736
Views
7
CrossRef citations to date
0
Altmetric
Review

Restoration of dystrophin expression and correction of Duchenne muscular dystrophy by genome editing

, &
Pages 1049-1061 | Received 26 Oct 2020, Accepted 04 Jan 2021, Published online: 25 Jan 2021

References

  • Mendell JR, Shilling C, Leslie ND, et al. Evidence-based path to newborn screening for Duchenne muscular dystrophy. Ann Neurol. 2012 Mar;71(3):304–313.
  • Ervasti JM, Ohlendieck K, Kahl SD, et al. Deficiency of a glycoprotein component of the dystrophin complex in dystrophic muscle. Nature. 1990 May 24;345(6273):315–319.
  • Guiraud S, Aartsma-Rus A, Vieira NM, et al. The pathogenesis and therapy of muscular dystrophies. Annu Rev Genomics Hum Genet. 2015;16:281–308.
  • Monaco AP, Bertelson CJ, Liechti-Gallati S, et al. An explanation for the phenotypic differences between patients bearing partial deletions of the DMD locus. Genomics. 1988 Jan;2(1):90–95.
  • Salmaninejad A, Jafari Abarghan Y, Bozorg Qomi S, et al. Common therapeutic advances for Duchenne muscular dystrophy (DMD). Int J Neurosci. 2020 Apr;3:1–20.
  • Aslesh T, Maruyama R, Yokota T. Skipping multiple exons to treat DMD-promises and challenges. Biomedicines. 2018 Jan 2;6(1):1.
  • Heo YA. Golodirsen: first approval. Drugs. 2020 Feb;80(3):329–333.
  • Lehto T, Castillo Alvarez A, Gauck S, et al. Cellular trafficking determines the exon skipping activity of Pip6a-PMO in mdx skeletal and cardiac muscle cells. Nucleic Acids Res. 2014 Mar;42(5):3207–3217.
  • Al-Attar S, Westra ER, van der Oost J, et al. Clustered regularly interspaced short palindromic repeats (CRISPRs): the hallmark of an ingenious antiviral defense mechanism in prokaryotes. Biol Chem. 2011 Apr;392(4):277–289.
  • Cai A, Kong X. Development of CRISPR-mediated systems in the study of Duchenne muscular dystrophy. Hum Gene Ther Methods. 2019 Jun;30(3):71–80.
  • Yang H, Ren S, Yu S, et al. Methods favoring homology-directed repair choice in response to CRISPR/Cas9 induced-double strand breaks. Int J Mol Sci. 2020 Sep 4;21(18):6461.
  • Lau CH, Suh Y. In vivo genome editing in animals using AAV-CRISPR system: applications to translational research of human disease. F1000Res. 2017;6:2153.
  • Zhang Y, Long C, Li H, et al. CRISPR-Cpf1 correction of muscular dystrophy mutations in human cardiomyocytes and mice. Sci Adv. 2017 Apr;3(4):e1602814.
  • Deltcheva E, Chylinski K, Sharma CM, et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature. 2011 Mar 31;471(7340):602–607.
  • Lim KRQ, Yoon C, Yokota T. Applications of CRISPR/Cas9 for the treatment of Duchenne muscular dystrophy. J Pers Med. 2018 Nov 24;8(4):38.
  • Ran FA, Cong L, Yan WX, et al. In vivo genome editing using staphylococcus aureus Cas9. Nature. 2015 Apr 9;520(7546):186–191.
  • Peng Y, Clark KJ, Campbell JM, et al. Making designer mutants in model organisms. Development. 2014 Nov;141(21):4042–4054.
  • Ousterout DG, Kabadi AM, Thakore PI, et al. Multiplex CRISPR/Cas9-based genome editing for correction of dystrophin mutations that cause Duchenne muscular dystrophy. Nat Commun. 2015 Feb 18;6:6244.
  • Tabebordbar M, Zhu K, Cheng JKW, et al. In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science. 2016 Jan 22;351(6271):407–411.
  • Iyombe-Engembe JP, Ouellet DL, Barbeau X, et al. Efficient restoration of the dystrophin gene reading frame and protein structure in DMD myoblasts using the CinDel method. Mol Ther Nucleic Acids. 2016 Jan 26;5:e283.
