4,734
Views
1
CrossRef citations to date
0
Altmetric
Review

Targeting myeloid cells with bispecific antibodies as novel immunotherapies of cancer

, &
Pages 983-995 | Received 07 Feb 2022, Accepted 04 Jul 2022, Published online: 19 Jul 2022

References

  • Sung H, Ferlay J, Siegel RL. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021 May;71(3):209–249.
  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011 Mar 4;144(5):646–674.
  • Dunn GP, Bruce AT, Ikeda H. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002 Nov;3(11):991–998.
  • He X, Xu C. Immune checkpoint signaling and cancer immunotherapy. Cell Res. 2020 Aug;30(8):660–669.
  • Yamamoto K, Venida A, Yano J. Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I. Nature. 2020 May;581(7806):100–105.
  • Weber R, Groth C, Lasser S. IL-6 as a major regulator of MDSC activity and possible target for cancer immunotherapy. Cell Immunol. 2021 Jan;359:104254.
  • Horii M, Regulatory MT. B cells and T cell regulation in cancer. J Mol Biol. 2021 Jan 8;433(1):166685.
  • Umansky V, Adema GJ, Baran J. Interactions among myeloid regulatory cells in cancer. Cancer Immunol Immunother. 2019 Apr;68(4):645–660.
  • Couzin-Frankel J. Breakthrough of the year 2013. Cancer immunotherapy. Science. 2013 Dec 20;342(6165):1432–1433.
  • Braster R, O’Toole T, van Egmond M. Myeloid cells as effector cells for monoclonal antibody therapy of cancer. Methods. 2014 Jan 1;65(1):28–37.
  • Shuptrine CW, Surana R, Weiner LM. Monoclonal antibodies for the treatment of cancer. Semin Cancer Biol. 2012 Feb;22(1):3–13.
  • Zahavi D, Weiner L. Monoclonal antibodies in cancer therapy. Antibodies (Basel). 2020 Jul 20;9:3.
  • Gul N, van Egmond M. Antibody-dependent phagocytosis of tumor cells by macrophages: a potent effector mechanism of monoclonal antibody therapy of cancer. Cancer Res. 2015 Dec 1;75(23):5008–5013.
  • Goldberg BS, Ackerman ME. Antibody-mediated complement activation in pathology and protection. Immunol Cell Biol. 2020 Apr;98(4):305–317.
  • Otten MA, Bakema JE, Tuk CW. Enhanced FcalphaRI-mediated neutrophil migration towards tumour colonies in the presence of endothelial cells. Eur J Immunol. 2012 Jul;42(7):1815–1821.
  • Bispecific Antibodies SH. Antibody-drug conjugates for cancer therapy: technological considerations. Biomolecules. 2020 Feb 26;10:3.
  • Sedykh SE, Prinz VV, Buneva VN. Bispecific antibodies: design, therapy, perspectives. Drug Des Devel Ther. 2018;12:195–208.
  • Brinkmann U, Kontermann RE. The making of bispecific antibodies. MAbs. 2017 Feb/Mar;9(2):182–212.
  • Labrijn AF, Janmaat ML, Reichert JM. Bispecific antibodies: a mechanistic review of the pipeline. Nat Rev Drug Discov. 2019 Aug;18(8):585–608.
  • Thakur A, Huang M, Lum LG. Bispecific antibody based therapeutics: strengths and challenges. Blood Rev. 2018 Jul;32(4):339–347.
  • Loffler A, Kufer P, Lutterbuse R. A recombinant bispecific single-chain antibody, CD19 x CD3, induces rapid and high lymphoma-directed cytotoxicity by unstimulated T lymphocytes. Blood. 2000 Mar 15;95(6):2098–2103.
  • Dreier T, Lorenczewski G, Brandl C. Extremely potent, rapid and costimulation-independent cytotoxic T-cell response against lymphoma cells catalyzed by a single-chain bispecific antibody. Int J Cancer. 2002 Aug 20;100(6):690–697.
  • Kawamoto H, Minato N. Myeloid cells. Int J Biochem Cell Biol. 2004 Aug;36(8):1374–1379.
  • Mantovani A, Marchesi F, Jaillon S. Tumor-associated myeloid cells: diversity and therapeutic targeting. Cell Mol Immunol. 2021 Mar;18(3):566–578.
