1,494
Views
0
CrossRef citations to date
0
Altmetric
Review

Next-generation CD40 agonists for cancer immunotherapy

, , , , , & ORCID Icon show all
Pages 351-363 | Received 16 Feb 2024, Accepted 16 May 2024, Published online: 23 May 2024

References

  • Vonderheide RH. CD40 agonist antibodies in cancer immunotherapy. Annu Rev Med. 2020 Jan 27;71(1):47–58. doi: 10.1146/annurev-med-062518-045435
  • Ellmark P, Mangsbo SM, Furebring C, et al. Kick-starting the cancer-immunity cycle by targeting CD40. Oncoimmunology. 2015 Jul;4(7):e1011484. doi: 10.1080/2162402X.2015.1011484
  • Beatty GL, Li Y, Long KB. Cancer immunotherapy: activating innate and adaptive immunity through CD40 agonists. Expert Rev Anticancer Ther. 2017 Feb;17(2):175–186. doi: 10.1080/14737140.2017.1270208
  • Beatty GL, Chiorean EG, Fishman MP, et al. CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science. 2011 Mar 25;331(6024):1612–1616. doi: 10.1126/science.1198443
  • Enell Smith K, Deronic A, Hägerbrand K, et al. Rationale and clinical development of CD40 agonistic antibodies for cancer immunotherapy. Expert Opin Biol Ther. 2017 Jun;21(12):1–12. doi: 10.1080/14712598.2021.1934446
  • Prenen H, Borbath I, Geboes KP, et al. Efficacy and safety of mitazalimab in combination with mFOLFIRINOX in patients with metastatic pancreatic ductal adenocarcinoma (mPDAC): an interim analysis of the optimize-1 phase 1b/2 study. J Clin Oncol. 2023;41(16_suppl):4139–4139. doi: 10.1200/JCO.2023.41.16_suppl.4139
  • Banchereau J, Bazan F, Blanchard D, et al. The CD40 antigen and its ligand. Annu Rev Immunol. 1994;12(1):881–922. doi: 10.1146/annurev.iy.12.040194.004313
  • Elgueta R, Benson MJ, de Vries VC, et al. Molecular mechanism and function of CD40/CD40L engagement in the immune system. Immunol Rev. 2009 May;229(1):152–172. doi: 10.1111/j.1600-065X.2009.00782.x
  • Peters AL, Stunz LL, Bishop GA. CD40 and autoimmunity: the dark side of a great activator. Semin Immunol. 2009 Oct;21(5):293–300. doi: 10.1016/j.smim.2009.05.012
  • Korniluk A, Kemona H, Dymicka-Piekarska V. Multifunctional CD40L: pro- and anti-neoplastic activity. Tumour Biol. 2014 Oct;35(10):9447–9457. doi: 10.1007/s13277-014-2407-x
  • Eliopoulos AG, Young LS. The role of the CD40 pathway in the pathogenesis and treatment of cancer. Curr Opin Pharmacol. 2004 Aug;4(4):360–367. doi: 10.1016/j.coph.2004.02.008
  • Werneburg BG, Zoog SJ, Dang TT, et al. Molecular characterization of CD40 signaling intermediates. J Biol Chem. 2001 Nov 16;276(46):43334–43342. doi: 10.1074/jbc.M104994200
  • Kornbluth RS, Stempniak M, Stone GW. Design of CD40 agonists and their use in growing B cells for cancer immunotherapy. Int Rev Immunol. 2012 Aug;31(4):279–288. doi: 10.3109/08830185.2012.703272
  • Soto M, Filbert EL, Yang H, et al. Use of high-dimensional and spatial immune profiling to explore sotigalimab (CD40 agonist) activation of antigen presenting cells and T cells in the tumor microenvironment in patients with esophageal/gastroesophageal junction cancer. J Clin Oncol. 2023;41(4_suppl):450–450. doi: 10.1200/JCO.2023.41.4_suppl.450
  • Padron LJ, Maurer DM, O’Hara MH, et al. Sotigalimab and/or nivolumab with chemotherapy in first-line metastatic pancreatic cancer: clinical and immunologic analyses from the randomized phase 2 PRINCE trial. Nat Med. 2022 Jun 3;28(6):1167–1177. doi: 10.1038/s41591-022-01829-9
  • Vonderheide RH, Flaherty KT, Khalil M, et al. Clinical activity and immune modulation in cancer patients treated with CP-870,893, a novel CD40 agonist monoclonal antibody. J Clin Oncol. 2007 Mar 1;25(7):876–883. doi: 10.1200/JCO.2006.08.3311
  • Kelley SK, Gelzleichter T, Xie D, et al. Preclinical pharmacokinetics, pharmacodynamics, and activity of a humanized anti-CD40 antibody (SGN-40) in rodents and non-human primates. Br J Pharmacol. 2006 Aug;148(8):1116–1123. doi: 10.1038/sj.bjp.0706828
  • Moreno V, Perets R, Peretz-Yablonski T, et al. A phase 1 study of intravenous mitazalimab, a CD40 agonistic monoclonal antibody, in patients with advanced solid tumors. Invest New Drugs. 2022 Dec 20;41(1):93–104. doi: 10.1007/s10637-022-01319-2
  • Mangsbo SM, Broos S, Fletcher E, et al. The human agonistic CD40 antibody ADC-1013 eradicates bladder tumors and generates T-cell-dependent tumor immunity. Clin Cancer Res. 2015 Mar 1;21(5):1115–1126. doi: 10.1158/1078-0432.CCR-14-0913
  • Vonderheide RH, Glennie MJ. Agonistic CD40 antibodies and cancer therapy. Clin Cancer Res. 2013 Mar 1;19(5):1035–1043. doi: 10.1158/1078-0432.CCR-12-2064
  • Andersson H, Sobti A, Jimenez DG, et al. Early pharmacodynamic changes measured using RNA sequencing of peripheral blood from patients in a phase i study with mitazalimab, a potent CD40 agonistic monoclonal antibody. Cells. 2023;12(19):2365. doi: 10.3390/cells12192365
  • Deronic A, Nilsson A, Thagesson M, et al. The human anti-CD40 agonist antibody mitazalimab (ADC-1013; JNJ-64457107) activates antigen-presenting cells, improves expansion of antigen-specific T cells, and enhances anti-tumor efficacy of a model cancer vaccine in vivo. Cancer Immunol Immun. 2021 May 5;70(12):3629–3642. doi: 10.1007/s00262-021-02932-5
  • Irenaeus SMM, Nielsen D, Ellmark P, et al. First-in-human study with intratumoral administration of a CD40 agonistic antibody, ADC-1013, in advanced solid malignancies. Int J Cancer. 2019 Sep 1;145(5):1189–1199. doi: 10.1002/ijc.32141
  • Filbert EL, Bjorck PK, Srivastava MK, et al. APX005M, a CD40 agonist antibody with unique epitope specificity and Fc receptor binding profile for optimal therapeutic application. Cancer Immunol Immun. 2021 Jan 3;70(7):1853–1865. doi: 10.1007/s00262-020-02814-2
  • O’Hara MH, O’Reilly EM, Varadhachary G, et al. CD40 agonistic monoclonal antibody APX005M (sotigalimab) and chemotherapy, with or without nivolumab, for the treatment of metastatic pancreatic adenocarcinoma: an open-label, multicentre, phase 1b study. Lan Oncol. 2021;22(1):118–131. doi: 10.1016/S1470-2045(20)30532-5
  • Weiss SA, Djureinovic D, Jessel S, et al. A phase I study of APX005M and cabiralizumab with or without nivolumab in patients with melanoma, kidney cancer, or non-small cell lung cancer resistant to anti-PD-1/PD-L1. Clin Cancer Res. 2021 Sep 1;27(17):4757–4767. doi: 10.1158/1078-0432.CCR-21-0903
  • Weiss SA, Sznol M, Shaheen M, et al. A phase II trial of the CD40 agonistic antibody sotigalimab (APX005M) in combination with nivolumab in subjects with metastatic melanoma with confirmed disease progression on anti-PD-1 therapy. Clin Cancer Res. 2024 Jan 5;30(1):74–81. doi: 10.1158/1078-0432.CCR-23-0475
  • Reni M. APX005M, a CD40 monoclonal antibody, for patients with pancreatic adenocarcinoma. Lancet Oncol. 2021 Jan;22(1):10–11. doi: 10.1016/S1470-2045(20)30724-5
  • Powderly JD, Tolcher A, LoRusso P, et al. A phase I study of CD40 agonist ABBV-927 plus OX40 agonist ABBV-368 with or without the PD-1 inhibitor budigalimab in patients with advanced solid tumors. J Clin Oncol. 2020;38(15_suppl):TPS3147–TPS3147. doi: 10.1200/JCO.2020.38.15_suppl.TPS3147
  • Coveler AL, Smith DC, Phillips T, et al. Phase 1 dose-escalation study of SEA-CD40: a non-fucosylated CD40 agonist, in advanced solid tumors and lymphomas. J Immunother Cancer. 2023 Jun;11(6):e005584. doi: 10.1136/jitc-2022-005584
  • Sanborn R, Hauke R, Gabrail N, et al. 405 CDX1140–01, a phase 1 dose-escalation/expansion study of CDX-1140 alone (Part 1) and in combination with CDX-301 (Part 2) or pembrolizumab (Part 3). J Immunother Cancer. 2020;8(Suppl 3):A246–A246.
  • Vitale LA, Thomas LJ, He LZ, et al. Development of CDX-1140, an agonist CD40 antibody for cancer immunotherapy. Cancer Immunol Immunother. 2018 Oct 31;68(2):233–245. doi: 10.1007/s00262-018-2267-0
  • Ruter J, Antonia SJ, Burris HA, et al. Immune modulation with weekly dosing of an agonist CD40 antibody in a phase I study of patients with advanced solid tumors. Cancer Biol Ther. 2010 Nov 15;10(10):983–993. doi: 10.4161/cbt.10.10.13251
  • Beatty GL, Torigian DA, Chiorean EG, et al. A phase I study of an agonist CD40 monoclonal antibody (CP-870,893) in combination with gemcitabine in patients with advanced pancreatic ductal adenocarcinoma. Clin Cancer Res. 2013 Nov 15;19(22):6286–6295. doi: 10.1158/1078-0432.CCR-13-1320
  • Nowak AK, Cook AM, McDonnell AM, et al. A phase 1b clinical trial of the CD40-activating antibody CP-870,893 in combination with cisplatin and pemetrexed in malignant pleural mesothelioma. Ann Oncol. 2015 Dec;26(12):2483–2490. doi: 10.1093/annonc/mdv387
  • Byrne KT, Betts CB, Mick R, et al. Neoadjuvant selicrelumab, an agonist CD40 antibody, induces changes in the tumor microenvironment in patients with resectable pancreatic cancer. Clin Cancer Res. 2021 Jun 10;27(16):4574–4586. doi: 10.1158/1078-0432.CCR-21-1047
  • Barlesi F, Lolkema M, Rohrberg KS, et al. 291 Phase Ib study of selicrelumab (CD40 agonist) in combination with atezolizumab (anti-PD-L1) in patients with advanced solid tumors. J Immunother Cancer. 2020;8(Suppl 3):A178–A178.
  • Nyesiga B, Levin M, Sall A, et al. RUBY(R) - a tetravalent (2+2) bispecific antibody format with excellent functionality and IgG-like stability, pharmacology and developability properties. MAbs. 2024 Jan;16(1):2330113. doi: 10.1080/19420862.2024.2330113
  • Hagerbrand K, Varas L, Deronic A, et al. Bispecific antibodies targeting CD40 and tumor-associated antigens promote cross-priming of T cells resulting in an antitumor response superior to monospecific antibodies. J Immunother Cancer. 2022 Nov;10(11). doi: 10.1136/jitc-2022-005018
  • Surowka M, Schaefer W, Klein C. Ten years in the making: application of CrossMab technology for the development of therapeutic bispecific antibodies and antibody fusion proteins. MAbs. 2021 Jan;13(1):1967714. doi: 10.1080/19420862.2021.1967714
  • Sum E, Rapp M, Durr H, et al. The tumor-targeted CD40 agonist CEA-CD40 promotes T cell priming via a dual mode of action by increasing antigen delivery to dendritic cells and enhancing their activation. J Immunother Cancer. 2022 Mar;10(3):e003264. doi: 10.1136/jitc-2021-003264
  • Sumitomo Y, Kawasaki K, Tezuka Y, et al. Abstract 5311: KK2269, an epithelial cell adhesion molecule-targeted CD40 agonist, stimulates anti-tumor immunity resulting in sustained anti-tumor effect against mouse intrahepatic tumor without hepatotoxicity. Cancer Res. 2024;84(6_Supplement):5311–5311. doi: 10.1158/1538-7445.AM2024-5311
  • Tezuka Y, Kawasaki K, Sumitomo Y, et al. Abstract 5310: KK2269, an epithelial cell adhesion molecule-targeted CD40 agonist, demonstrates antitumor effects in combination with standard therapies for NSCLC. Cancer Res. 2024;84(6_Supplement):5310–5310. doi: 10.1158/1538-7445.AM2024-5310
  • Liu F, Gong W, Yang Y, et al. 1143 5T4-CD40 bispecific antibodies activate immune responses in a 5T4-dependent manner. J Immunother Cancer. 2022;10(Suppl 2):A1187–A1187.
  • Sun W, Wang X, Wang D, et al. CD40×HER2 bispecific antibody overcomes the CCL2-induced trastuzumab resistance in HER2-positive gastric cancer. J Immunother Cancer. 2022 Jul;10(7):e005063. doi: 10.1136/jitc-2022-005063
  • Lu L, Liu N, Fan K, et al. A tetravalent single chain diabody (CD40/HER2) efficiently inhibits tumor proliferation through recruitment of T cells and anti-HER2 functions. Mol Immunol. 2019 May;109:149–156. doi: 10.1016/j.molimm.2019.03.001
  • de Silva S, Fromm G, Shuptrine CW, et al. CD40 enhances type I interferon responses downstream of CD47 blockade, bridging innate and adaptive immunity. Cancer Immunol Res. 2020 Feb;8(2):230–245. doi: 10.1158/2326-6066.CIR-19-0493
  • Luo H, Meng Z, Rong J, et al. Abstract 5559: Development of a novel PD-L1xCD40 bispecific antibody with excellent efficacy and safety profile for cancer therapy. Cancer Res. 2022;82(12_Supplement):5559–5559. doi: 10.1158/1538-7445.AM2022-5559
  • Rigamonti N, Veitonmaki N, Domke C, et al. A multispecific anti-CD40 DARPin construct induces tumor-selective CD40 activation and tumor regression. Cancer Immunol Res. 2022 May 3;10(5):626–640. doi: 10.1158/2326-6066.CIR-21-0553
  • Chen S, Lin Y, Zhou X, et al. Abstract 2366: Balancing efficacy and toxicity of a fibroblast activation protein dependent tetravalent CD40 agonist antibody for cancer therapy. Cancer Res. 2024;84(6_Supplement):2366–2366. doi: 10.1158/1538-7445.AM2024-2366
  • Sum E, Rapp M, Frobel P, et al. Fibroblast activation protein α-targeted CD40 agonism abrogates systemic toxicity and enables administration of high doses to induce effective antitumor immunity. Clin Cancer Res. 2021 Mar 26;27(14):4036–4053. doi: 10.1158/1078-0432.CCR-20-4001
  • Labiano S, Roh V, Godfroid C, et al. CD40 agonist targeted to fibroblast activation protein alpha synergizes with radiotherapy in murine HPV-Positive head and neck tumors. Clin Cancer Res. 2021 Jul 15;27(14):4054–4065. doi: 10.1158/1078-0432.CCR-20-4717
  • Mega A, Mebrahtu A, Aniander G, et al. A PDGFRB- and CD40-targeting bispecific AffiMab induces stroma-targeted immune cell activation. MAbs. 2023 Jan;15(1):2223750. doi: 10.1080/19420862.2023.2223750
  • Coloma MJ, Morrison SL. Design and production of novel tetravalent bispecific antibodies. Nature Biotechnol. 1997;15(2):159–163. doi: 10.1038/nbt0297-159
  • Liu B, Hui L, Liu C, et al. Abstract 1852: A novel PD1-CD40 bispecific antibody YH008 induces potent anti-tumor activity in vivo by PD1 dependent activation of CD40 signaling. Cancer Res. 2021;81(13_Supplement):1852–1852. doi: 10.1158/1538-7445.AM2021-1852
  • Zhang Z, Jia Y, Huang W, et al. 1403 1403 A bispecific antibody targeting PD1 and CD40 displays potent anti-tumor efficacy through two mechanisms: PD1 blockade and PD1-dependent CD40 agonism. J Immunother Cancer. 2023;11(Suppl 1):A1561–A1561.
  • Muik A, Adams Iii HC, Gieseke F, et al. DuoBody-CD40x4-1BB induces dendritic-cell maturation and enhances T-cell activation through conditional CD40 and 4-1BB agonist activity. J Immunother Cancer. 2022 Jun;10(6):e004322. doi: 10.1136/jitc-2021-004322
  • Ye S, Cohen D, Belmar NA, et al. A bispecific molecule targeting Cd40 and tumor antigen mesothelin enhances tumor-specific immunity. Cancer Immunol Res. 2019;7(11):1864–1875. doi: 10.1158/2326-6066.CIR-18-0805
  • Luke JJ, Fong L, Chung K, et al. Phase 1 study evaluating safety, pharmacokinetics, pharmacodynamics, and preliminary efficacy of ABBV‑428, A mesothelin‑cd40 bispecific, in patients with advanced solid tumors. Ann Oncol. 2019;30(suppl_5):v475–v532. doi: 10.1093/annonc/mdz253.046
  • Hollevoet K, Mason-Osann E, Liu XF, et al. In vitro and in vivo activity of the low-immunogenic antimesothelin immunotoxin RG7787 in pancreatic cancer. Mol Cancer Ther. 2014 Aug;13(8):2040–2049. doi: 10.1158/1535-7163.MCT-14-0089-T
  • Del Bano J, Florès-Florès R, Josselin E, et al. A bispecific antibody-based approach for targeting mesothelin in triple negative breast cancer [original research]. Front Immunol. 2019 Jul 10;10(1593). doi: 10.3389/fimmu.2019.01593
  • Karizak AZ, Salmasi Z, Gheibihayat SM, et al. Understanding the regulation of “Don’t Eat-Me” signals by inflammatory signaling pathways in the tumor microenvironment for more effective therapy. J Cancer Res Clin Oncol. 2023 Jan;149(1):511–529. doi: 10.1007/s00432-022-04452-w
  • Lakhani NJ, Stewart DB, Richardson DL, et al. Phase 1 dose escalation study of SL-172154 (SIRPα-Fc-CD40L) in platinum-resistant ovarian cancer. J Clin Oncol. 2023;41(16_suppl):5544–5544. doi: 10.1200/JCO.2023.41.16_suppl.5544
  • Sun C, Mezzadra R, Schumacher TN. Regulation and function of the PD-L1 checkpoint. Immunity. 2018 Mar 20;48(3):434–452. doi: 10.1016/j.immuni.2018.03.014
  • Muik A, Kosoff R, Gieseke F, et al. DuoBody-CD40×4-1BB (GEN1042) induces dendritic-cell maturation and enhances T-cell activation and effector functions in vitro by conditional CD40 and 4-1BB agonist activity. [Abstract]. AACR. 2021.
  • Johnson M, Lopez J, LoRusso P, et al. 493 First-in-human phase 1/2 trial to evaluate the safety and initial clinical activity of DuoBody®-CD40×4–1BB (GEN1042) in patients with advanced solid tumors. J Immunother Cancer. 2021;9(Suppl 2):A525–A525. doi: 10.1136/jitc-2021-SITC2021.493
  • Dual-targeting approach for CD40 and 4-1BB. Cancer Discov. 2022;12(1):9–10. doi: 10.1158/2159-8290.CD-NB2021-0403
  • Lehmann CH, Heger L, Heidkamp GF, et al. Direct delivery of antigens to dendritic cells via antibodies specific for endocytic receptors as a promising strategy for future therapies. Vaccines (Basel). 2016 Mar 28;4(2):8. doi: 10.3390/vaccines4020008
  • Chen P, Liu X, Sun Y, et al. Dendritic cell targeted vaccines: Recent progresses and challenges. Hum Vaccin Immunother. 2016 Mar 3;12(3):612–622. doi: 10.1080/21645515.2015.1105415
  • Dhodapkar MV, Sznol M, Zhao B, et al. Induction of antigen-specific immunity with a vaccine targeting NY-ESO-1 to the dendritic cell receptor DEC-205. Sci Transl Med. 2014 Apr 16;6(232):232ra51. doi: 10.1126/scitranslmed.3008068
  • Gargett T, Abbas MN, Rolan P, et al. Phase I trial of Lipovaxin-MM, a novel dendritic cell-targeted liposomal vaccine for malignant melanoma. Cancer Immunol Immun. 2018 Sep;67(9):1461–1472. doi: 10.1007/s00262-018-2207-z
  • Morse MA, Chapman R, Powderly J, et al. Phase I study utilizing a novel antigen-presenting cell-targeted vaccine with Toll-like receptor stimulation to induce immunity to self-antigens in cancer patients. Clin Cancer Res. 2011 Jul 15;17(14):4844–4853. doi: 10.1158/1078-0432.CCR-11-0891
  • Yin W, Gorvel L, Zurawski S, et al. Functional specialty of CD40 and dendritic cell surface lectins for exogenous antigen presentation to CD8(+) and CD4(+) T Cells. EBioMedicine. 2016 Mar;5:46–58. doi: 10.1016/j.ebiom.2016.01.029
  • Chatterjee B, Smed-Sorensen A, Cohn L, et al. Internalization and endosomal degradation of receptor-bound antigens regulate the efficiency of cross presentation by human dendritic cells. Blood. 2012 Sep 6;120(10):2011–2020. doi: 10.1182/blood-2012-01-402370
  • Schmitt S, Tahk S, Lohner A, et al. Fusion of bacterial flagellin to a dendritic cell-targeting alphaCD40 antibody construct coupled with viral or leukemia-specific antigens enhances dendritic cell maturation and activates peptide-responsive T Cells. Front Immunol. 2020;11:602802. doi: 10.3389/fimmu.2020.602802
  • Ceglia V, Zurawski S, Montes M, et al. Anti-CD40 antibodies fused to CD40 ligand have superagonist properties. J Immunol. 2021 Oct 15;207(8):2060–2076. doi: 10.4049/jimmunol.2000704
  • Graham JP, Authie P, Yu CI, et al. Targeting dendritic cells in humanized mice receiving adoptive T cells via monoclonal antibodies fused to Flu epitopes. Vaccine. 2016 Sep 22;34(41):4857–4865. doi: 10.1016/j.vaccine.2016.08.071
  • Cheng L, Wang Q, Li G, et al. TLR3 agonist and CD40-targeting vaccination induces immune responses and reduces HIV-1 reservoirs. J Clin Invest. 2018 Oct 1;128(10):4387–4396. doi: 10.1172/JCI99005
  • Zurawski G, Shen X, Zurawski S, et al. Superiority in rhesus macaques of targeting HIV-1 Env gp140 to CD40 versus LOX-1 in combination with replication-competent NYVAC-KC for induction of Env-specific antibody and T Cell responses. J Virol. 2017 May 1;91(9). doi: 10.1128/JVI.01596-16
  • Flamar AL, Xue Y, Zurawski SM, et al. Targeting concatenated HIV antigens to human CD40 expands a broad repertoire of multifunctional CD4+ and CD8+ T cells. AIDS. 2013 Aug 24;27(13):2041–2051. doi: 10.1097/QAD.0b013e3283624305
  • Chen J, Zurawski G, Zurawski S, et al. A novel vaccine for mantle cell lymphoma based on targeting cyclin D1 to dendritic cells via CD40. J Hematol Oncol. 2015 Apr 14;8(1):35. doi: 10.1186/s13045-015-0131-7
  • BarrTA MA, Carlring J, Heath AW. A potent adjuvant effect of CD40 antibody attached to antigen. Immunology. 2003;109(1):87–92. doi: 10.1046/j.1365-2567.2003.01634.x
  • Ishihara J, Ishihara A, Potin L, et al. Improving efficacy and safety of agonistic anti-CD40 antibody through extracellular matrix affinity. Mol Cancer Ther. 2018 Nov;17(11):2399–2411. doi: 10.1158/1535-7163.MCT-18-0091
  • Carlring J, Szabo MJ, Dickinson R, et al. Conjugation of lymphoma idiotype to CD40 antibody enhances lymphoma vaccine immunogenicity and antitumor effects in mice. Blood. 2012 Mar 1;119(9):2056–2065. doi: 10.1182/blood-2011-05-355461
  • Flamar AL, Zurawski S, Scholz F, et al. Noncovalent assembly of anti-dendritic cell antibodies and antigens for evoking immune responses in vitro and in vivo. J Immunol. 2012 Sep 1;189(5):2645–2655. doi: 10.4049/jimmunol.1102390
  • Eltahir M, Laurén I, Lord M, et al. An adaptable antibody‐based platform for flexible synthetic peptide delivery built on agonistic CD40 antibodies. Adv Ther. 2022;5(7). doi: 10.1002/adtp.202200008
  • Broos S, Sandin LC, Apel J, et al. Synergistic augmentation of CD40-mediated activation of antigen-presenting cells by amphiphilic poly(gamma-glutamic acid) nanoparticles. Biomaterials. 2012 Sep;33(26):6230–6239. doi: 10.1016/j.biomaterials.2012.05.011
  • Kwong B, Liu H, Irvine DJ. Induction of potent anti-tumor responses while eliminating systemic side effects via liposome-anchored combinatorial immunotherapy. Biomaterials. 2011;32(22):5134–5147. doi: 10.1016/j.biomaterials.2011.03.067
  • Yan H, Lin G, Liu Z, et al. Nano-adjuvants and immune agonists promote antitumor immunity of peptide amphiphiles. Acta Biomater. 2023 Apr 15;161:213–225. doi: 10.1016/j.actbio.2023.02.034
  • Rosalia RA, Cruz LJ, van Duikeren S, et al. CD40-targeted dendritic cell delivery of PLGA-nanoparticle vaccines induce potent anti-tumor responses. Biomaterials. 2015 Feb;40:88–97. doi: 10.1016/j.biomaterials.2014.10.053
  • Correa S, Meany EL, Gale EC, et al. Injectable nanoparticle-based hydrogels enable the safe and effective deployment of immunostimulatory CD40 agonist antibodies. Adv Sci. 2022 Oct;9(28):e2103677. doi: 10.1002/advs.202103677
  • Yan J, Zhang Y, Du S, et al. Nanomaterials-mediated co-stimulation of toll-like receptors and CD40 for antitumor immunity. Adv Mater. 2022 Nov;34(47):e2207486. doi: 10.1002/adma.202207486
  • Liljenfeldt L, Dieterich LC, Dimberg A, et al. CD40L gene therapy tilts the myeloid cell profile and promotes infiltration of activated T lymphocytes. Cancer Gene Ther. 2014 Mar;21(3):95–102. doi: 10.1038/cgt.2014.2
  • Loskog A, Dzojic H, Vikman S, et al. Adenovirus CD40 ligand gene therapy counteracts immune escape mechanisms in the tumor Microenvironment. J Immunol. 2004 Jun 1;172(11):7200–7205. doi: 10.4049/jimmunol.172.11.7200
  • Dzojic H, Loskog A, Totterman TH, et al. Adenovirus-mediated CD40 ligand therapy induces tumor cell apoptosis and systemic immunity in the TRAMP-C2 mouse prostate cancer model. Prostate. 2006 Jun 1;66(8):831–838. doi: 10.1002/pros.20344
  • Malmstrom PU, Loskog AS, Lindqvist CA, et al. AdCD40L immunogene therapy for bladder carcinoma–the first phase I/IIa trial. Clin Cancer Res. 2010 Jun 15;16(12):3279–3287. doi: 10.1158/1078-0432.CCR-10-0385
  • Loskog A, Maleka A, Mangsbo S, et al. Immunostimulatory AdCD40L gene therapy combined with low-dose cyclophosphamide in metastatic melanoma patients. Br J Cancer. 2016 Apr 12;114(8):872–880. doi: 10.1038/bjc.2016.42
  • Irenaeus S, Hellstrom V, Wenthe J, et al. Intratumoral immunostimulatory AdCD40L gene therapy in patients with advanced solid tumors. Cancer Gene Ther. 2021 Nov;28(10–11):1188–1197. doi: 10.1038/s41417-020-00271-8
  • Wierda WG, Cantwell MJ, Woods SJ, et al. CD40-ligand (CD154) gene therapy for chronic lymphocytic leukemia. Blood. 2000;96(9):2917–2924. doi: 10.1182/blood.V96.9.2917
  • Naing A, Rosen L, Camidge RD, et al. 1011P FORTITUDE phase I study of NG-350A, a novel tumour-selective adenoviral vector expressing an anti-CD40 agonist antibody: monotherapy dose escalation results. Annals Oncology. 2021;32:S853–S854. doi: 10.1016/j.annonc.2021.08.1395
  • Lillie T, O’Hara M, Ottensmeier C, et al. Abstract CT213: A multicenter phase 1a/b study of NG-350A, a tumor-selective anti-CD40-antibody expressing adenoviral vector, and pembrolizumab in patients with metastatic or advanced epithelial tumors (FORTIFY). Cancer Res. 2022;82(12_Supplement):CT213–CT213. doi: 10.1158/1538-7445.AM2022-CT213
  • Eileen MOR, Mark HOH, George F, et al. 765 NG-350A, a tumor-selective anti-CD40 agonist expressing therapeutic, gemcitabine/nab-paclitaxel and ipilimumab for untreated metastatic pancreatic adenocarcinoma: cohort C of the REVOLUTION trial. J Immunother Cancer. 2023;11(Suppl 1):A860.
  • Kvedaraite E, Ginhoux F. Human dendritic cells in cancer. Sci Immunol. 2022 Apr;7(70):eabm9409. doi: 10.1126/sciimmunol.abm9409
  • Jimenez DG, Altunbulakli C, Swoboda S, et al. Single-cell analysis of myeloid cells in HPV+ tonsillar cancer [Original Research]. Front Immunol. 2023 Jan 19;13:13. doi: 10.3389/fimmu.2022.1087843
  • Sun Y, Wu L, Zhong Y, et al. Single-cell landscape of the ecosystem in early-relapse hepatocellular carcinoma. Cell. 2021 Jan 21;184(2):404–421 e16. doi: 10.1016/j.cell.2020.11.041
  • Zhang Q, He Y, Luo N, et al. Landscape and dynamics of single immune cells in hepatocellular carcinoma. Cell. 2019 Oct 31;179(4):829–845 e20. doi: 10.1016/j.cell.2019.10.003
  • Zilionis R, Engblom C, Pfirschke C, et al. Single-cell transcriptomics of human and mouse lung cancers reveals conserved myeloid populations across individuals and species. Immunity. 2019 May 21;50(5):1317–1334 e10. doi: 10.1016/j.immuni.2019.03.009
  • Maier B, Leader AM, Chen ST, et al. A conserved dendritic-cell regulatory program limits antitumour immunity. Nature. 2020 Apr 01;580(7802):257–262. doi: 10.1038/s41586-020-2134-y
  • Santegoets SJ, Duurland CL, Jordanova EJ, et al. CD163+ cytokine-producing cDC2 stimulate intratumoral type 1 T cell responses in HPV16-induced oropharyngeal cancer. J Immunother Cancer. 2020;8(2):e001053. doi: 10.1136/jitc-2020-001053
  • Steele NG, Carpenter ES, Kemp SB, et al. Multimodal mapping of the tumor and peripheral blood immune landscape in human pancreatic cancer. Nat Cancer. 2020 Nov 01;1(11):1097–1112. doi: 10.1038/s43018-020-00121-4
  • Wattenberg MM, Coho H, Herrera VM, et al. Cancer immunotherapy via synergistic coactivation of myeloid receptors CD40 and Dectin-1. Sci Immunol. 2023;8(89):eadj5097. doi: 10.1126/sciimmunol.adj5097
  • Pombo Antunes AR, Scheyltjens I, Lodi F, et al. Single-cell profiling of myeloid cells in glioblastoma across species and disease stage reveals macrophage competition and specialization. Nat Neurosci. 2021 Apr 01;24(4):595–610. doi: 10.1038/s41593-020-00789-y
  • Wu Y, Yang S, Ma J, et al. Spatiotemporal immune landscape of colorectal cancer liver metastasis at single-cell level. Cancer Discov. 2022;12(1):134–153. doi: 10.1158/2159-8290.CD-21-0316
  • Kürten CHL, Kulkarni A, Cillo AR, et al. Investigating immune and non-immune cell interactions in head and neck tumors by single-cell RNA sequencing. Nat Commun. 2021 Dec 17;12(1):7338. doi: 10.1038/s41467-021-27619-4
  • Zhang L, Li Z, Skrzypczynska KM, et al. Single-cell analyses inform mechanisms of myeloid-targeted therapies in colon cancer. Cell. 2020;181(2):442–459.e29. doi: 10.1016/j.cell.2020.03.048
  • Hildner K, Edelson BT, Purtha WE, et al. Batf3 deficiency reveals a critical role for CD8alpha+ dendritic cells in cytotoxic T cell immunity. Science. 2008 Nov 14;322(5904):1097–1100. doi: 10.1126/science.1164206
  • Djureinovic D, Wang M, Kluger HM. Agonistic CD40 antibodies in cancer treatment. Cancers (Basel). 2021;13(6):1302. doi: 10.3390/cancers13061302
  • Garris CS, Wong JL, Ravetch JV, et al. Dendritic cell targeting with Fc-enhanced CD40 antibody agonists induces durable antitumor immunity in humanized mouse models of bladder cancer. Sci Transl Med. 2021 May 19;13(594). doi: 10.1126/scitranslmed.abd1346
  • Salomon R, Rotem H, Katzenelenbogen Y, et al. Bispecific antibodies increase the therapeutic window of CD40 agonists through selective dendritic cell targeting. Nat Cancer. 2022 Mar 01;3(3):287–302. doi: 10.1038/s43018-022-00329-6
  • Wu R, Ohara RA, Jo S, et al. Mechanisms of CD40-dependent cDC1 licensing beyond costimulation. Nat Immunol. 2022 Oct 21;23(11):1536–1550. doi: 10.1038/s41590-022-01324-w
  • Murgaski A, Kiss M, Van Damme H, et al. Efficacy of CD40 agonists is mediated by distinct cDC subsets and subverted by suppressive macrophages. Cancer Res. 2022 Oct 17;82(20):3785–3801. doi: 10.1158/0008-5472.CAN-22-0094
  • Mantovani A, Allavena P, Marchesi F, et al. Macrophages as tools and targets in cancer therapy. Nat Rev Drug Discov. 2022 Nov 01;21(11):799–820. doi: 10.1038/s41573-022-00520-5
  • Bied M, Ho WW, Ginhoux F, et al. Roles of macrophages in tumor development: a spatiotemporal perspective. Cell Mol Immunol. 2023 Sep 01;20(9):983–992. doi: 10.1038/s41423-023-01061-6
  • Lim CY, Chang JH, Lee WS, et al. CD40 agonists alter the pancreatic cancer microenvironment by shifting the macrophage phenotype toward M1 and suppress human pancreatic cancer in organotypic slice cultures. Gut Liver. 2022;16(4):645–659. doi: 10.5009/gnl210311
  • Liu H-C, Davila Gonzalez D, Viswanath DI, et al. Sustained intratumoral administration of agonist CD40 antibody overcomes immunosuppressive tumor microenvironment in pancreatic cancer. Adv Sci. 2023;10(9):2206873. doi: 10.1002/advs.202206873
  • Cabrita R, Lauss M, Sanna A, et al. Tertiary lymphoid structures improve immunotherapy and survival in melanoma. Nature. 2020 Jan 15;577(7791):561–565. doi: 10.1038/s41586-019-1914-8
  • Helmink BA, Reddy SM, Gao J, et al. B cells and tertiary lymphoid structures promote immunotherapy response. Nature. 2020 Jan 15;577(7791):549–555. doi: 10.1038/s41586-019-1922-8
  • Petitprez F, de Reynies A, Keung EZ, et al. B cells are associated with survival and immunotherapy response in sarcoma. