines: quality assessment based on structural and functional properties. Trends Biotechnol. 2013;31(11):654–663..
  • Sulakvelidze A, Alavidze Z, Morris JG. Bacteriophage therapy. Antimicrob Agents Chemother. 2001;45(3):649–659.
  • Fischetti VA. Phage antibacterials make a comeback. Nat Biotechnol. 2001;19(8):734–735. %@ 1546–1696.
  • Salmond GPC, Fineran PC. A century of the phage: past, present and future. Nature Rev Microbiol. 2015;13(12):777–786.
  • Altamirano FLG, Barr JJ. Phage therapy in the postantibiotic era. Clin Microbiol Rev. 2019;32(2):e00066–18..
  • Wittebole X, De Roock S, Opal SM. A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens. Virulence. 2014;5(1):226–235.
  • Kortright KE, Chan BK, Koff JL, et al. Phage therapy: a renewed approach to combat antibiotic-resistant bacteria. Cell Host Microbe. 2019;25(2):219–232.
  • Chan BK, Sistrom M, Wertz JE, et al. Phage selection restores antibiotic sensitivity in MDR Pseudomonas aeruginosa. Sci Rep. 2016;6(1): 26717–26717. DOI:10.1038/srep26717.
  • Ryan E, Alkawareek MY, Donnelly RF, et al. Synergistic phage-antibiotic combinations for the control of Escherichia coli biofilms in vitro. FEMS Immunol Med Microbiol. 2012;65(2):395–398.
  • Knezevic P, Curcin S, Aleksic V, et al. Phage-antibiotic synergism: a possible approach to combatting Pseudomonas aeruginosa. Res Microbiol. 2013;164(1):55–60.
  • Roach DR, Leung CY, Henry M, et al. Synergy between the host immune system and bacteriophage is essential for successful phage therapy against an acute respiratory pathogen. Cell Host Microbe. 2017;22(1):38.
  • Jun SY, Jang I, Yoon S, et al. Pharmacokinetics and tolerance of the phage endolysin-based candidate drug SAL200 after a single intravenous administration among healthy volunteers. Antimicrob Agents Chemother. 2017;61(6):6.
  • Kashani HH, Schmelcher M, Sabzalipoor H, et al. Recombinant endolysins as potential therapeutics against antibiotic-resistant staphylococcus aureus: current status of research and novel delivery strategies. Clin Microbiol Rev. 2017;31:1.
  • Solanki K, Grover N, Downs P, et al. Enzyme-based listericidal nanocomposites. Sci Rep. 2013;3(1): 1584–1584. DOI:10.1038/srep01584.
  • Liu T, Galanis E, Kirn DH. Clinical trial results with oncolytic virotherapy: a century of promise, a decade of progress. Nature Rev Clin Prac Oncol. 2007;4(2):101–117.
  • Kelly EJ, Russell SJ. History of oncolytic viruses: genesis to genetic engineering. Mol Ther. 2007;15(4):651–659.
  • Smith RR, Huebner RJ, Rowe WP, et al. Studies on the use of viruses in the treatment of carcinoma of the cervix. Cancer. 1956;9(6):1211–1218.
  • Milton GW, Brown MML. The limited role of attenuated smallpox virus in the management of advanced malignant melanoma. ANZ J Surg. 1966;35(4):286–290.
  • Pasquinucci G. Possible effect of measles on Leukaemia. Lancet. 1971;297(7690):136.
  • Taqi AM, Abdurrahman MB, Yakubu AM, et al. Regression of Hodgkin’s disease after measles. Lancet. 1981;317(8229): 1112–1112. DOI:10.1016/S0140-6736(81)92286-8.
  • Bluming A, Ziegler J. Regression of Burkitt’s lymphoma in association with measles infection. Lancet. 1971;298(7715):105–106.
  • Hunter-Craig I, Newton KA, Westbury G, et al. Use of vaccinia virus in the treatment of metastatic malignant melanoma. BMJ. 1970;2(5708):512–515.
  • Asada T. Treatment of human cancer with mumps virus. Cancer. 1974;34(6):1907–1928.
  • Roenigk HH, Deodhar S, St-Jacques R, et al. Immunotherapy of Malignant Melanoma With Vaccinia Virus. Arch Dermatol. 1974;109(5):668–673.
