222
Views
0
CrossRef citations to date
0
Altmetric
Review

Biologics in rectal cancer

ORCID Icon, , , , , ORCID Icon & show all
Pages 1245-1257 | Received 28 Mar 2022, Accepted 29 Jul 2022, Published online: 03 Aug 2022

References

  • Siegel RL, Miller KD, and Goding Sauer A, et al. Colorectal cancer statistics, 2020. CA Cancer J Clin. 2020;70(3): 145–164.
  • Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. (in eng). CA Cancer J Clin. 2020Jan;70(1):7–30.
  • Bahadoer RR, Dijkstra EA, van ten B, et al. Short-course radiotherapy followed by chemotherapy before total mesorectal excision (TME) versus preoperative chemoradiotherapy, TME, and optional adjuvant chemotherapy in locally advanced rectal cancer (RAPIDO): a randomised, open-label, phase 3 trial. Lanc Oncol. 2021;22(1):29–42.
  • Conroy T, Boss J-F, ienne P-L, et al. Neoadjuvant chemotherapy with FOLFIRINOX and preoperative chemoradiotherapy for patients with locally advanced rectal cancer (UNICANCER-PRODIGE 23): a multicentre, randomised, open-label, phase 3 trial. Lanc Oncol. 2021;22(5):702–715.
  • Nwork CGA. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487(7407):330.••A comprehensive molecular characterization of colorectal cancer that provided a framework for the therapeutic development in the disease.
  • Sauer R, Becker H, Hohenberger W, et al. Preoperative versus postoperative chemoradiotherapy for rectal cancer. (in eng). N Engl J Med. 2004Oct;351(17):1731–1740.
  • Fokas E, Allgäuer M, Polat B, et al. Randomized phase II trial of chemoradiotherapy plus induction or consolidation chemotherapy as total neoadjuvant therapy for locally advanced rectal cancer: CAO/ARO/AIO-12. J Clin Oncol. 2019;37(34):3212–3222.
  • Erlandsson J, Holm T, Ptersson D, et al. Optimal fractionation of preoperative radiotherapy and timing to surgery for rectal cancer (Stockholm III): a multicentre, randomised, non-blinded, phase 3, non-inferiority trial. Lanc Oncol. 2017;18(3):336–346.
  • Nguyen TH, Chokshi RV. Low anterior resection syndrome. Curr Gastroenterol Rep. 2020;22(10):1–8.
  • van der Valk MJ, Hilling DE, Bastiaann E, et al. Long-term outcomes of clinical complete responders after neoadjuvant treatment for rectal cancer in the International Watch & Wait Database (IWWD): an international multicentre registry study. Lanc. 2018;391(10139):2537–2545.
  • Thompson H, Kim JK, and Yuval JB, et al. Survival and organ preservation according to clinical response after total neoadjuvant therapy in locally advanced rectal cancer patients: A secondary analysis from the organ preservation in rectal adenocarcinoma (OPRA) trialJ Clin Oncol. 2021;39(15_suppl). DOI: 10.1200/JCO.2021.39.15_suppl.3509.
  • Seeber A, Gunsilius E, Gastl G, et al. Anti-angiogenics: their value in colorectal cancer therapy. Oncol Res Treat. 2018;41(4):188–193.
  • Salazar R, Capdevila J, and Laquente B, et al. A randomized phase II study of capecitabine-based chemoradiation with or without bevacizumab in resectable locally advanced rectal cancer: clinical and biological features. BMC Cancer. 2015;15(1):1–9.
  • Lumish MA, Cohen JL, and Stadler ZK, et al. PD-1 blockade alone for mismatch repair deficient (dMMR) locally advanced rectal cancer. J Clin Oncol. 2022;40(4_suppl). DOI:10.1200/JCO.2022.40.4_suppl.016.
  • Barzi A, Choi A, Tsao-Wei D, et al. Phase II trial of neoadjuvant bevacizumab with modified FOLFOX7 in patients with stage II and III rectal cancer. Oncologist. 2020;25(12):e1879.
  • Hasegawa J, Nishimura J, Mizushima T, et al. Neoadjuvant capecitabine and oxaliplatin (XELOX) combined with bevacizumab for high-risk localized rectal cancer. Cancer Chemother Pharmacol. 2014;73(5):1079–1087.