  • Kim J, Bae JS. Tumor-associated macrophages and neutrophils in tumor microenvironment. Mediators Inflamm. 2016;2016:6058147.
  • Dysthe M, Parihar R. Myeloid-derived suppressor cells in the tumor microenvironment. Adv Exp Med Biol. 2020;1224:117–140.
  • Wellenstein MD, de Visser KE. Cancer-cell-intrinsic mechanisms shaping the tumor immune landscape. Immunity. 2018 Mar 20;48(3):399–416.
  • Salmaninejad A, Valilou SF, Soltani A. Tumor-associated macrophages: role in cancer development and therapeutic implications. Cell Oncol (Dordr). 2019 Oct;42(5):591–608.
  • Franklin RA, Liao W, Sarkar A. The cellular and molecular origin of tumor-associated macrophages. Science. 2014 May 23;344(6186):921–925.
  • Beltraminelli T, De Palma M. Biology and therapeutic targeting of tumour-associated macrophages. J Pathol. 2020 Apr;250(5):573–592.
  • Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010 Mar 19;140(6):883–899.
  • Mantovani A, Marchesi F, Malesci A. Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol. 2017 Jul;14(7):399–416.
  • Martinez FO, Sica A, Mantovani A. Macrophage activation and polarization. Front Biosci. 2008. 1. Jan(13):453–461.
  • Mantovani A, Sica A, Sozzani S. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004 Dec;25(12):677–686.
  • Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008 Dec;8(12):958–969.
  • Vesely MD, Kershaw MH, Schreiber RD. Natural innate and adaptive immunity to cancer. Annu Rev Immunol. 2011;29(1):235–271.
  • Qian BZ, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell. 2010 Apr 2;141(1):39–51.
  • De Palma M, Lewis CE. Macrophage regulation of tumor responses to anticancer therapies. Cancer Cell. 2013 Mar 18;23(3):277–286.
  • Bingle L, Brown NJ, Lewis CE. The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J Pathol. 2002 Mar;196(3):254–265.
  • Ni C, Yang L, Xu Q. CD68- and CD163-positive tumor infiltrating macrophages in non-metastatic breast cancer: a retrospective study and meta-analysis. J Cancer. 2019;10(19):4463–4472.
  • DeNardo DG, Brennan DJ, Rexhepaj E. Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov. 2011 Jun;1(1):54–67.
  • Zhang QW, Liu L, Gong CY. Prognostic significance of tumor-associated macrophages in solid tumor: a meta-analysis of the literature. PLoS One. 2012;7(12):e50946.
  • Komohara Y, Fujiwara Y, Ohnishi K. Tumor-associated macrophages: potential therapeutic targets for anti-cancer therapy. Adv Drug Deliv Rev. 2016 Apr 1;99(Pt B):180–185.
  • Mantovani A, Cassatella MA, Costantini C. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol. 2011 Jul 25;11(8):519–531.
  • Mocsai A. Diverse novel functions of neutrophils in immunity, inflammation, and beyond. J Exp Med. 2013 Jul 1;210(7):1283–1299.
  • Ley K, Hoffman HM, Kubes P. Neutrophils: new insights and open questions. Sci Immunol. 2018 Dec 7;3(30):30.
  • Gruijs M, Sewnath CAN, Egmond MV. Therapeutic exploitation of neutrophils to fight cancer. Semin Immunol. 2021 Dec;15:101581.
  • Coffelt SB, Wellenstein MD, de Visser KE. Neutrophils in cancer: neutral no more. Nat Rev Cancer. 2016 Jul;16(7):431–446.
  • Grecian R, Whyte MKB, Walmsley SR. The role of neutrophils in cancer. Br Med Bull. 2018 Dec 1;128(1):5–14.
  • Burn GL, Foti A, Marsman G. The Neutrophil. Immunity. 2021 Jul 13;54(7):1377–1391.
  • Jaillon S, Ponzetta A, Di Mitri D. Neutrophil diversity and plasticity in tumour progression and therapy. Nat Rev Cancer. 2020 Sep;20(9):485–503.
  • Fridlender ZG, Sun J, Kim S. Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell. 2009 Sep 8;16(3):183–194.
  • Templeton AJ, McNamara MG, Seruga B. Prognostic role of neutrophil-to-lymphocyte ratio in solid tumors: a systematic review and meta-analysis. J Natl Cancer Inst. 2014 Jun;106(6):dju124.