  • Kawa A, Arakawa S. The effect of attenuated vaccinia virus AS strain on multiple myeloma; a case report. Japan J Exper Med. 1987;57(1):79–81.
  • Arakawajr S, Hamami G, Umezu K, et al. Clinical trial of attenuated vaccinia virus AS strain in the treatment of advanced adenocarcinoma. Report on two cases. J Cancer Res Clin Oncol. 1987;113(1):95–98.
  • Everall JD, Wand J, Odoherty CJ, et al. Treatment of primary melanoma by intralesional vaccinia before excision. Lancet. 1975;306(7935):583–586.
  • Shimizu Y, Hasumi K, Okudaira Y, et al. Immunotherapy of advanced gynecologic cancer patients utilizing mumps virus. CanDetec Preven. 1988;12(1–6):487.
  • Cassel WA, Garrett RE. Newcastle disease virus as an antineoplastic agent. Cancer. 1965;18(7):863–868.
  • Southam CM, Moore AE. Clinical studies of viruses as antineoplastic agents, with particular reference to egypt 101 virus. Cancer. 1952;5(5):1025–1034.
  • Moore AE, Southam CM. West Nile, Ilheus, and Bunyamwera Virus Infections in Man 1,2,3. Am J Trop Med Hyg. 1951;s1-31(6):724–741.
  • Miest T, Cattaneo R. New viruses for cancer therapy: meeting clinical needs. Nature Rev Microbiol. 2014;12(1):23–34.
  • Macedo N, Miller DM, Haq R, et al. Clinical landscape of oncolytic virus research in 2020. Journal for ImmunoTherapy of Cancer. 2020;8(2):e001486.
  • Bischoff JR, Kirn DH, Williams A, et al. An Adenovirus Mutant That Replicates Selectively in p53- Deficient Human Tumor Cells. Science. 1996;274(5286):373–376.
  • O’Shea CC, Johnson L, Bagus B, et al. Late viral RNA export, rather than p53 inactivation, determines ONYX-015 tumor selectivity. Cancer Cell. 2004;6(6):611–623.
  • Liang M. Oncorine, the World First Oncolytic Virus Medicine and its Update in China. Curr Cancer Drug Targets. 2018;18(2):171–176.
  • Russell SJ, Peng K. Oncolytic Virotherapy: A Contest between Apples and Oranges. Mol Ther. 2017;25(5):1107–1116.
  • Ott PA, Hodi FS. Talimogene Laherparepvec for the Treatment of Advanced Melanoma. Clin Cancer Res. 2016;22(13):3127–3131.
  • Raman SS, Hecht JR, Chan E. Talimogene laherparepvec: review of its mechanism of action and clinical efficacy and safety. Immunotherapy. 2019;11(8):705–723.
  • Harrington KJ, Freeman DJ, Kelly B, et al. Optimizing oncolytic virotherapy in cancer treatment. Nat Rev Drug Discov. 2019;18(9):689–706.
  • Martin NT, Bell JC. Oncolytic Virus Combination Therapy: killing One Bird with Two Stones. Mol Ther. 2018;26(6):1414–1422.
  • Friedmann T, Roblin R. Gene Therapy for Human Genetic Disease? Science. 1972;1754025:949–955.
  • June CH, O’Connor RS, Kawalekar OU, et al. CAR T cell immunotherapy for human cancer. Science. 2018;359(6382):1361–1365.
  • Blaese RM, Culver KW, Miller AD, et al. T Lymphocyte-Directed Gene Therapy for ADA- SCID: initial Trial Results After 4 Years. Science. 1995;270(5235):475–480.
  • Kohn DB, Weinberg KI, Nolta JA, et al. Engraftment of gene–modified umbilical cord blood cells in neonates with adenosine deaminase deficiency. Nat Med. 1995;1(10):1017–1023.
  • Bordignon C, Notarangelo LD, Nobili N, et al. Gene Therapy in Peripheral Blood Lymphocytes and Bone Marrow for ADA- Immunodeficient Patients. Science. 1995;270(5235):470–475.
  • Sheridan C. Gene therapy finds its niche. Nat Biotechnol. 2011;29(2):121–128.