  • Uehara K, Hiramatsu K, Maeda A, et al. Neoadjuvant oxaliplatin and capecitabine and bevacizumab without radiotherapy for poor-risk rectal cancer: n-SOG 03 Phase II trial. Jpn J Clin Oncol. 2013;43(10):964–971.
  • Tomida A, Uehara K, Hiramatsu K, et al. Neoadjuvant CAPOX and bevacizumab alone for locally advanced rectal cancer: long-term results from the N-SOG 03 trial. Int J Clin Oncol. 2019;24(4):403–410.
  • Schrag D, Weiser MR, Goodman KA, et al. Neoadjuvant chemotherapy without routine use of radiation therapy for patients with locally advanced rectal cancer: a pilot trial. J Clin oncol. 2014;32(6):513.
  • Velenik V, Ocvirk J, Music M, et al. Neoadjuvant capecitabine, radiotherapy, and bevacizumab (CRAB) in locally advanced rectal cancer: results of an open-label phase II study. Radiat Oncol. 2011;6(1):1–8.
  • Velenik V, Zadnik V, Omejc M, et al. Influence of concurrent capecitabine based chemoradiotherapy with bevacizumab on the survival rate, late toxicity and health-related quality of life in locally advanced rectal cancer: a prospective phase II CRAB trial. Radiol Oncol. 2020;54(4):461.
  • García M, Martinez-Villacampa M, Santos C, et al. Phase II study of preoperative bevacizumab, capecitabine and radiotherapy for resectable locally-advanced rectal cancer. BMC Cancer. 2015;15(1):1–9.
  • Dellas K, Höhler T, Reese T, et al. Phase II trial of preoperative radiochemotherapy with concurrent bevacizumab, capecitabine and oxaliplatin in patients with locally advanced rectal cancer. Radiat Oncol. 2013;8(1):1–9.
  • Kennecke H, Berry S, Wong R, et al. Pre-operative bevacizumab, capecitabine, oxaliplatin and radiation among patients with locally advanced or low rectal cancer: a phase II trial. Eur J Cancer. 2012;48(1):37–45.
  • Yu X, Wang Q-X, Xiao -W-W, et al. Neoadjuvant oxaliplatin and capecitabine combined with bevacizumab plus radiotherapy for locally advanced rectal cancer: results of a single-institute phase II study. Cancer Commun. 2018;38(1):1–9.
  • Avallone A, Pecori B, Bianco F, et al. Critical role of bevacizumab scheduling in combination with pre-surgical chemo-radiotherapy in MRI-defined high-risk locally advanced rectal cancer: results of the BRANCH trial. Oncotarg. 2015;6(30):30394.
  • Higashijima J, Tokunaga T, Yoshimoto T, et al. A multicenter phase II trial of preoperative chemoradiotherapy with S-1 plus oxaliplatin and bevacizumab for locally advanced rectal cancer. Int J Clin Oncol. 2021;26(5):875–882.
  • Sadahiro S, Suzuki T, Tanaka A, et al. Phase II study of preoperative concurrent chemoradiotherapy with S-1 plus bevacizumab for locally advanced resectable rectal adenocarcinoma. Oncology. 2015;88(1):49–56.
  • Salazar R, Roepman P, Capella G, et al. Gene expression signature to improve prognosis prediction of stage II and III colorectal cancer. J Clin Oncol. 2011 Jan 1;29(1):17–24.
  • Fernandez-Martos C, Brown G, Estevan R, et al. Preoperative chemotherapy in patients with intermediate-risk rectal adenocarcinoma selected by high-resolution magnetic resonance imaging: the GEMCAD 0801 phase II multicenter trial. Oncologist. 2014;19(10):1042.
  • Zhong X, Wu Z, Gao P, et al. The efficacy of adding targeted agents to neoadjuvant therapy for locally advanced rectal cancer patients: a meta‐analysis. Cancer Med. 2018;7(3):565–582.
  • Capirci C, Valentini V, Cionini L, et al. Prognostic value of pathologic complete response after neoadjuvant therapy in locally advanced rectal cancer: long-term analysis of 566 ypCR patients. (in eng). Int J Radiat Oncol Biol Phys. 2008Sep;72(1):99–107.
  • Bendell JC, Thompson D, Hemphill BM, et al. A phase 2 study of 5-Fluorouracil (5-FU), ziv-Aflibercept, and radiation for the preoperative and adjuvant treatment of patients with stage II/III rectal cancer. Cancer Invest. 2017;35(8):535–540.
