606
Views
2
CrossRef citations to date
0
Altmetric
Review

Role of extracellular vesicles in severe pneumonia and sepsis

, &
Pages 747-762 | Received 09 Nov 2021, Accepted 12 Apr 2022, Published online: 16 Apr 2022

References

  • Iraci N, Leonardi T, Gessler F, et al. Focus on extracellular vesicles: physiological role and signalling properties of extracellular membrane vesicles. Int J Mol Sci. 2016 Feb 6;17(2):171. DOI:10.3390/ijms17020171
  • Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol. 2013 Feb 18;200(4):373–383.
  • Lane RE, Korbie D, Hill MM, et al. Extracellular vesicles as circulating cancer biomarkers: opportunities and challenges. Clin Transl Med. 2018 May 31;7(1):14.
  • Morel O, Morel N, Jesel L, et al. Microparticles: a critical component in the nexus between inflammation, immunity, and thrombosis. Semin Immunopathol. 2011 Sep;33(5):469–486.
  • Groot Kormelink T, Mol S, de Jong Ec, et al. The role of extracellular vesicles when innate meets adaptive. Semin Immunopathol. 2018 Sep;40(5):439–452.
  • Fleischmann C, Scherag A, Adhikari NK, et al. Assessment of global incidence and mortality of hospital-treated sepsis. Current Estimates and Limitations. Am J Respir Crit Care Med. 2016 Feb 1;193(3):259–272.
  • Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA. [2016 Feb 23];315(8):801–810.
  • Rhodes A, Evans LE, Alhazzani W, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Crit Care Med. 2017 Mar;45(3):486–552.
  • Vincent JL, Teixeira L. Sepsis biomarkers. Value and limitations. Am J Respir Crit Care Med. 2014 Nov 15;190(10):1081–1082.
  • Distler JH, Huber LC, Gay S, et al. Microparticles as mediators of cellular cross-talk in inflammatory disease. Autoimmunity. 2006 Dec;39(8):683–690. DOI:10.1080/08916930601061538
  • Nieuwland R, Berckmans RJ, McGregor S, et al. Cellular origin and procoagulant properties of microparticles in meningococcal sepsis. Blood. 2000 Feb 1;95(3):930–935. DOI:10.1182/blood.V95.3.930.003k46_930_935
  • Reid VL, Webster NR. Role of microparticles in sepsis. Br J Anaesth. 2012 Oct;109(4):503–513.
  • Brown GT, McIntyre TM. Lipopolysaccharide signaling without a nucleus: kinase cascades stimulate platelet shedding of proinflammatory IL-1beta-rich microparticles. J Immunol. 2011 May 1;186(9):5489–5496. DOI:10.4049/jimmunol.1001623
  • Aras O, Shet A, Bach RR, et al. Induction of microparticle- and cell-associated intravascular tissue factor in human endotoxemia. Blood. 2004 Jun 15;103(12):4545–4553. DOI:10.1182/blood-2003-03-0713
  • Witwer KW, Buzas EI, Bemis LT, et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles. 2013;2.
  • Lee Y, El Andaloussi S, Wood MJ. Exosomes and microvesicles: extracellular vesicles for genetic information transfer and gene therapy. Hum Mol Genet. 2012 Oct 15;21(R1):R125–34.
  • Thery C, Ostrowski M, Segura E. Membrane vesicles as conveyors of immune responses. Nat Rev Immunol. 2009 Aug;9(8):581–593.
  • Akers JC, Gonda D, Kim R, et al. Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J Neurooncol. 2013 May;113(1):1–11.
  • Erwig LP, Henson PM. Clearance of apoptotic cells by phagocytes. Cell Death Differ. 2008 Feb;15(2):243–250.
  • Thery C, Witwer KW, Aikawa E, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the international society for extracellular vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018;7(1):1535750.
  • Yuana Y, Bertina RM, Osanto S. Pre-analytical and analytical issues in the analysis of blood microparticles. Thromb Haemost. 2011 Mar;105(3):396–408.
  • Dragovic RA, Gardiner C, Brooks AS, et al. Sizing and phenotyping of cellular vesicles using nanoparticle tracking analysis. Nanomedicine. 2011 Dec;7(6):780–788.
  • Dubyak GR. P2X7 receptor regulation of non-classical secretion from immune effector cells. Cell Microbiol. 2012 Nov;14(11):1697–1706.
  • Lo Cicero A, Schiera G, Proia P, et al. Oligodendroglioma cells shed microvesicles which contain TRAIL as well as molecular chaperones and induce cell death in astrocytes. Int J Oncol. 2011 Dec;39(6):1353–1357.
  • Cocucci E, Meldolesi J. Ectosomes and exosomes: shedding the confusion between extracellular vesicles. Trends Cell Biol. 2015 Jun;25(6):364–372.
  • Tetta C, Bruno S, Fonsato V, et al. The role of microvesicles in tissue repair. Organogenesis. 2011 Apr-Jun;7(2):105–115.