  • Maggio I, Liu J, Janssen JM, et al. Adenoviral vectors encoding CRISPR/Cas9 multiplexes rescue dystrophin synthesis in unselected populations of DMD muscle cells. Sci Rep. 2016 Nov 15;6:37051.
  • Zhu P, Wu F, Mosenson J, et al. CRISPR/Cas9-mediated genome editing corrects dystrophin mutation in skeletal muscle stem cells in a mouse model of muscle dystrophy. Mol Ther Nucleic Acids. 2017 Jun 16;7:31–41.
  • Lee K, Conboy M, Park HM, et al. Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair. Nat Biomed Eng. 2017;1:889–901.
  • Min YL, Li H, Rodriguez-Caycedo C, et al. CRISPR-Cas9 corrects Duchenne muscular dystrophy exon 44 deletion mutations in mice and human cells. Sci Adv. 2019 Mar;5(3):eaav4324.
  • Matre PR, Mu X, Wu J, et al. CRISPR/Cas9-based dystrophin restoration reveals a novel role for dystrophin in bioenergetics and stress resistance of muscle progenitors. Stem Cells. 2019 Dec;37(12):1615–1628.
  • Maggio I, Zittersteijn HA, Wang Q, et al. Integrating gene delivery and gene-editing technologies by adenoviral vector transfer of optimized CRISPR-Cas9 components. Gene Ther. 2020 May;27(5):209–225.
  • Jin Y, Shen Y, Su X, et al. Effective restoration of dystrophin expression in iPSC (Mdx)-derived muscle progenitor cells using the CRISPR/Cas9 system and homology-directed repair technology. Comput Struct Biotechnol J. 2020;18:765–773.
  • Li HL, Fujimoto N, Sasakawa N, et al. Precise correction of the dystrophin gene in duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPR-Cas9. Stem Cell Reports. 2015 Jan 13;4(1):143–154.
  • Joung JK, Sander JD. TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol. 2013 Jan;14(1):49–55.
  • Long C, Li H, Tiburcy M, et al. Correction of diverse muscular dystrophy mutations in human engineered heart muscle by single-site genome editing. Sci Adv. 2018 Jan;4(1):eaap9004.
  • Maggio I, Stefanucci L, Janssen JM, et al. Selection-free gene repair after adenoviral vector transduction of designer nucleases: rescue of dystrophin synthesis in DMD muscle cell populations. Nucleic Acids Res. 2016 Feb 18;44(3):1449–1470.
  • Young CS, Hicks MR, Ermolova NV, et al. A single CRISPR-Cas9 deletion strategy that targets the majority of DMD patients restores dystrophin function in hiPSC-derived muscle cells. Cell Stem Cell. 2016 Apr 7;18(4):533–540.
  • Duchene BL, Cherif K, Iyombe-Engembe JP, et al. CRISPR-induced deletion with SaCas9 restores dystrophin expression in dystrophic models in vitro and in vivo. Mol Ther. 2018 Nov 7;26(11):2604–2616.
  • Morisaka H, Yoshimi K, Okuzaki Y, et al. CRISPR-Cas3 induces broad and unidirectional genome editing in human cells. Nat Commun. 2019 Dec 6;10(1):5302.
  • Yuan J, Ma Y, Huang T, et al. Genetic modulation of RNA splicing with a CRISPR-guided cytidine deaminase. Mol Cell. 2018 Oct 18;72(2):380–394 e7.
  • Kyrychenko V, Kyrychenko S, Tiburcy M, et al. Functional correction of dystrophin actin binding domain mutations by genome editing. JCI Insight. 2017 Sep 21;2(18):e95918.
  • Suhani Vora JC, Xiao R, VanDusen NJ, et al. Rational design of a compact CRISPR-Cas9 activator for AAV-mediated delivery. bioRxiv 298620. 2018.
  • Clerk A, Morris GE, Dubowitz V, et al. Dystrophin-related protein, utrophin, in normal and dystrophic human fetal skeletal muscle. Histochem J. 1993 Aug;25(8):554–561.