  • Guthrie GJ, Charles KA, Roxburgh CS. The systemic inflammation-based neutrophil-lymphocyte ratio: experience in patients with cancer. Crit Rev Oncol Hematol. 2013 Oct;88(1):218–230.
  • Di Carlo E, Forni G, Lollini P. The intriguing role of polymorphonuclear neutrophils in antitumor reactions. Blood. 2001 Jan 15;97(2):339–345.
  • Li X, Liu R, Su X. Harnessing tumor-associated macrophages as aids for cancer immunotherapy. Mol Cancer. 2019 Dec 5;18(1):177.
  • Oflazoglu E, Stone IJ, Brown L. Macrophages and Fc-receptor interactions contribute to the antitumour activities of the anti-CD40 antibody SGN-40. Br J Cancer. 2009 Jan 13;100(1):113–117.
  • Oflazoglu E, Stone IJ, Gordon KA. Macrophages contribute to the antitumor activity of the anti-CD30 antibody SGN-30. Blood. 2007 Dec 15;110(13):4370–4372.
  • Bologna L, Gotti E, Da Roit F. Ofatumumab is more efficient than rituximab in lysing B chronic lymphocytic leukemia cells in whole blood and in combination with chemotherapy. J Immunol. 2013 Jan 1;190(1):231–239.
  • Akewanlop C, Watanabe M, Singh B. Phagocytosis of breast cancer cells mediated by anti-MUC-1 monoclonal antibody, DF3, and its bispecific antibody. Cancer Res. 2001 May 15;61(10):4061–4065.
  • Ashraf SQ, Umana P, Mossner E. Humanised IgG1 antibody variants targeting membrane-bound carcinoembryonic antigen by antibody-dependent cellular cytotoxicity and phagocytosis. Br J Cancer. 2009 Nov 17;101(10):1758–1768.
  • Huls G, Heijnen IA, Cuomo E. Antitumor immune effector mechanisms recruited by phage display-derived fully human IgG1 and IgA1 monoclonal antibodies. Cancer Res. 1999 Nov 15;59(22):5778–5784.
  • Lefebvre ML, Krause SW, Salcedo M. Ex vivo-activated human macrophages kill chronic lymphocytic leukemia cells in the presence of rituximab: mechanism of antibody-dependent cellular cytotoxicity and impact of human serum. J Immunother. 2006 Jul-Aug;29(4):388–397.
  • Rafiq S, Butchar JP, Cheney C. Comparative assessment of clinically utilized CD20-directed antibodies in chronic lymphocytic leukemia cells reveals divergent NK cell, monocyte, and macrophage properties. J Immunol. 2013 Mar 15;190(6):2702–2711.
  • Watanabe M, Wallace PK, Keler T. Antibody dependent cellular phagocytosis (ADCP) and antibody dependent cellular cytotoxicity (ADCC) of breast cancer cells mediated by bispecific antibody, MDX-210. Breast Cancer Res Treat. 1999 Feb;53(3):199–207.
  • Gruijs M, Braster R, Overdijk MB. Epidermal growth factor receptor as target for perioperative elimination of circulating colorectal cancer cells. J Oncol. 2022;2022:3577928.
  • Richards DM, Endres RG. The mechanism of phagocytosis: two stages of engulfment. Biophys J. 2014 Oct 7;107(7):1542–1553.
  • Hogarth PM, Pietersz GA. Fc receptor-targeted therapies for the treatment of inflammation, cancer and beyond. Nat Rev Drug Discov. 2012 Mar 30;11(4):311–331.
  • Nimmerjahn F, Ravetch JV. Fcgamma receptors as regulators of immune responses. Nat Rev Immunol. 2008 Jan;8(1):34–47.
  • Clynes RA, Towers TL, Presta LG. Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets. Nat Med. 2000 Apr;6(4):443–446.
  • Sundarapandiyan K, Keler T, Behnke D. Bispecific antibody-mediated destruction of Hodgkin’s lymphoma cells. J Immunol Methods. 2001 Feb 1;248(1–2):113–123.
  • Keler T, Graziano RF, Mandal A. Bispecific antibody-dependent cellular cytotoxicity of HER2/neu-overexpressing tumor cells by Fc gamma receptor type I-expressing effector cells. Cancer Res. 1997 Sep 15;57(18):4008–4014.