  • Montecalvo A, Larregina AT, Shufesky WJ, et al. Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood. [2012 Jan 19];119(3):756–766.
  • Fujimi S, Ogura H, Tanaka H, et al. Activated polymorphonuclear leukocytes enhance production of leukocyte microparticles with increased adhesion molecules in patients with sepsis. J Trauma. 2002 Mar;52(3):443–448.
  • Burger D, Schock S, Thompson CS, et al. Microparticles: biomarkers and beyond. Clin Sci (Lond). 2013 Apr;124(7):423–441.
  • Diamant M, Tushuizen ME, Sturk A, et al. Cellular microparticles: new players in the field of vascular disease? Eur J Clin Invest. 2004 Jun;34(6):392–401.
  • Wu ZH, Ji CL, Li H, et al. Membrane microparticles and diseases. Eur Rev Med Pharmacol Sci. 2013 Sep;17(18):2420–2427.
  • Cloutier N, Tan S, Boudreau LH, et al. The exposure of autoantigens by microparticles underlies the formation of potent inflammatory components: the microparticle-associated immune complexes. EMBO Mol Med. 2013 Feb;5(2):235–249.
  • Dinkla S, van Cranenbroek B, van der Heijden WA, et al. Platelet microparticles inhibit IL-17 production by regulatory T cells through P-selectin. Blood. [2016 Apr 21];127(16):1976–1986.
  • Aatonen M, Gronholm M, Siljander PR. Platelet-derived microvesicles: multitalented participants in intercellular communication. Semin Thromb Hemost. 2012 Feb;38(1):102–113.
  • Boilard E, Nigrovic PA, Larabee K, et al. Platelets amplify inflammation in arthritis via collagen-dependent microparticle production. Science. [2010 Jan 29];327(5965):580–583.
  • Sibikova M, Zivny J, Janota J. Cell membrane-derived microvesicles in systemic inflammatory response. Folia Biol (Praha). 2018;64(4):113–124.
  • Nomura S, Okamae F, Abe M, et al. Platelets expressing P-selectin and platelet-derived microparticles in stored platelet concentrates bind to PSGL-1 on filtrated leukocytes. Clin Appl Thromb Hemost. 2000 Oct;6(4):213–221.
  • Barry OP, Kazanietz MG, Pratico D, et al. Arachidonic acid in platelet microparticles up-regulates cyclooxygenase-2-dependent prostaglandin formation via a protein kinase C/mitogen-activated protein kinase-dependent pathway. J Biol Chem. [1999 Mar 12];274(11):7545–7556.
  • Cognasse F, Hamzeh-Cognasse H, Laradi S, et al. The role of microparticles in inflammation and transfusion: a concise review. Transfus Apher Sci. 2015 Oct;53(2):159–167.
  • Khan SY, Kelher MR, Heal JM, et al. Soluble CD40 ligand accumulates in stored blood components, primes neutrophils through CD40, and is a potential cofactor in the development of transfusion-related acute lung injury. Blood. [2006 Oct 1];108(7):2455–2462.
  • Colombo M, Raposo G, Thery C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 2014;30:255–289.
  • Andersson U, Tracey KJ. HMGB1 is a therapeutic target for sterile inflammation and infection. Annu Rev Immunol. 2011;29:139–162.
  • Distler JH, Pisetsky DS, Huber LC, et al. Microparticles as regulators of inflammation: novel players of cellular crosstalk in the rheumatic diseases. Arthritis Rheum. 2005 Nov;52(11):3337–3348.
  • Szul T, Bratcher PE, Fraser KB, et al. Toll-Like receptor 4 engagement mediates prolyl endopeptidase release from airway epithelia via exosomes. Am J Respir Cell Mol Biol. 2016 Mar;54(3):359–369.
  • Moon HG, Cao Y, Yang J, et al. Lung epithelial cell-derived extracellular vesicles activate macrophage-mediated inflammatory responses via ROCK1 pathway.Cell Death Dis. 2015 Dec 10;6(12):e2016.
  • Lee H, Zhang D, Zhu Z, et al. Epithelial cell-derived microvesicles activate macrophages and promote inflammation via microvesicle-containing microRNAs. Sci Rep. 2016 Oct 12;6:35250.
  • Kulshreshtha A, Ahmad T, Agrawal A, et al. Proinflammatory role of epithelial cell-derived exosomes in allergic airway inflammation. J Allergy Clin Immunol. 2013 Apr;131(4):1194–203, 1203 e1-14.
  • Lee H, Groot M, Pinilla-Vera M, et al. Identification of miRNA-rich vesicles in bronchoalveolar lavage fluid: insights into the function and heterogeneity of extracellular vesicles. J Control Release. 2019 Jan 28;294:43–52.
  • Lee H, Zhang D, Wu J, et al. Lung epithelial cell-derived microvesicles regulate macrophage migration via microrna-17/221-induced integrin beta1 recycling. J Immunol. [2017 Aug 15];199(4):1453–1464.
  • Scheller N, Herold S, Kellner R, et al. Proviral microRNAs detected in extracellular vesicles from bronchoalveolar lavage fluid of patients with influenza virus-induced acute respiratory distress syndrome. J Infect Dis. [2019 Jan 29];219(4):540–543.
  • Bastarache JA, Fremont RD, Kropski JA, et al. Procoagulant alveolar microparticles in the lungs of patients with acute respiratory distress syndrome. Am J Physiol Lung Cell Mol Physiol. 2009 Dec;297(6):L1035–41.
  • Zhu Z, Zhang D, Lee H, et al. Macrophage-derived apoptotic bodies promote the proliferation of the recipient cells via shuttling microRNA-221/222. J Leukoc Biol. 2017 Jun;101(6):1349–1359.
  • Soni S, Wilson MR, O’Dea KP, et al. Alveolar macrophage-derived microvesicles mediate acute lung injury. Thorax. 2016 Nov;71(11): 1020–1029.
  • Kovach MA, Singer BH, Newstead MW, et al. IL-36gamma is secreted in microparticles and exosomes by lung macrophages in response to bacteria and bacterial components. J Leukoc Biol. 2016 Aug;100(2):413–421.
  • Neri T, Armani C, Pegoli A, et al. Role of NF-kappaB and PPAR-gamma in lung inflammation induced by monocyte-derived microparticles. Eur Respir J. 2011 Jun;37(6):1494–1502.
  • Mitra S, Exline M, Habyarimana F, et al. Microparticulate caspase 1 regulates gasdermin d and pulmonary vascular endothelial cell injury. Am J Respir Cell Mol Biol. 2018 Jul;59(1):56–64.
  • Li H, Meng X, Gao Y, et al. Isolation and phenotypic characteristics of microparticles in acute respiratory distress syndrome. Int J Clin Exp Pathol. 2015;8(2):1640–1648.
  • Matthay MA, Zemans RL. The acute respiratory distress syndrome: pathogenesis and treatment. Annu Rev Pathol. 2011;6:147–163.
  • Andrews AM, Rizzo V. Microparticle-induced activation of the vascular endothelium requires caveolin-1/caveolae. PLoS One. 2016;11(2):e0149272.
  • Densmore JC, Signorino PR, Ou J, et al. Endothelium-derived microparticles induce endothelial dysfunction and acute lung injury. Shock. 2006 Nov;26(5):464–471.
  • Buesing KL, Densmore JC, Kaul S, et al. Endothelial microparticles induce inflammation in acute lung injury. J Surg Res. 2011 Mar;166(1):32–39.
  • Liu A, Park JH, Zhang X, et al. Therapeutic effects of hyaluronic acid in bacterial pneumonia in ex vivo perfused human lungs. Am J Respir Crit Care Med. 2019 Nov 15;200(10):1234–1245.
  • Guervilly C, Lacroix R, Forel JM, et al. High levels of circulating leukocyte microparticles are associated with better outcome in acute respiratory distress syndrome. Crit Care. 2011;15(1):R31.
  • Lashin HMS, Nadkarni S, Oggero S, et al. Microvesicle subsets in sepsis due to community acquired pneumonia compared to faecal peritonitis. Shock. 2018 Apr;49(4):393–401.
  • Li H, Meng X, Liang X, et al. Administration of microparticles from blood of the lipopolysaccharide-treated rats serves to induce pathologic changes of acute respiratory distress syndrome. Exp Biol Med (Maywood). 2015 Dec;240(12):1735–1741.
  • Eken C, Martin PJ, Sadallah S, et al. Ectosomes released by polymorphonuclear neutrophils induce a MerTK-dependent anti-inflammatory pathway in macrophages. J Biol Chem. [2010 Dec 17];285(51):39914–39921.
  • Gasser O, Schifferli JA. Activated polymorphonuclear neutrophils disseminate anti-inflammatory microparticles by ectocytosis. Blood. 2004 Oct 15;104(8):2543–2548.
  • Neudecker V, Brodsky KS, Clambey ET, et al. Neutrophil transfer of miR-223 to lung epithelial cells dampens acute lung injury in mice. Sci Transl Med. 2017 Sep 20;9(408):eaah5360.
  • Timar CI, Lorincz AM, Csepanyi-Komi R, et al. Antibacterial effect of microvesicles released from human neutrophilic granulocytes. Blood. 2013 Jan 17;121(3):510–518.
  • Kolonics F, Szeifert V, Timar CI, et al. The functional heterogeneity of neutrophil-derived extracellular vesicles reflects the status of the parent cell. Cells. 2020 Dec 18;9(12):2718.
  • Respiratory Distress Syndrome N A, Brower RG, Matthay MA, et al. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. [2000 May 4];342(18):1301–1308.
  • Letsiou E, Sammani S, Zhang W, et al. Pathologic mechanical stress and endotoxin exposure increases lung endothelial microparticle shedding. Am J Respir Cell Mol Biol. 2015 Feb;52(2):193–204.
  • Cabrera-Benitez NE, Valladares F, Garcia-Hernandez S, et al. Altered profile of circulating endothelial-derived microparticles in ventilator-induced lung injury. Crit Care Med. 2015 Dec;43(12):e551–9.
  • Chavez L, Meguro J, Chen S, et al. Circulating extracellular vesicles activate the pyroptosis pathway in the brain following ventilation-induced lung injury. J Neuroinflammation. [2021 Dec 29];18(1):310.
  • Hopkins RO, Weaver LK, Collingridge D, et al. Two-year cognitive, emotional, and quality-of-life outcomes in acute respiratory distress syndrome. Am J Respir Crit Care Med. [2005 Feb 15];171(4):340–347.
  • Zafrani L, Gerotziafas G, Byrnes C, et al. Calpastatin controls polymicrobial sepsis by limiting procoagulant microparticle release. Am J Respir Crit Care Med. [2012 Apr 1];185(7):744–755.
  • Meziani F, Delabranche X, Asfar P, et al. Bench-to-bedside review: circulating microparticles–a new player in sepsis? Crit Care. 2010;14(5):236.
  • Mortaza S, Martinez MC, Baron-Menguy C, et al. Detrimental hemodynamic and inflammatory effects of microparticles originating from septic rats. Crit Care Med. 2009 Jun;37(6):2045–2050.
  • Mastronardi ML, Mostefai HA, Meziani F, et al. Circulating microparticles from septic shock patients exert differential tissue expression of enzymes related to inflammation and oxidative stress. Crit Care Med. 2011 Jul;39(7):1739–1748.
  • Essandoh K, Yang L, Wang X, et al. Blockade of exosome generation with GW4869 dampens the sepsis-induced inflammation and cardiac dysfunction. Biochim Biophys Acta. 2015 Nov;1852(11):2362–2371.
  • Azevedo LC, Janiszewski M, Pontieri V, et al. Platelet-derived exosomes from septic shock patients induce myocardial dysfunction. Crit Care. 2007;11(6):R120.
  • Li JJ, Wang B, Kodali MC, et al. In vivo evidence for the contribution of peripheral circulating inflammatory exosomes to neuroinflammation. J Neuroinflammation. [2018 Jan 8];15(1):8.
  • Balusu S, Van Wonterghem E, De Rycke R, et al. Identification of a novel mechanism of blood-brain communication during peripheral inflammation via choroid plexus-derived extracellular vesicles. EMBO Mol Med. 2016 Oct;8(10):1162–1183.
  • Iwashyna TJ, Ely EW, Smith DM, et al. Long-term cognitive impairment and functional disability among survivors of severe sepsis. JAMA. [2010 Oct 27];304(16):1787–1794.
  • Puddu P, Puddu GM, Cravero E, et al. The involvement of circulating microparticles in inflammation, coagulation and cardiovascular diseases. Can J Cardiol. 2010 Apr;26(4):140–145.
  • Ogura H, Kawasaki T, Tanaka H, et al. Activated platelets enhance microparticle formation and platelet-leukocyte interaction in severe trauma and sepsis. J Trauma. 2001 May;50(5):801–809.
  • Barry OP, Pratico D, Lawson JA, et al. Transcellular activation of platelets and endothelial cells by bioactive lipids in platelet microparticles. J Clin Invest. 1997 May 1;99(9):2118–2127.
  • Barry OP, Pratico D, Savani RC, et al. Modulation of monocyte-endothelial cell interactions by platelet microparticles. J Clin Invest. [1998 Jul 1];102(1):136–144.
  • Jy W, Mao WW, Horstman L, et al. Platelet microparticles bind, activate and aggregate neutrophils in vitro. Blood Cells Mol Dis. 1995;21(3):217–231. discussion 231a.
  • Lehner GF, Harler U, Haller VM, et al. Characterization of microvesicles in septic shock using high-sensitivity flow cytometry. Shock. 2016 Oct;46(4):373–381.
  • Ohuchi M, Fujino K, Kishimoto T, et al. Association of the plasma platelet-derived microparticles to platelet count ratio with hospital mortality and disseminated intravascular coagulopathy in critically ill patients. J Atheroscler Thromb. 2015 Aug 26;22(8):773–782.
  • Mesri M, Altieri DC. Endothelial cell activation by leukocyte microparticles. J Immunol. 1998 Oct 15;161(8):4382–4387.
  • Tang K, Liu J, Yang Z, et al. Microparticles mediate enzyme transfer from platelets to mast cells: a new pathway for lipoxin A4 biosynthesis. Biochem Biophys Res Commun. [2010 Sep 24];400(3):432–436.
  • Sadallah S, Eken C, Martin PJ, et al. Microparticles (ectosomes) shed by stored human platelets downregulate macrophages and modify the development of dendritic cells. J Immunol. [2011 Jun 1];186(11):6543–6552.
  • Dalli J, Norling LV, Renshaw D, et al. Annexin 1 mediates the rapid anti-inflammatory effects of neutrophil-derived microparticles. Blood. [2008 Sep 15];112(6):2512–2519.
  • Johnson BL III, Kuethe JW, Caldwell CC. Neutrophil derived microvesicles: emerging role of a key mediator to the immune response. Endocr Metab Immune Disord Drug Targets. 2014;14(3):210–217.
  • Woei AJFJ, van der Starre WE, Tesselaar ME, et al. Procoagulant tissue factor activity on microparticles is associated with disease severity and bacteremia in febrile urinary tract infections. Thromb Res. 2014 May;133(5):799–803.
  • Satta N, Freyssinet JM, Toti F. The significance of human monocyte thrombomodulin during membrane vesiculation and after stimulation by lipopolysaccharide. Br J Haematol. 1997 Mar;96(3):534–542.
  • Aharon A, Tamari T, Brenner B. Monocyte-derived microparticles and exosomes induce procoagulant and apoptotic effects on endothelial cells. Thromb Haemost. 2008 Nov;100(5):878–885.
  • Iwamoto S, Kawasaki T, Kambayashi J, et al. Platelet microparticles: a carrier of platelet-activating factor? Biochem Biophys Res Commun. 1996 Jan 26 218(3):940–944. DOI: 10.1006/bbrc.1996.0166
  • Satta N, Toti F, Feugeas O, et al. Monocyte vesiculation is a possible mechanism for dissemination of membrane-associated procoagulant activities and adhesion molecules after stimulation by lipopolysaccharide. J Immunol. [1994 Oct 1];153(7):3245–3255.
  • Jy W, Jimenez JJ, Mauro LM, et al. Endothelial microparticles induce formation of platelet aggregates via a von Willebrand factor/ristocetin dependent pathway, rendering them resistant to dissociation. J Thromb Haemost. 2005 Jun;3(6):1301–1308. DOI:10.1111/j.1538-7836.2005.01384.x
  • Jimenez JJ, Jy W, Mauro LM, et al. Endothelial microparticles released in thrombotic thrombocytopenic purpura express von Willebrand factor and markers of endothelial activation. Br J Haematol. 2003 Dec;123(5):896–902. DOI:10.1046/j.1365-2141.2003.04716.x
  • Delabranche X, Boisrame-Helms J, Asfar P, et al. Microparticles are new biomarkers of septic shock-induced disseminated intravascular coagulopathy. Intensive Care Med. 2013 Oct;39(10):1695–1703. DOI:10.1007/s00134-013-2993-x
  • Zafrani L, Ince C, Yuen PS. Microparticles during sepsis: target, canary or cure? Intensive Care Med. 2013 Oct;39(10):1854–1856.
  • Delabranche X, Quenot JP, Lavigne T, et al. Early Detection of Disseminated Intravascular Coagulation During Septic Shock: a Multicenter Prospective Study. Crit Care Med. 2016 Oct;44(10):e930–9. DOI:10.1097/CCM.0000000000001836
  • Cocucci E, Racchetti G, Meldolesi J. Shedding microvesicles: artefacts no more. Trends Cell Biol. 2009 Feb;19(2):43–51.
  • Zhang Y, Meng H, Ma R, et al. Circulating microparticles, blood cells, and endothelium induce procoagulant activity in sepsis through phosphatidylserine exposure. Shock. 2016 Mar;45(3):299–307. DOI:10.1097/SHK.0000000000000509
  • Tripisciano C, Weiss R, Eichhorn T, et al. Different potential of extracellular vesicles to support thrombin generation: contributions of phosphatidylserine, tissue factor, and cellular origin. Sci Rep. 2017 Jul 26 7(1):6522. DOI:10.1038/s41598-017-03262-2
  • Chou J, Mackman N, Merrill-Skoloff G, et al. Hematopoietic cell-derived microparticle tissue factor contributes to fibrin formation during thrombus propagation. Blood. 2004 Nov 15 104(10):3190–3197. DOI:10.1182/blood-2004-03-0935
  • Holme PA, Solum NO, Brosstad F, et al. Microvesicles bind soluble fibrinogen, adhere to immobilized fibrinogen and coaggregate with platelets. Thromb Haemost. 1998 Feb;79(2):389–394. DOI:10.1055/s-0037-1614997
  • Janiszewski M, Do Carmo AO, Pedro MA, et al. Platelet-derived exosomes of septic individuals possess proapoptotic NAD(P)H oxidase activity: a novel vascular redox pathway. Crit Care Med. 2004 Mar;32(3):818–825. DOI:10.1097/01.CCM.0000114829.17746.19
  • Brodsky SV, Zhang F, Nasjletti A, et al. Endothelium-derived microparticles impair endothelial function in vitro. Am J Physiol Heart Circ Physiol. 2004 May;286(5):H1910–5. DOI:10.1152/ajpheart.01172.2003
  • Forest A, Pautas E, Ray P, et al. Circulating microparticles and procoagulant activity in elderly patients. J Gerontol A Biol Sci Med Sci. 2010 Apr;65(4):414–420. DOI:10.1093/gerona/glp187
  • Martin S, Tesse A, Hugel B, et al. Shed membrane particles from T lymphocytes impair endothelial function and regulate endothelial protein expression. Circulation. 2004 Apr 6 109(13):1653–1659. DOI:10.1161/01.CIR.0000124065.31211.6E
  • Tesse A, Martinez MC, Hugel B, et al. Upregulation of proinflammatory proteins through NF-kappaB pathway by shed membrane microparticles results in vascular hyporeactivity. Arterioscler Thromb Vasc Biol. 2005 Dec;25(12):2522–2527. DOI:10.1161/01.ATV.0000189298.62240.5d
  • Mostefai HA, Andriantsitohaina R, Martinez MC. Plasma membrane microparticles in angiogenesis: role in ischemic diseases and in cancer. Physiol Res. 2008;57(3):311–320.
  • Laher I. Microparticles have macro effects in sepsis. Crit Care Med. 2011 Jul;39(7):1842–1843.
  • Xia X, Yuan P, Liu Y, et al. Emerging roles of extracellular vesicles in COVID-19, a double-edged sword? Immunology. 2021 Aug;1634:416–430. DOI:10.1111/imm.13329
  • Inal JM. Decoy ACE2-expressing extracellular vesicles that competitively bind SARS-CoV-2 as a possible COVID-19 therapy. Clin Sci (Lond). 2020 Jun 26; 134(12):1301–1304. DOI: 10.1042/CS20200623
  • Earnest JT, Hantak MP, Li K, et al. The tetraspanin CD9 facilitates MERS-coronavirus entry by scaffolding host cell receptors and proteases. PLoS Pathog. 2017 Jul;13(7):e1006546. DOI:10.1371/journal.ppat.1006546
  • Goodlet KJ, Bansal S, Arjuna A, et al. COVID-19 in a lung transplant recipient: exploring the diagnostic role of circulating exosomes and the clinical impact of advanced immunosuppression. Transpl Infect Dis. 2021 Apr;23(2):e13480. DOI:10.1111/tid.13480
  • Kwon Y, Nukala SB, Srivastava S, et al. Detection of viral RNA fragments in human iPSC cardiomyocytes following treatment with extracellular vesicles from SARS-CoV-2 coding sequence overexpressing lung epithelial cells. Stem Cell Res Ther. 2020 Nov 30 11(1):514. DOI:10.1186/s13287-020-02033-7
  • Shaver CM, Woods J, Clune JK, et al. Circulating microparticle levels are reduced in patients with ARDS. Crit Care. 2017 May 25 21(1):120. DOI:10.1186/s13054-017-1700-7
  • Sun X, Singleton PA, Letsiou E, et al. Sphingosine-1-phosphate receptor-3 is a novel biomarker in acute lung injury. Am J Respir Cell Mol Biol. 2012 Nov;47(5):628–636. DOI:10.1165/rcmb.2012-0048OC
  • Dakhlallah DA, Wisler J, Gencheva M, et al. Circulating extracellular vesicle content reveals de novo DNA methyltransferase expression as a molecular method to predict septic shock. J Extracell Vesicles. 2019;8(1):1669881. DOI:10.1080/20013078.2019.1669881
  • Luo P, Mao K, Xu J, et al. Metabolic characteristics of large and small extracellular vesicles from pleural effusion reveal biomarker candidates for the diagnosis of tuberculosis and malignancy. J Extracell Vesicles. 2020 Jul 14 9(1):1790158. DOI: 10.1080/20013078.2020.1790158
  • Roman-Canal B, Moiola CP, Gatius S, et al. EV-associated miRNAs from pleural lavage as potential diagnostic biomarkers in lung cancer. Sci Rep. 2019 Oct 21 9(1):15057. DOI:10.1038/s41598-019-51578-y
  • Lin J, Wang Y, Zou YQ, et al. Differential miRNA expression in pleural effusions derived from extracellular vesicles of patients with lung cancer, pulmonary tuberculosis, or pneumonia. Tumour Biol . 2016 Oct 14; 37:15835–15845.
  • Xu R, Rai A, Chen M, et al. Extracellular vesicles in cancer - implications for future improvements in cancer care. Nat Rev Clin Oncol. 2018 Oct;1510:617–638. DOI:10.1038/s41571-018-0036-9
  • Jiang D, Liang J, Noble PW. Regulation of non-infectious lung injury, inflammation, and repair by the extracellular matrix glycosaminoglycan hyaluronan. Anat Rec (Hoboken). 2010 Jun;293(6):982–985.