  • Cavazzana-Calvo M, Hacein-Bey S, Saint-Basile G, et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science. 2000;288(5466):669–672.
  • Hacein-Bey-Abina S, Von Kalle C, Schmidt M, et al. LMO2-Associated Clonal T Cell Proliferation in Two Patients after Gene Therapy for SCID-X1. Science. 2003;302(5644):415–419.
  • Miller AD, Miller DG, Garcia JV, et al. Use of retroviral vectors for gene transfer and expression. Methods Enzymol. 1993;217:581–599.
  • David R, Doherty AT. Viral vectors: the road to reducing genotoxicity. Toxicol Sci. 2017;155(2):315–325.
  • Naldini L, Blomer U, Gallay P, et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science. 1996;272(5259):263–267.
  • Kotterman MA, Chalberg TW, Schaffer DV. Viral Vectors for Gene Therapy: translational and Clinical Outlook. Annu Rev Biomed Eng. 2015;17(1):63–89.
  • Tatsis N, Ertl HCJ. Adenoviruses as vaccine vectors. Mol Ther. 2004;10(4):616–629.
  • Van Ginkel FW, McGhee JR, Liu C, et al. Adenoviral gene delivery elicits distinct pulmonary-associated T helper cell responses to the vector and to its transgene. J Iimmunol. 1997;159(2):685–693.
  • Benihoud K, Esselin S, Descamps D, et al. Respective roles of TNF-α and IL-6 in the immune response-elicited by adenovirus-mediated gene transfer in mice. Gene Ther. 2007;14(6):533–544.
  • Oconnor T, Crystal RG. Genetic medicines: treatment strategies for hereditary disorders. Nat Rev Genet. 2006;7(4):261–276.
  • Li C, Samulski RJ. Engineering adeno-associated virus vectors for gene therapy. Nat Rev Genet. 2020;21(4):255–272.
  • Rollier CS, Reyes-Sandoval A, Cottingham MG, et al. Viral vectors as vaccine platforms: deployment in sight. Curr Opin Immunol. 2011;23(3):377–382.
  • Liniger M, Zuniga A, Naim H. Use of viral vectors for the development of vaccines. Exp Rev Vaccines. 2007;6(2):255–266.
  • Shin MD, Shukla S, Chung YH, et al. COVID-19 vaccine development and a potential nanomaterial path forward. Nat Nanotechnol. 2020;15(8):646–655.
  • Saxena M, Van TTH, Baird FJ. et al. Pre-existing immunity against vaccine vectors – friend or foe? Microbiology (Reading). 2013; 159(Pt_1): 1–11. PubMed PMID: 23175507; eng.
  • Bayer M, Blumberg BS, Werner BG. Particles associated with Australia Antigen in the Sera of Patients with Leukaemia, Down’s Syndrome and Hepatitis. Nature. 1968;218(5146):1057–1059.
  • Millman I, Zavatone V, Gerstley BETTYJANES, et al. Australia Antigen detected in the Nuclei of Liver Cells of Patients with Viral Hepatitis by the Fluorescent Antibody Technique. Nature. 1969;222(5189):181–184.
  • Krugman S. The Newly Licensed Hepatitis B Vaccine: characteristics and Indications for Use. JAMA. 1982;247(14):2012–2015.
  • McAleer WJ, Buynak EB, Maigetter RZ, et al. Human hepatitis B vaccine from recombinant yeast. Nature. 1984;307(5947):178–180.
  • Lua LHL, Connors NK, Sainsbury F, et al. Bioengineering virus-like particles as vaccines. Biotechnol Bioeng. 2014;111(3):425–440.
  • Valeropacheco N, Pereztoledo M, Villasiskeever MA, et al. Antibody Persistence in Adults Two Years after Vaccination with an H1N1 2009 Pandemic Influenza Virus-Like Particle Vaccine. PLoS One. 2016;11:2.
  • Chang L-J, Dowd KA, Mendoza FH, et al. Safety and tolerability of chikungunya virus-like particle vaccine in healthy adults: a phase 1 dose-escalation trial. Lancet. 2014;384(9959):2046–2052.
  • Peters BS, Cheingsong-Popov R, Callow D, et al. A pilot phase II study of the safety and immunogenicity of HIV p17/p24:VLP (p24-VLP) in asymptomatic HIV seropositive subjects. J Infect. 1997;35(3):231–235.
  • Jones RM, Chichester JA, Mett V, et al. A Plant-Produced Pfs25 VLP Malaria Vaccine Candidate Induces Persistent Transmission Blocking Antibodies against Plasmodium falciparum in Immunized Mice. PLoS One. 2013;8(11):11.
  • Speiser DE, Schwarz K, Baumgaertner P, et al. Memory and effector CD8 T-cell responses after nanoparticle vaccination of melanoma patients. J Immunother. 2010;33(8):848–858.
  • Ambuhl PM, Tissot A, Fulurija A, et al. A vaccine for hypertension based on virus-like particles: preclinical efficacy and phase I safety and immunogenicity. J Hypertens. 2007;25(1):63–72.
  • Beeh K, Kanniess F, Wagner F, et al. The novel TLR-9 agonist QbG10 shows clinical efficacy in persistent allergic asthma. J Allergy Clin Immunol. 2013;131(3):866–874.
  • Fuenmayor J, Godia F, Cervera L. Production of virus-like particles for vaccines. New Biotechnology. 2017;39:174–180.
  • Koudelka KJ, Pitek AS, Manchester M, et al. Virus-based nanoparticles as versatile nanomachines. Annu Rev Virol. 2015;2(1):379–401.
  • Rohovie MJ, Nagasawa M, Swartz JR. Virus-like particles: next-generation nanoparticles for targeted therapeutic delivery. Bioeng Transl Med. 2017 2017/03/01;2(1):43–57.
  • Hill BD, Zak A, Khera E, et al. Engineering virus-like particles for antigen and drug delivery. Curr Protein Pept Sci. 2017;19(1):112–127.
  • Tama F, Brooks CL. The mechanism and pathway of pH induced swelling in cowpea chlorotic mottle virus. J Mol Biol. 2002;318(3):733–747.
  • Almeida J, Edwards DC, Brand C, et al. Formation of virosomes from influenza subunits and liposomes. Lancet. 1975;306(7941):899–901.
  • Uchida T, Kim J, Yamaizumi M, et al. Reconstitution of lipid vesicles associated with HVJ (Sendai virus) sikes. Purification and some properties of vesicles containing nontoxic fragment A of diphtheria toxin. J Cell Biol. 1979;80(1):10–20.
  • Scheule RK. Novel preparation of functional Sindbis virosomes. Biochemistry. 1986;25(15):4223–4232.
  • Helenius A, Fries E, Kartenbeck J. Reconstitution of Semliki forest virus membrane. J Cell Biol. 1977;75(3):866–880.
  • Petri WA, Wagner RR. Reconstitution into liposomes of the glycoprotein of vesicular stomatitis virus by detergent dialysis. J Biol Chem. 1979;254(11):4313–4316.
  • Stegmann T, Morselt HWM, Booy FP, et al. Functional reconstitution of influenza virus envelopes. Embo J. 1987;6(9):2651–2659.
  • Skehel JJ, Wiley DC. Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu Rev Biochem. 2000;69(1):531–569.
  • Ohuchi M, Asaoka N, Sakai T, et al. Roles of neuraminidase in the initial stage of influenza virus infection. Microbes Infect. 2006;8(5):1287–1293.
  • Jain H, Kumavat V, Singh T, et al. Immunogenicity and safety of a pediatric dose of a virosomal hepatitis A vaccine in healthy children in India. Hum Vaccin Immunother. 2014;10(7):2089–2097.
  • Lin RD, Steinmetz NF. Tobacco mosaic virus delivery of mitoxantrone for cancer therapy [10.1039/C8NR04142C]. Nanoscale. 2018;10 34:16307–16313.
  • Czapar AE, Zheng Y-R, Riddell IA, et al. Tobacco mosaic virus delivery of phenanthriplatin for cancer therapy. ACS Nano. 2016;10(4):4119–4126.
  • Bruckman MA, Czapar AE, VanMeter A, et al. Tobacco mosaic virus-based protein nanoparticles and nanorods for chemotherapy delivery targeting breast cancer. J Control Release. 2016;231:103–113.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.