  • Fernández-Martos C, Pericay C, Losa F, et al. Effect of aflibercept plus modified FOLFOX6 induction chemotherapy before standard chemoradiotherapy and surgery in patients with high-risk rectal adenocarcinoma: the GEMCAD 1402 randomized clinical trial. JAMA Oncol. 2019;5(11):1566–1573.
  • Mendelsohn J, Baselga J. The EGF receptor family as targets for cancer therapy. Oncogene. 2000;19(56):6550–6565.
  • Douillard J-Y, Siena S, Cassidy J, et al. Randomized, phase III trial of panitumumab with infusional fluorouracil, leucovorin, and oxaliplatin (FOLFOX4) versus FOLFOX4 alone as first-line treatment in patients with previously untreated metastatic colorectal cancer: the PRIME study. J Clin oncol. 2010;28(31):4697–4705.
  • Arnold D, Lueza B, Douillard J-Y, et al. Prognostic and predictive value of primary tumour side in patients with RAS wild-type metastatic colorectal cancer treated with chemotherapy and EGFR directed antibodies in six randomized trials. Ann Oncol. 2017;28(8):1713–1729.
  • Tejpar S, Stintzing S, Ciardiello F, et al. Prognostic and predictive relevance of primary tumor location in patients With RAS wild-type metastatic colorectal cancer. JAMA Oncol. 2017;3(2):194–201.
  • Peers M, Price T, Taieb J, et al. Relationships between tumour response and primary tumour location, and predictors of long-term survival, in patients with RAS wild-type metastatic colorectal cancer receiving first-line panitumumab therapy: retrospective analyses of the PRIME and PEAK clinical trials. Br J Cancer. 2018;119(3):303–312.
  • Van Cutsem E, Peers M, Siena S, et al. Open-label phase III trial of panitumumab plus best supportive care compared with best supportive care alone in patients with chemotherapy-refractory metastatic colorectal cancer. J Clin Oncol. 2007;25(13):1658–1664.
  • Cunningham D, Humbl Y, Siena S, et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med. 2004;351(4):337–345.
  • Van Cutsem E, Köhne C-H, Láng I, et al. Cetuximab plus irinotecan, fluorouracil, and leucovorin as first-line treatment for metastatic colorectal cancer: updated analysis of overall survival according to tumor KRAS and BRAF mutation status. J Clin Oncol. 2011;29(15):2011–2019.
  • Van Cutsem E, Köhne C-H, Hitre E, et al. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med. 2009;360(14):1408–1417.
  • Van Cutsem E, Lenz H-J, Köhne C-H, et al. Fluorouracil, leucovorin, and irinotecan plus cetuximab treatment and RAS mutations in colorectal cancer. J Clin Oncol. 2015;33(33):7.
  • Amado RG, Wolf M, Peers M, et al. Wild-Type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. Journal of Clinical Oncology. 2008;26(10):1626–1634.
  • De Roock W, Claes B, Bernasconi D, et al. Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. Lanc Oncol. 2010;11(8):753–762.
  • Kopz S, Grothey A, Yaeger R, et al. Encorafenib, Biniminib, and Cuximab in BRAF V600E–Mutated Colorectal Cancer. (in eng). N Engl J Med. 2019Sep;381(17):1632–1643.
  • Weiss J, Yaeger RD, Johnson ML, et al. LBA6 KRYSTAL-1: adagrasib (MRTX849) as monotherapy or combined with cuximab (Cux) in patients (Pts) with colorectal cancer (CRC) harboring a KRASG12C mutation. Ann Oncol. 2021;32:S1294.
  • Bonner JA, Harari PM, Giralt J, et al. Radiotherapy plus cetuximab for locoregionally advanced head and neck cancer: 5-year survival data from a phase 3 randomised trial, and relation between cetuximab-induced rash and survival. Lanc Oncol. 2010;11(1):21–28.
  • McCollum AD, Kocs DM, and Chadha P, et al. Randomized phase II trial of preoperative chemoradiotherapy with or without cetuximab in locally advanced rectal adenocarcinoma. J Clin Oncol. 2014;32(3_suppl). DOI: 10.1200/jco.2014.32.3_suppl.537.