  • Liang J, Jiang D, Noble PW. Hyaluronan as a therapeutic target in human diseases. Adv Drug Deliv Rev. 2016 Feb 1; 97:186–203. DOI:10.1016/j.addr.2015.10.017
  • Lennon FE, Singleton PA. Role of hyaluronan and hyaluronan-binding proteins in lung pathobiology. Am J Physiol Lung Cell Mol Physiol. 2011 Aug;301(2):L137–47.
  • Lesley J, Hascall VC, Tammi M, et al. Hyaluronan binding by cell surface CD44. J Biol Chem. 2000 Sep 1 275(35):26967–26975. DOI:10.1016/S0021-9258(19)61467-5
  • Singleton PA, Mirzapoiazova T, Guo Y, et al. High-molecular-weight hyaluronan is a novel inhibitor of pulmonary vascular leakiness. Am J Physiol Lung Cell Mol Physiol. 2010 Nov;299(5):L639–51. DOI:10.1152/ajplung.00405.2009
  • Singleton PA, Dudek SM, Ma SF, et al. Transactivation of sphingosine 1-phosphate receptors is essential for vascular barrier regulation. Novel role for hyaluronan and CD44 receptor family. J Biol Chem. 2006 Nov 10 281(45):34381–34393. DOI: 10.1074/jbc.M603680200
  • Muto J, Yamasaki K, Taylor KR, et al. Engagement of CD44 by hyaluronan suppresses TLR4 signaling and the septic response to LPS. Mol Immunol. 2009 Dec;47(2–3):449–456. DOI:10.1016/j.molimm.2009.08.026
  • Khan AI, Kerfoot SM, Heit B, et al. Role of CD44 and hyaluronan in neutrophil recruitment. J Immunol. 2004 Dec 15 173(12):7594–7601. 10.4049/jimmunol.173.12.7594
  • Lee JH, Liu A, Park JH, et al. Therapeutic effects of hyaluronic acid in peritonitis-induced sepsis in mice. Shock. 2020 Jan 20. DOI:10.1097/SHK.0000000000001512
  • Pittenger MF, Discher DE, Peault BM, et al. Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regen Med. 2019;4:22.
  • Volarevic V, Markovic BS, Gazdic M, et al. Ethical and safety issues of stem cell-based therapy. Int J Med Sci. 2018;15(1):36–45. DOI:10.7150/ijms.21666
  • Liu A, Zhang X, He H, et al. Therapeutic potential of mesenchymal stem/stromal cell-derived secretome and vesicles for lung injury and disease. Expert Opin Biol Ther. 2020 Feb;2(2):125–140. DOI:10.1080/14712598.2020.1689954
  • Li X, Liu L, Yang J, et al. Exosome derived from human umbilical cord mesenchymal stem cell mediates MIr-181c attenuating burn-induced excessive inflammation. EBioMedicine. 2016 Jun;8:72–82.
  • Song Y, Dou H, Li X, et al. Exosomal miR-146a contributes to the enhanced therapeutic efficacy of interleukin-1beta-primed mesenchymal stem cells against sepsis. Stem Cells. 2017 May;35(5):1208–1221. DOI:10.1002/stem.2564
  • Budoni M, Fierabracci A, Luciano R, et al. The immunosuppressive effect of mesenchymal stromal cells on B lymphocytes is mediated by membrane vesicles. Cell Transplant. 2013;22(2):369–379. DOI:10.3727/096368911X582769b
  • Di Trapani M, Bassi G, Midolo M, et al. Differential and transferable modulatory effects of mesenchymal stromal cell-derived extracellular vesicles on T, B and NK cell functions. Sci Rep. 2016 Apr 13;6:24120. DOI:10.1038/srep24120
  • Chen W, Huang Y, Han J, et al. Immunomodulatory effects of mesenchymal stromal cells-derived exosome. Immunol Res. 2016 Aug;64(4):831–840. DOI:10.1007/s12026-016-8798-6
  • Bian S, Zhang L, Duan L, et al. Extracellular vesicles derived from human bone marrow mesenchymal stem cells promote angiogenesis in a rat myocardial infarction model. J Mol Med (Berl). 2014 Apr;92(4):387–397. DOI:10.1007/s00109-013-1110-5
  • Wang N, Chen C, Yang D, et al. Mesenchymal stem cells-derived extracellular vesicles, via miR-210, improve infarcted cardiac function by promotion of angiogenesis. Biochim Biophys Acta Mol Basis Dis. 2017 Aug;1863(8):2085–2092. DOI:10.1016/j.bbadis.2017.02.023
  • Morrison TJ, Jackson MV, Cunningham EK, et al. Mesenchymal stromal cells modulate macrophages in clinically relevant lung injury models by extracellular vesicle mitochondrial transfer. Am J Respir Crit Care Med. [2017 Nov 15];196(10):1275–1286.
  • Qian X, Xu C, Fang S, et al. Exosomal microRNAs derived from umbilical mesenchymal stem cells inhibit hepatitis c virus infection. Stem Cells Transl Med. 2016 Sep;5(9):1190–1203.
  • Sung PH, Chang CL, Tsai TH, et al. Apoptotic adipose-derived mesenchymal stem cell therapy protects against lung and kidney injury in sepsis syndrome caused by cecal ligation puncture in rats. Stem Cell Res Ther. 2013;4(6):155.
  • Thum T, Bauersachs J, Poole-Wilson PA, et al. The dying stem cell hypothesis: immune modulation as a novel mechanism for progenitor cell therapy in cardiac muscle. J Am Coll Cardiol. [2005 Nov 15];46(10):1799–1802.
  • Jarczak D, Kluge S, Nierhaus A. Sepsis-Pathophysiology and Therapeutic Concepts. Front Med (Lausanne). 2021;8:628302.
  • Kuhlhorn F, Rath M, Schmoeckel K, et al. Foxp3+ regulatory T cells are required for recovery from severe sepsis. PLoS One. 2013;8(5):e65109.
  • Martin MD, Badovinac VP, Griffith TS. CD4 T cell responses and the sepsis-induced immunoparalysis state. Front Immunol. 2020;11:1364.
  • Huang X, Xiu H, Zhang S, et al. The Role of Macrophages in the Pathogenesis of ALI/ARDS. Mediators Inflamm. 2018 May 13;2018:1264913.
  • Yang R, Liao Y, Wang L, et al. exosomes derived from m2b macrophages attenuate DSS-induced colitis. Front Immunol. 2019;10:2346.
  • Rojas C, Campos-Mora M, Carcamo I, et al. T regulatory cells-derived extracellular vesicles and their contribution to the generation of immune tolerance. J Leukoc Biol. 2020 Sep;108(3):813–824.
  • Tan W, Zhang C, Liu J, et al. Regulatory T-cells promote pulmonary repair by modulating T helper cell immune responses in lipopolysaccharide-induced acute respiratory distress syndrome. Immunology. 2019 Jun;157(2):151–162.
  • Feldmann M, Maini RN, Woody JN, et al. Trials of anti-tumour necrosis factor therapy for COVID-19 are urgently needed. Lancet. [2020 May 2];395(10234):1407–1409.
  • Hensley MK, Sjoding MW, Prescott HC. COUNTERPOINT: should corticosteroids be routine treatment in early ARDS? No. Chest. 2021 Jan;159(1):29–33.
  • Fisher CJ Jr., Agosti JM, Opal SM, et al. Treatment of septic shock with the tumor necrosis factor receptor:Fc fusion protein. The Soluble TNF receptor sepsis study group. N Engl J Med. [1996 Jun 27];334(26):1697–1702.
  • Abraham E, Anzueto A, Gutierrez G, et al. Double-blind randomised controlled trial of monoclonal antibody to human tumour necrosis factor in treatment of septic shock. NORASEPT II Study Group. Lancet. [1998 Mar 28];351(9107):929–933.
  • Toyofuku M, Nomura N, Eberl L. Types and origins of bacterial membrane vesicles. Nat Rev Microbiol. 2019 Jan;17(1):13–24.
  • Jung AL, Schmeck B, Wiegand M, et al. The clinical role of host and bacterial-derived extracellular vesicles in pneumonia. Adv Drug Deliv Rev. 2021 Sep;176:113811.
  • Bauman SJ, Kuehn MJ. Pseudomonas aeruginosa vesicles associate with and are internalized by human lung epithelial cells. BMC Microbiol. 2009 Feb 3;9:26.
  • Bauman SJ, Kuehn MJ. Purification of outer membrane vesicles from pseudomonas aeruginosa and their activation of an IL-8 response. Microbes Infect. 2006 Aug;8(9–10):2400–2408.
  • Toyofuku M. Bacterial communication through membrane vesicles. Biosci Biotechnol Biochem. 2019 Sep;83(9):1599–1605.
  • Vitse J, Devreese B. The contribution of membrane vesicles to bacterial pathogenicity in cystic fibrosis infections and healthcare associated pneumonia. Front Microbiol. 2020;11:630.
  • Volgers C, Benedikter BJ, Grauls GE, et al. Bead-based flow-cytometry for semi-quantitative analysis of complex membrane vesicle populations released by bacteria and host cells. Microbiol Res. 2017;200:25–32.
  • Olaya-Abril A, Prados-Rosales R, McConnell MJ, et al. Characterization of protective extracellular membrane-derived vesicles produced by Streptococcus pneumoniae. J Proteomics. 2014 Jun 25;106:46–60.
  • Turnbull L, Toyofuku M, Hynen AL, et al. Explosive cell lysis as a mechanism for the biogenesis of bacterial membrane vesicles and biofilms. Nat Commun. 2016 Apr 14;7:11220.
  • Paulsson M, Che KF, Ahl J, et al. Bacterial Outer membrane vesicles induce vitronectin release into the bronchoalveolar space conferring protection from complement-mediated killing. Front Microbiol. 2018;9:1559.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.