  • Keler T, Wallace PK, Vitale LA. Differential effect of cytokine treatment on Fc alpha receptor I- and Fc gamma receptor I-mediated tumor cytotoxicity by monocyte-derived macrophages. J Immunol. 2000 Jun 1;164(11):5746–5752.
  • Grugan KD, Dorn K, Jarantow SW. Fc-mediated activity of EGFR x c-Met bispecific antibody JNJ-61186372 enhanced killing of lung cancer cells. MAbs. 2017 Jan;9(1):114–126.
  • Vijayaraghavan S, Lipfert L, Chevalier K. Amivantamab (JNJ-61186372), an Fc enhanced EGFR/cMet bispecific antibody, induces receptor downmodulation and antitumor activity by monocyte/macrophage trogocytosis. Mol Cancer Ther. 2020 Oct;19(10):2044–2056.
  • Aleyd E, Heineke MH, van Egmond M. The era of the immunoglobulin A Fc receptor FcalphaRI; its function and potential as target in disease. Immunol Rev. 2015 Nov;268(1):123–138.
  • Reljic R. In search of the elusive mouse macrophage Fc-alpha receptor. Immunol Lett. 2006 Sep 15;107(1):80–81.
  • Launay P, Grossetete B, Arcos-Fajardo M. Fcalpha receptor (CD89) mediates the development of immunoglobulin A (IgA) nephropathy (Berger’s disease). Evidence for pathogenic soluble receptor-Iga complexes in patients and CD89 transgenic mice. J Exp Med. 2000 Jun 5;191(11):1999–2009.
  • Li B, Xu L, Pi C. CD89-mediated recruitment of macrophages via a bispecific antibody enhances anti-tumor efficacy. Oncoimmunology. 2017;7(1):e1380142.
  • van Egmond M, Hanneke van Vuuren AJ, JG VDW. The human Fc receptor for IgA (Fc alpha RI, CD89) on transgenic peritoneal macrophages triggers phagocytosis and tumor cell lysis. Immunol Lett. 1999 May 3;68(1):7–83.
  • van Egmond M, van Vuuren AJ, Morton HC. Human immunoglobulin A receptor (FcalphaRI, CD89) function in transgenic mice requires both FcR gamma chain and CR3 (CD11b/CD18). Blood. 1999 Jun 15;93(12):4387–4394.
  • Heemskerk N, Gruijs M, Temming AR. Augmented antibody-based anticancer therapeutics boost neutrophil cytotoxicity. J Clin Invest. 2021 Mar 15;131(6). DOI:10.1172/JCI134680. .
  • Kelton W, Mehta N, Charab W. IgGA: a “cross-isotype” engineered human Fc antibody domain that displays both IgG-like and IgA-like effector functions. Chem Biol. 2014 Dec 18;21(12):1603–1609.
  • Borrok MJ, Luheshi NM, Beyaz N. Enhancement of antibody-dependent cell-mediated cytotoxicity by endowing IgG with FcalphaRI (CD89) binding. MAbs. 2015;7(4):743–751.
  • Li B, Xu L, Tao F. Simultaneous exposure to FcgammaR and FcalphaR on monocytes and macrophages enhances antitumor activity in vivo. Oncotarget. 2017 Jun 13;8(24):39356–39366.
  • Barclay AN, van den Berg TK. The interaction between signal regulatory protein alpha (SIRPalpha) and CD47: structure, function, and therapeutic target. Annu Rev Immunol. 2014;32(1):25–50.
  • Chao MP, Alizadeh AA, Tang C. Anti-CD47 antibody synergizes with rituximab to promote phagocytosis and eradicate non-Hodgkin lymphoma. Cell. 2010 Sep 3;142(5):699–713.
  • Chen S, Lai SWT, Brown CE. Harnessing and enhancing macrophage phagocytosis for cancer therapy. Front Immunol. 2021;12:635173.
  • Chao MP, Tang C, Pachynski RK. Extranodal dissemination of non-Hodgkin lymphoma requires CD47 and is inhibited by anti-CD47 antibody therapy. Blood. 2011 Nov 3;118(18):4890–4901.
  • Hendriks M, Ploeg EM, Koopmans I. Bispecific antibody approach for EGFR-directed blockade of the CD47-SIRPalpha “don’t eat me” immune checkpoint promotes neutrophil-mediated trogoptosis and enhances antigen cross-presentation. Oncoimmunology. 2020 Sep 29; 9(1):1824323.