  • Bertolini F, Chiara S, Bengala C, et al. Neoadjuvant treatment with single-agent cetuximab followed by 5-FU, cetuximab, and pelvic radiotherapy: a phase II study in locally advanced rectal cancer. Int J Radiat Oncol* Biol* Phys. 2009;73(2):466–472.
  • Eisterer W, De Vries A, Oefner D, et al. Neoadjuvant chemoradiation therapy with capecitabine (X) plus cetuximab (C), and external beam radiotherapy (RT) in locally advanced rectal cancer (LARC): ABCSG trial R03. J Clin oncol. 2009;27(15_suppl):4109.
  • Horisberger K, Treschl A, Mai S, et al. Cetuximab in combination with capecitabine, irinotecan, and radiotherapy for patients with locally advanced rectal cancer: results of a Phase II MARGIT trial. Int J Radiat Oncol* Biol* Phys. 2009;74(5):1487–1493.
  • Velenik V, Ocvirk J, Oblak I, et al. A phase II study of cetuximab, capecitabine and radiotherapy in neoadjuvant treatment of patients with locally advanced resectable rectal cancer. Eur J Surg Oncol. 2010;36(3):244–250.
  • Kim SY, Hong YS, Kim DY, et al. Preoperative chemoradiation with cetuximab, irinotecan, and capecitabine in patients with locally advanced resectable rectal cancer: a multicenter Phase II study. Int J Radiat Oncol* Biol* Phys. 2011;81(3):677–683.
  • Pinto C, Di Fabio F, Maiello E, et al. Phase II study of panitumumab, oxaliplatin, 5-fluorouracil, and concurrent radiotherapy as preoperative treatment in high-risk locally advanced rectal cancer patients (StarPan/STAR-02 Study). Ann Oncol. 2011;22(11):2424–2430.
  • Sun P-L, Li B, Ye Q-F. Effect of neoadjuvant cetuximab, capecitabine, and radiotherapy for locally advanced rectal cancer: results of a phase II study. Int J Colorectal Dis. 2012;27(10):1325–1332.
  • Helbling D, Bodoky G, Gautschi O, et al. Neoadjuvant chemoradiotherapy with or without panitumumab in patients with wild-type KRAS, locally advanced rectal cancer (LARC): a randomized, multicenter, phase II trial SAKK 41/07,” (in eng). Ann Oncol. 2013 Mar;24(3):718–725.
  • Rödel C, Arnold D, Hipp M, et al. Phase I-II trial of cetuximab, capecitabine, oxaliplatin, and radiotherapy as preoperative treatment in rectal cancer. Int J Radiat Oncol* Biol* Phys. 2008;70(4):1081–1086.
  • Pinto C, Di Bisceglie M, Di Fabio F, et al. Phase II study of preoperative treatment with external radiotherapy plus panitumumab in low‐risk, locally advanced rectal cancer (RaP Study/STAR‐03). Oncologist. 2018;23(8):912.
  • Merx K, Martens UM, Kripp M, et al. Panitumumab in combination with preoperative radiation therapy in patients with locally advanced RAS wild-type rectal cancer: results of the multicenter explorative single-arm phase 2 study NEORIT. Int J Radiat Oncol* Biol* Phys. 2017;99(4):867–875.
  • Mardjuadi FI, Carrasco J, and Coche JC, et al. Panitumumab as a radiosensitizing agent in KRAS wild-type locally advanced rectal cancer. Targ Oncol. 2015;10(3):375–383.
  • Dewdney A, Cunningham D, and Tabernero J, et al. Multicenter randomized phase II clinical trial comparing neoadjuvant oxaliplatin, capecitabine, and preoperative radiotherapy with or without cetuximab followed by total mesorectal excision in patients with high-risk rectal cancer (EXPERT-C). (in eng). J Clin Oncol. 2012May;30(14):1620–1627.
  • Leichman CG, McDonough SL, and Smalley SR, et al. Cetuximab combined with induction oxaliplatin and capecitabine, followed by neoadjuvant chemoradiation for locally advanced rectal cancer: SWOG 0713. Clin Colorectal Cancer. 2018;17(1):e121–e125.
  • Fernandez-Martos C, Pericay C, and Maurel J, et al. Phase II trial of neoadjuvant mFOLFOX 6 with panitumumab (P) in T3 rectal cancer with clear mesorectal fascia (MRF) and KRAS, NRAS, BRAF, PI3KCA wild type (4WT). GEMCAD 1601 PIER trial. J Clin Oncol. 2021;39:15_suppl.