  • Tinsley JM, Fairclough RJ, Storer R, et al. Daily treatment with SMTC1100, a novel small molecule utrophin upregulator, dramatically reduces the dystrophic symptoms in the mdx mouse. PLoS One. 2011 May 6;6(5):e19189.
  • Sicinski P, Geng Y, Ryder-Cook AS, et al. The molecular basis of muscular dystrophy in the mdx mouse: a point mutation. Science. 1989 Jun 30;244(4912):1578–1580.
  • Hasan Mollanoori YR, Hassani B, Mehr MH, et al. Promising therapeutic approaches using CRISPR/Cas9 genome editing technology in the treatment of Duchenne muscular dystrophy. Genes Dis. 2020 January 8;2020.
  • Qi LS, Larson MH, Gilbert LA, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell. 2013 Feb 28;152(5):1173–1183.
  • Mali P, Aach J, Stranges PB, et al. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol. 2013 Sep;31(9):833–838.
  • Wojtal D, Kemaladewi DU, Malam Z, et al. Spell checking nature: versatility of CRISPR/Cas9 for developing treatments for inherited disorders. Am J Hum Genet. 2016 Jan 7;98(1):90–101.
  • Vial T, Descotes J. Immunosuppressive drugs and cancer. Toxicology. 2003 Apr 1;185(3):229–240.
  • Song Y, Morales L, Malik AS, et al. Non-immunogenic utrophin gene therapy for the treatment of muscular dystrophy animal models. Nat Med. 2019 Oct;25(10):1505–1511.
  • Long C, McAnally JR, Shelton JM, et al. Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA. Science. 2014 Sep 5;345(6201):1184–1188.
  • Wu X, Scott DA, Kriz AJ, et al. Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat Biotechnol. 2014 Jul;32(7):670–676.
  • Duan J, Lu G, Xie Z, et al. Genome-wide identification of CRISPR/Cas9 off-targets in human genome. Cell Res. 2014 Aug;24(8):1009–1012.
  • Long C, Amoasii L, Mireault AA, et al. Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science. 2016 Jan 22;351(6271):400–403.
  • Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell. 2014 Jun 5;157(6):1262–1278.
  • Amoasii L, Hildyard JCW, Li H, et al. Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy. Science. 2018 Oct 5;362(6410):86–91.
  • Mata Lopez S, Balog-Alvarez C, Vitha S, et al. Challenges associated with homologous directed repair using CRISPR-Cas9 and TALEN to edit the DMD genetic mutation in canine Duchenne muscular dystrophy. PLoS One. 2020;15(1):e0228072.
  • Moretti A, Fonteyne L, Giesert F, et al. Somatic gene editing ameliorates skeletal and cardiac muscle failure in pig and human models of Duchenne muscular dystrophy. Nat Med. 2020 Feb;26(2):207–214.
  • Nelson CE, Hakim CH, Ousterout DG, et al. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science. 2016 Jan 22;351(6271):403–407.
  • Nance ME, Shi R, Hakim CH, et al. AAV9 edits muscle stem cells in normal and dystrophic adult mice. Mol Ther. 2019 Sep 4;27(9):1568–1585.
  • Zhang Y, Li H, Min YL, et al. Enhanced CRISPR-Cas9 correction of Duchenne muscular dystrophy in mice by a self-complementary AAV delivery system. Sci Adv. 2020 Feb;6(8):eaay6812.
  • Petkova MV, Stantzou A, Morin A, et al. Live-imaging of revertant and therapeutically restored dystrophin in the Dmd(EGFP-mdx) mouse model for Duchenne muscular dystrophy. Neuropathol Appl Neurobiol. 2020 Jun 23;46:602–614.
  • Hakim CH, Wasala NB, Nelson CE, et al. AAV CRISPR editing rescues cardiac and muscle function for 18 months in dystrophic mice. JCI Insight. 2018 Dec 6;3(23):e124297.
  • Amoasii L, Long C, Li H, et al. Single-cut genome editing restores dystrophin expression in a new mouse model of muscular dystrophy. Sci Transl Med. 2017 Nov 29;9(418):eaan8081.
  • Xu L, Park KH, Zhao L, et al. CRISPR-mediated genome editing restores dystrophin expression and function in mdx mice. Mol Ther. 2016 Mar;24(3):564–569.
  • Bengtsson NE, Hall JK, Odom GL, et al. Muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy. Nat Commun. 2017 Feb 14;8:14454.
  • Young CS, Mokhonova E, Quinonez M, et al. Creation of a novel humanized dystrophic mouse model of Duchenne muscular dystrophy and application of a CRISPR/Cas9 gene editing therapy. J Neuromuscul Dis. 2017;4(2):139–145.
  • Chapman VM, Miller DR, Armstrong D, et al. Recovery of induced mutations for X chromosome-linked muscular dystrophy in mice. Proc Natl Acad Sci U S A. 1989 Feb;86(4):1292–1296.
  • Veltrop M, van Vliet L, Hulsker M, et al. A dystrophic Duchenne mouse model for testing human antisense oligonucleotides. PLoS One. 2018;13(2):e0193289.
  • T Hoen PA, de Meijer EJ, Boer JM, et al. Generation and characterization of transgenic mice with the full-length human DMD gene. J Biol Chem. 2008 Feb 29;283(9):5899–5907.
  • Koo T, Lu-Nguyen NB, Malerba A, et al. Functional rescue of dystrophin deficiency in mice caused by frameshift mutations using campylobacter jejuni Cas9. Mol Ther. 2018 Jun 6;26(6):1529–1538.
  • Fonfara I, Le Rhun A, Chylinski K, et al. Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems. Nucleic Acids Res. 2014 Feb;42(4):2577–2590.
  • Kim E, Koo T, Park SW, et al. In vivo genome editing with a small Cas9 orthologue derived from campylobacter jejuni. Nat Commun. 2017 Feb 21;8:14500.
  • Allen JM, Debelak DJ, Reynolds TC, et al. Identification and elimination of replication-competent adeno-associated virus (AAV) that can arise by nonhomologous recombination during AAV vector production. J Virol. 1997 Sep;71(9):6816–6822.
  • Nelson CE, Wu Y, Gemberling MP, et al. Long-term evaluation of AAV-CRISPR genome editing for Duchenne muscular dystrophy. Nat Med. 2019 Mar;25(3):427–432.
  • Xu L, Lau YS, Gao Y, et al. Life-long AAV-mediated CRISPR genome editing in dystrophic heart improves cardiomyopathy without causing serious lesions in mdx mice. Mol Ther. 2019 Aug 7;27(8):1407–1414.
  • El Refaey M, Xu L, Gao Y, et al. In vivo genome editing restores dystrophin expression and cardiac function in dystrophic mice. Circ Res. 2017 Sep 29;121(8):923–929.
  • Ryu SM, Koo T, Kim K, et al. Adenine base editing in mouse embryos and an adult mouse model of Duchenne muscular dystrophy. Nat Biotechnol. 2018 Jul;36(6):536–539.
  • Lai Y, Yue Y, Liu M, et al. Efficient in vivo gene expression by trans-splicing adeno-associated viral vectors. Nat Biotechnol. 2005 Nov;23(11):1435–1439.
  • Sun L, Li J, Xiao X. Overcoming adeno-associated virus vector size limitation through viral DNA heterodimerization. Nat Med. 2000 May;6(5):599–602.
  • Walmsley GL, Arechavala-Gomeza V, Fernandez-Fuente M, et al. A duchenne muscular dystrophy gene hot spot mutation in dystrophin-deficient cavalier king charles spaniels is amenable to exon 51 skipping. PLoS One. 2010 Jan 13;5(1):e8647.
  • Sharp NJ, Kornegay JN, Van Camp SD, et al. An error in dystrophin mRNA processing in golden retriever muscular dystrophy, an animal homologue of Duchenne muscular dystrophy. Genomics. 1992 May;13(1):115–121.
  • Klymiuk N, Blutke A, Graf A, et al. Dystrophin-deficient pigs provide new insights into the hierarchy of physiological derangements of dystrophic muscle. Hum Mol Genet. 2013 Nov 1;22(21):4368–4382.
  • Truong DJ, Kuhner K, Kuhn R, et al. Development of an intein-mediated split-Cas9 system for gene therapy. Nucleic Acids Res. 2015 Jul 27;43(13):6450–6458.
  • Gee P, Lung MSY, Okuzaki Y, et al. Extracellular nanovesicles for packaging of CRISPR-Cas9 protein and sgRNA to induce therapeutic exon skipping. Nat Commun. 2020 Mar 13;11(1):1334.
  • Simhadri VL, McGill J, McMahon S, et al. Prevalence of pre-existing antibodies to CRISPR-associated nuclease Cas9 in the USA population. Mol Ther Methods Clin Dev. 2018 Sep 21;10:105–112.
  • Wu Z, Yang H, Colosi P. Effect of genome size on AAV vector packaging. Mol Ther. 2010 Jan;18(1):80–86.
  • Cradick TJ, Fine EJ, Antico CJ, et al. CRISPR/Cas9 systems targeting beta-globin and CCR5 genes have substantial off-target activity. Nucleic Acids Res. 2013 Nov;41(20):9584–9592.
  • Fu Y, Foden JA, Khayter C, et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol. 2013 Sep;31(9):822–826.
  • Hsu PD, Scott DA, Weinstein JA, et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol. 2013 Sep;31(9):827–832.
  • Wei T, Cheng Q, Min YL, et al. Systemic nanoparticle delivery of CRISPR-Cas9 ribonucleoproteins for effective tissue specific genome editing. Nat Commun. 2020 Jun 26;11(1):3232.
  • Mendell JR, Sahenk Z, Lehman K, et al. Assessment of systemic delivery of rAAVrh74.MHCK7.micro-dystrophin in children with Duchenne muscular dystrophy: a nonrandomized controlled trial. JAMA Neurol. 2020 Jun 15;77:1122.
  • Egorova TV, Zotova ED, Reshetov DA, et al. CRISPR/Cas9-generated mouse model of Duchenne muscular dystrophy recapitulating a newly identified large 430 kb deletion in the human DMD gene. Dis Model Mech. 2019 Apr 25;12(4):dmm037655.
  • Yu HH, Zhao H, Qing YB, et al. Porcine zygote injection with Cas9/sgRNA results in DMD-modified pig with muscle dystrophy. Int J Mol Sci. 2016 Oct 9;17(10):1668.
  • Sui T, Lau YS, Liu D, et al. A novel rabbit model of Duchenne muscular dystrophy generated by CRISPR/Cas9. Dis Model Mech. 2018 Jun 4;11(6):dmm032201.
  • Kleinstiver BP, Pattanayak V, Prew MS, et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature. 2016 Jan 28;529(7587):490–495.
  • Batra R, Nelles DA, Pirie E, et al. Elimination of toxic microsatellite repeat expansion RNA by RNA-targeting Cas9. Cell. 2017 Aug 24;170(5):899–912 e10.
  • Zhang XH, Tee LY, Wang XG, et al. Off-target effects in CRISPR/Cas9-mediated genome engineering. Mol Ther Nucleic Acids. 2015 Nov 17;4:e264.
  • Kim S, Kim D, Cho SW, et al. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res. 2014 Jun;24(6):1012–1019.
  • Bae S, Park J, Kim JS. Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics. 2014 May 15;30(10):1473–1475.
  • Guilinger JP, Thompson DB, Liu DR. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat Biotechnol. 2014 Jun;32(6):577–582.
  • Ran FA, Hsu PD, Lin CY, et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell. 2013 Sep 12;154(6):1380–1389.
  • Le Guiner C, Servais L, Montus M, et al. Long-term microdystrophin gene therapy is effective in a canine model of Duchenne muscular dystrophy. Nat Commun. 2017 Jul;25(8):16105.
  • Kwon JBEA, Vankara A, Bohning JD, et al. In vivo gene editing of muscle stem cells with adeno-associated viral vectors in a mouse model of Duchenne muscular dystrophy. Mol Ther Meth Clin Develop. 2020;19:320-329.
  • Zolgensma - one-time gene therapy for spinal muscular atrophy. Med Lett Drugs Ther. 2019 Jul 29;61(1577):113–114. PMID: 31381549.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.