  • Seshacharyulu P, Ponnusamy MP, Haridas D. Targeting the EGFR signaling pathway in cancer therapy. Expert Opin Ther Targets. 2012 Jan;16(1):15–31.
  • Buatois V, Johnson Z, Salgado-Pires S. Preclinical development of a bispecific antibody that safely and effectively targets CD19 and CD47 for the treatment of B-Cell lymphoma and leukemia. Mol Cancer Ther. 2018 Aug;17(8):1739–1751.
  • Hatterer E, Barba L, Noraz N. Co-engaging CD47 and CD19 with a bispecific antibody abrogates B-cell receptor/CD19 association leading to impaired B-cell proliferation. MAbs. 2019 Feb/Mar;11(2):322–334.
  • Chen SH, Dominik PK, Stanfield J. Dual checkpoint blockade of CD47 and PD-L1 using an affinity-tuned bispecific antibody maximizes antitumor immunity. J Immunother Cancer. 2021 Oct;9(10).
  • Wang Y, Ni H, Zhou S. Tumor-selective blockade of CD47 signaling with a CD47/PD-L1 bispecific antibody for enhanced anti-tumor activity and limited toxicity. Cancer Immunol Immunother. 2020 Feb;70(2):365–376.
  • Law CL, Gordon KA, Toki BE. Lymphocyte activation antigen CD70 expressed by renal cell carcinoma is a potential therapeutic target for anti-CD70 antibody-drug conjugates. Cancer Res. 2006 Feb 15;66(4):2328–2337.
  • McEarchern JA, Oflazoglu E, Francisco L. Engineered anti-CD70 antibody with multiple effector functions exhibits in vitro and in vivo antitumor activities. Blood. 2007 Feb 1;109(3):1185–1192.
  • Ring NG, Herndler-Brandstetter D, Weiskopf K. Anti-SIRPalpha antibody immunotherapy enhances neutrophil and macrophage antitumor activity. Proc Natl Acad Sci U S A. 2017 Dec 5;114(49):E10578–E10585.
  • Hubert P, Heitzmann A, Viel S. Antibody-dependent cell cytotoxicity synapses form in mice during tumor-specific antibody immunotherapy. Cancer Res. 2011 Aug 1;71(15):5134–5143.
  • van Spriel AB, Leusen JH, van Egmond M. Mac-1 (CD11b/CD18) is essential for Fc receptor-mediated neutrophil cytotoxicity and immunologic synapse formation. Blood. 2001 Apr 15;97(8):2478–2486.
  • Faurschou M, Borregaard N. Neutrophil granules and secretory vesicles in inflammation. Microbes Infect. 2003 Nov;5(14):1317–1327.
  • Clark RA, Olsson I, Klebanoff SJ. Cytotoxicity for tumor cells of cationic proteins from human neutrophil granules. J Cell Biol. 1976 Sep;70(3):719–723.
  • Lichtenstein A. Mechanism of mammalian cell lysis mediated by peptide defensins. Evidence for an initial alteration of the plasma membrane. J Clin Invest. 1991 Jul;88(1):93–100.
  • Martin A, Seignez C, Racoeur C. Tumor-derived granzyme B-expressing neutrophils acquire antitumor potential after lipid A treatment. Oncotarget. 2018 Jun 19;9(47):28364–28378.
  • Cowland JB, Borregaard N. Granulopoiesis and granules of human neutrophils. Immunol Rev. 2016 Sep;273(1):11–28.
  • Nemeth T, Mocsai A. Feedback amplification of neutrophil function. Trends Immunol. 2016 Jun;37(6):412–424.
  • Matlung HL, Babes L, Zhao XW. Neutrophils kill antibody-opsonized cancer cells by trogoptosis. Cell Rep. 2018 Jun 26; 23(13):3946–3959e6.
  • Papayannopoulos V. Neutrophil extracellular traps in immunity and disease. Nat Rev Immunol. 2018 Feb;18(2):134–147.
  • Brinkmann V, Reichard U, Goosmann C. Neutrophil extracellular traps kill bacteria. Science. 2004 Mar 5;303(5663):1532–1535.
  • Valgardsdottir R, Cattaneo I, Klein C. Human neutrophils mediate trogocytosis rather than phagocytosis of CLL B cells opsonized with anti-CD20 antibodies. Blood. 2017 May 11;129(19):2636–2644.