  • Toritani K, Watanabe J, Suwa Y, et al. A prospective, single-arm, multicenter trial of neoadjuvant chemotherapy with mFOLFOX6 plus panitumumab without radiotherapy for locally advanced rectal cancer. Int J Colorectal Dis. 2020;35(12):2197–2204.
  • Le DT, Uram JN, and Wang H, et al. PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. (in eng). N Engl J Med. 2015 Jun;372(26):2509–2520.
  • Le DT, Durham JN, Smith KN, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade,” (in eng. Science. 2017 7;357(6349):409–413.
  • Keytruda (pembrolizumab) [package insert]. Whitehouse Station[NJ]: Merck & Co. Inc; 2020.
  • Phipps AI, Lindor NM, Jenkins MA, et al. Colon and rectal cancer survival by tumor location and microsatellite instability: the colon cancer family registry. Dis Colon Rectum. 2013;56(8):937.
  • Noepel-Duennebacke S, Jute H, Feder IS, et al. High microsatellite instability (MSI-H) is associated with distinct clinical and molecular characteristics and an improved survival in early Colon cancer (CC); real world data from the AIO molecular registry Colopredict Plus. Z Gastroenterol. 2020;58(6):533–541.
  • Missiaglia E, Jacobs B, D’Ario G, et al. Distal and proximal colon cancers differ in terms of molecular, pathological, and clinical features. Ann Oncol. 2014;25(10):1995–2001.
  • Uhlig J, Cecchini M, Shh A, et al. Microsatellite instability and KRAS mutation in stage IV colorectal cancer: prevalence, geographic discrepancies, and outcomes from the national cancer database. J National Compr Cancer Nwork. 2021;19(3):307–318.
  • Oh CR, Kim JE, Kang J, et al. Prognostic value of the microsatellite instability status in patients with stage II/III rectal cancer following upfront surgery. Clin Colorectal Cancer. 2018;17(4):e679–e685.
  • Hong SP, Min BS, and Kim TI, et al., The differential impact of microsatellite instability as a marker of prognosis and tumour response between colon cancer and rectal cancer. Eur J Cancer. 2012;48(8):1235–1243.
  • Hasan S, Renz P, and Wegner RE, et al. Microsatellite instability (MSI) as an independent predictor of pathologic complete response (PCR) in locally advanced rectal cancer: a National Cancer Database (NCDB) analysis. Ann Surg. 2020;271(4):716.
  • O’Connell E, Reynolds I, McNamara D, et al. Microsatellite instability and response to neoadjuvant chemoradiotherapy in rectal cancer: a systematic review and ma-analysis. Surg Oncol. 2020;34:57–62. •Ma-analysis that reinforces the differential benefit of neoadjuvant chemoradiotherapy by mismatch repair status.
  • Shamseddine A, Zeidan YH, El Husseini Z, et al. Efficacy and safety-in analysis of short-course radiation followed by mFOLFOX-6 plus avelumab for locally advanced rectal adenocarcinoma. Radiat Oncol. 2020;15(1):1–7.
  • Lin Z, Cai M, and Zhang P, et al. Phase II, single-arm trial of preoperative short-course radiotherapy followed by chemotherapy and camrelizumab in locally advanced rectal cancer. J Immunother Cancer. 2021;9(11):e003554.
  • George TJ, Yothers G, and Jacobs SA, et al. Phase II study of durvalumab following neoadjuvant chemoRT in operable rectal cancer: NSABP FR-2 . J Clin Oncol. 2022;40: 4_suppl.
  • Tamberi S, Grassi E, and Corbelli J, et al. A phase II study of capecitabine plus concomitant radiation therapy followed by durvalumab (MEDI4736) as preoperative treatment in rectal cancer: PANDORA study first-stage. J Clin Oncol. 2021;39:15_suppl .
  • Bando H, Tsukada Y, Inamori K, et al. Preoperative chemoradiotherapy plus nivolumab before surgery in microsatellite stable and microsatellite instability-high locally advanced rectal cancer patients. Clin Cancer Res. 2022;28(6):1136–1146.
  • Rahma OE, Yothers G, Hong TS, et al. Use of total neoadjuvant therapy for locally advanced rectal cancer: initial results from the pembrolizumab arm of a phase 2 randomized clinical trial. JAMA Oncol. 2021;7(8):1225–1230.
  • Chen G, Wang F, and Xiao W, et al. Pd1 antibody sintilimab for dMMR/MSI-H locally advanced rectal cancer: an open-label, phase 2, single-arm study (cohort A). J Clin Oncol. 2021;39(15_suppl) .
  • Cercek A, Lumish M, Sinopoli J, et al., PD-1 blockade in mismatch repair–deficient, locally advanced rectal cancer. N Engl J Med. 2022;386(25):2363–2376.
  • Do Pazo C, Nawaz K, and Webster RM. The oncology mark for antibody-drug conjugates. Nat Rev Drug Discov. 2021;20(8):583–584. • Review article discussing the promising findings of the antibody-drug conjugates in cancer therapy.
  • Chau CH, Steeg PS, Figg WD. Antibody–drug conjugates for cancer. Lanc. 2019;394(10200):793–804.
  • Conradi L-C, Styczen H, Sprenger T, et al. Frequency of HER-2 positivity in rectal cancer and prognosis. Am J Surg Pathol. 2013;37(4):522–531.
  • Yarden Y, Sliwkowski MX. Untangling the ErbB signalling nwork. Nat Rev Mol Cell Biol. 2001;2(2):127–137.
  • Sartore-Bianchi A, Lonardi S, Martino C, et al. Pertuzumab and trastuzumab emtansine in patients with HER2-amplified metastatic colorectal cancer: the phase II HERACLES-B trial. ESMO open. 2020;5(5):e000911.
  • Sartore-Bianchi A, Trusolino L, Martino C, et al. Dual-targeted therapy with trastuzumab and lapatinib in treatment-refractory, KRAS codon 12/13 wild-type, HER2-positive metastatic colorectal cancer (HERACLES): a proof-of-concept, multicentre, open-label, phase 2 trial. Lanc Oncol. 2016;17(6):738–746.
  • Meric-Bernstam F, Hurwitz H, Raghav KPS, et al. Pertuzumab plus trastuzumab for HER2-amplified metastatic colorectal cancer (MyPathway): an updated report from a multicentre, open-label, phase 2a, multiple basket study. Lanc Oncol. 2019;20(4):518–530.
  • Siena S, Bardelli A, and Sartore-Bianchi A, et al. HER2 amplification as a ‘molecular bait’for trastuzumab-emtansine (T-DM1) precision chemotherapy to overcome anti-HER2 resistance in HER2 positive metastatic colorectal cancer: the HERACLES-RESCUE trial. J Clin Oncol. 2016;34:4_suppl.
  • Siena S, Di Bartolomeo M, Raghav K, et al. Trastuzumab deruxtecan (DS-8201) in patients with HER2-expressing metastatic colorectal cancer (DESTINY-CRC01): a multicentre, open-label, phase 2 trial. Lanc Oncol. 2021;22(6):779–789.
  • Ma J, Mo Y, and Tang M, et al. Bispecific antibodies: from research to clinical application. Front Immunol. 2021;12:1555.
  • May C, Sapra P, Gerber H-P. Advances in bispecific biotherapeutics for the treatment of cancer. Biochem Pharmacol. 2012;84(9):1105–1112.
  • Haas C, Krinner E, Brischwein K, et al. Mode of cytotoxic action of T cell-engaging BiTE antibody MT110. Immunobiology. 2009;214(6):441–453.
  • Hoffmann P, Hofmeister R, Brischwein K, et al. Serial killing of tumor cells by cytotoxic T cells redirected with a CD19‐/CD3‐bispecific single‐chain antibody construct. Int J Cancer. 2005;115(1):98–104.
  • Litvinov SV, Velders MP, Bakker H, et al. Ep-CAM: a human epithelial antigen is a homophilic cell-cell adhesion molecule. J Cell Biol. 1994;125(2):437–446.
  • Mazel D, Denzel S, Mack B, et al. Nuclear signalling by tumour-associated antigen EpCAM. Nat Cell Biol. 2009;11(2):162–171.
  • Went PT, Lugli A, Meier S, et al. Frequent EpCam protein expression in human carcinomas. Hum Pathol. 2004;35(1):122–128.
  • Seimz D, Lindhofer H, Bokemeyer C. Development and approval of the trifunctional antibody catumaxomab (anti-EpCAM× anti-CD3) as a targeted cancer immunotherapy. Cancer Treat Rev. 2010;36(6):458–467.
  • Goéré D, Flament C, Rusakiewicz S, et al. Potent immunomodulatory effects of the trifunctional antibody catumaxomab. Cancer Res. 2013;73(15):4663–4673.
  • Mau-Sørensen M, Dittrich C, Dienstmann R, et al. A phase I trial of intravenous catumaxomab: a bispecific monoclonal antibody targeting EpCAM and the T cell coreceptor CD3. Cancer Chemother Pharmacol. 2015;75(5):1065–1073.
  • Heiss MM, Murawa P, Koralewski P, et al. The trifunctional antibody catumaxomab for the treatment of malignant ascites due to epithelial cancer: results of a prospective randomized phase II/III trial. Int J Cancer. 2010;127(9):2209–2221.
  • Schlerh B, Fichtner I, Lorenczewski G, et al. Eradication of tumors from a human colon cancer cell line and from ovarian cancer metastases in immunodeficient mice by a single-chain Ep-CAM-/CD3-bispecific antibody construct. Cancer Res. 2005;65(7):2882–2889.
  • Herrmann I, Baeuerle PA, Friedrich M, et al. Highly efficient elimination of colorectal tumor-initiating cells by an EpCAM/CD3-bispecific antibody engaging human T cells. PLoS One. 2010;5(10):e13474.
  • Hammarström S. The carcinoembryonic antigen (CEA) family: structures, suggested functions and expression in normal and malignant tissues. Semin Cancer Biol. 1999;9(2):67–81. Elsevier.
  • Dallas MR, Liu G, Chen W-C, et al. Divergent roles of CD44 and carcinoembryonic antigen in colon cancer mastasis. FASEB J. 2012;26(6):2648–2656.
  • Oberst MD, Fuhrmann S, Mulgrew K, et al. CEA/CD3 bispecific antibody MEDI-565/AMG 211 activation of T cells and subsequent killing of human tumors is independent of mutations commonly found in colorectal adenocarcinomas. MAbs. 2014;6(6):1571–1584. Taylor & Francis.
  • Pishvaian M, Morse MA, McDevitt J, et al. Phase 1 dose escalation study of MEDI-565, a bispecific T-cell engager that targets human carcinoembryonic antigen, in patients with advanced gastrointestinal adenocarcinomas. Clin Colorectal Cancer. 2016;15(4):345–351.
  • Tabernero J, Melero I, and Ros W, et al. Phase Ia and Ib studies of the novel carcinoembryonic antigen (CEA) T-cell bispecific (CEA CD3 TCB) antibody as a single agent and in combination with atezolizumab: preliminary efficacy and safety in patients with metastatic colorectal cancer (mCRC). J Clin Oncol. 2017;35:15_suppl.
  • Cross D, Burmester JK. Gene therapy for cancer treatment: past, present and future. Clin Med Res. 2006;4(3):218–227.
  • Li S, Yu B, An P, et al. Combined liposome-mediated cytosine deaminase gene therapy with radiation in killing rectal cancer cells and xenografts in athymic mice. Clin Cancer Res. 2005;11(9):3574–3578.
  • Chen Y, Chang K-J, Hwang L-H, et al. Establishment and characterization of a rectal cancer model in mice: application to cytokine gene therapy. Int J Colorectal Dis. 2002;17(6):388–395.
  • Kolodkin-Gal D, Edden Y, Hartshtark Z, et al. Herpes simplex virus delivery to orthotopic rectal carcinoma results in an efficient and selective antitumor effect. Gene Ther. 2009;16(7):905–915.
  • Sung MW, Yeh H-C, Thung SN, et al. Intratumoral adenovirus-mediated suicide gene transfer for hepatic metastases from colorectal adenocarcinoma: results of a phase I clinical trial. Mol Ther. 2001;4(3):182–191.
  • Atencio I, Grace M, Bordens R, et al. Biological activities of a recombinant adenovirus p53 (SCH 58500) administered by hepatic arterial infusion in a Phase 1 colorectal cancer trial. Cancer Gene Ther. 2006;13(2):169–181.
  • Reid T, Galanis E, Abbruzzese J, et al. Hepatic arterial infusion of a replication-selective oncolytic adenovirus (dl1520): phase II viral, immunologic, and clinical endpoints. Cancer Res. 2002;62(21):6070–6079.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.