  • Heemskerk N, van Egmond M. Monoclonal antibody-mediated killing of tumour cells by neutrophils. Eur J Clin Invest. 2018 Nov;48(Suppl 2):e12962.
  • van Egmond M, Bakema JE. Neutrophils as effector cells for antibody-based immunotherapy of cancer. Semin Cancer Biol. 2013 Jun;23(3):190–199.
  • Valerius T, Repp R, de Wit TP. Involvement of the high-affinity receptor for IgG (Fc gamma RI; CD64) in enhanced tumor cell cytotoxicity of neutrophils during granulocyte colony-stimulating factor therapy. Blood. 1993 Aug 1;82(3):931–939.
  • Futosi K, Fodor S, Mocsai A. Neutrophil cell surface receptors and their intracellular signal transduction pathways. Int Immunopharmacol. 2013 Nov;17(3):638–650.
  • Valerius T, Wurflein D, Stockmeyer B. Activated neutrophils as effector cells for bispecific antibodies. Cancer Immunol Immunother. 1997 Nov-Dec;45(3–4):5–142.
  • Curnow RT. Clinical experience with CD64-directed immunotherapy. An overview. Cancer Immunol Immunother. 1997 Nov-Dec;45(3–4):210–215.
  • Schweizer C, Strauss G, Lindner M. Efficient carcinoma cell killing by activated polymorphonuclear neutrophils targeted with an Ep-CAMxCD64 (HEA125x197) bispecific antibody. Cancer Immunol Immunother. 2002 Dec;51(11–12):621–629.
  • Repp R, Valerius T, Wieland G. G-CSF-stimulated PMN in immunotherapy of breast cancer with a bispecific antibody to Fc gamma RI and to HER-2/neu (MDX-210). J Hematother. 1995Oct;4(5):415–421.
  • Valone FH, Kaufman PA, Guyre PM. Phase Ia/Ib trial of bispecific antibody MDX-210 in patients with advanced breast or ovarian cancer that overexpresses the proto-oncogene HER-2/neu. J Clin Oncol. 1995 Sep;13(9):2281–2292.
  • Repp R, van Ojik HH, Valerius T. Phase I clinical trial of the bispecific antibody MDX-H210 (anti-FcgammaRI x anti-HER-2/neu) in combination with Filgrastim (G-CSF) for treatment of advanced breast cancer. Br J Cancer. 2003 Dec 15;89(12):2234–2243.
  • Pullarkat V, Deo Y, Link J. A phase I study of a HER2/neu bispecific antibody with granulocyte-colony-stimulating factor in patients with metastatic breast cancer that overexpresses HER2/neu. Cancer Immunol Immunother. 1999 Apr;48(1):9–21.
  • Lewis LD, Beelen AP, Cole BF. The pharmacokinetics of the bispecific antibody MDX-H210 when combined with interferon gamma-1b in a multiple-dose phase I study in patients with advanced cancer. Cancer Chemother Pharmacol. 2002 May;49(5):375–384.
  • Posey JA, Raspet R, Verma U. A pilot trial of GM-CSF and MDX-H210 in patients with erbB-2-positive advanced malignancies. J Immunother. 1999 Jul;22(4):371–379.
  • James ND, Atherton PJ, Jones J. A phase II study of the bispecific antibody MDX-H210 (anti-HER2 x CD64) with GM-CSF in HER2+ advanced prostate cancer. Br J Cancer. 2001 Jul 20;85(2):152–156.
  • Fury MG, Lipton A, Smith KM. A phase-I trial of the epidermal growth factor receptor directed bispecific antibody MDX-447 without and with recombinant human granulocyte-colony stimulating factor in patients with advanced solid tumors. Cancer Immunol Immunother. 2008 Feb;57(2):155–163.
  • Goebeler ME, Bargou RC. T cell-engaging therapies - BiTEs and beyond. Nat Rev Clin Oncol. 2020 Jul;17(7):418–434.
  • Otten MA, Rudolph E, Dechant M. Immature neutrophils mediate tumor cell killing via IgA but not IgG Fc receptors. J Immunol. 2005 May 1;174(9):5472–5480.
  • Mmj VG, van Egmond M. IgA and FcalphaRI: versatile players in homeostasis, infection, and autoimmunity. Immunotargets Ther. 2020;9:351–372.
  • Bakema JE, van Egmond M, Immunoglobulin A. A next generation of therapeutic antibodies?. MAbs. 2011 Jul-Aug;3(4):352–361.
  • Monteiro RC, van de Winkel JGJ. IgA Fc receptors. Annu Rev Immunol. 2003;21(1):177–204.
  • Valerius T, Stockmeyer B, van Spriel AB. FcalphaRI (CD89) as a novel trigger molecule for bispecific antibody therapy. Blood. 1997 Dec 1;90(11):4485–4492.
  • van der Steen L, Tuk CW, Bakema JE. Immunoglobulin A: fc(alpha)RI interactions induce neutrophil migration through release of leukotriene B4. Gastroenterology. 2009 Dec;137(6):2018–29 e1–3.
  • Bakema JE, van Egmond M. The human immunoglobulin A Fc receptor FcalphaRI: a multifaceted regulator of mucosal immunity. Mucosal Immunol. 2011 Nov;4(6):612–624.
  • Aleyd E, van Hout MW, Ganzevles SH. IgA enhances NETosis and release of neutrophil extracellular traps by polymorphonuclear cells via Fcalpha receptor I. J Immunol. 2014 Mar 1;192(5):2374–2383.
  • Bakema JE, Ganzevles SH, Fluitsma DM. Targeting FcalphaRI on polymorphonuclear cells induces tumor cell killing through autophagy. J Immunol. 2011 Jul 15;187(2):726–732.
  • Brandsma AM, Bondza S, Evers M. Potent Fc receptor signaling by IgA leads to superior killing of cancer cells by neutrophils compared to IgG. Front Immunol. 2019;10:704.
  • Rouwendal GJ, van der Lee MM, Meyer S. A comparison of anti-HER2 IgA and IgG1 in vivo efficacy is facilitated by high N-glycan sialylation of the IgA. MAbs. 2016;8(1):74–86.
  • van Egmond M, van Spriel AB, Vermeulen H. Enhancement of polymorphonuclear cell-mediated tumor cell killing on simultaneous engagement of fcgammaRI (CD64) and fcalphaRI (CD89). Cancer Res. 2001 May 15;61(10):4055–4060.
  • Stockmeyer B, Dechant M, van Egmond M. Triggering Fc alpha-receptor I (CD89) recruits neutrophils as effector cells for CD20-directed antibody therapy. J Immunol. 2000 Nov 15;165(10):5954–5961.
  • Dechant M, Vidarsson G, Stockmeyer B. Chimeric IgA antibodies against HLA class II effectively trigger lymphoma cell killing. Blood. 2002 Dec 15;100(13):4574–4580.
  • Lohse S, Derer S, Beyer T. Recombinant dimeric IgA antibodies against the epidermal growth factor receptor mediate effective tumor cell killing. J Immunol. 2011 Mar 15;186(6):8–3770.
  • Stadick H, Stockmeyer B, Kuhn R. Epidermal growth factor receptor and g250: useful target antigens for antibody mediated cellular cytotoxicity against renal cell carcinoma?. J Urol. 2002 Feb;167(2 Pt 1):12–707.
  • Pascal V, Laffleur B, Debin A, Pascal V, Laffleur B, Debin A . Anti-CD20 IgA can protect mice against lymphoma development: evaluation of the direct impact of IgA and cytotoxic effector recruitment on CD20 target cells. Haematologica. 2012 Nov; 97(11):1686–1694.
  • Zhao XW, van Beek EM, Schornagel K. CD47-signal regulatory protein-alpha (SIRPalpha) interactions form a barrier for antibody-mediated tumor cell destruction. Proc Natl Acad Sci U S A. 2011 Nov 8;108(45):18342–18347.
  • Nakamura K, Smyth MJ. Myeloid immunosuppression and immune checkpoints in the tumor microenvironment. Cell Mol Immunol. 2020 Jan;17(1):1–12.
  • Zhang L, Li Z, Skrzypczynska KM. Single-cell analyses inform mechanisms of myeloid-targeted therapies in colon cancer. Cell. 2020 Apr 16; 181(2):442–459e29.
  • Choi JW, Lee ES, Kim SY. Cytotoxic effects of ex vivo-expanded natural killer cell-enriched lymphocytes (MYJ1633) against liver cancer. BMC Cancer. 2019 Aug 19;19(1):817.
  • Wu M, Ma M, Tan Z. Neutrophil: a new player in metastatic cancers. Front Immunol. 2020;11:565165.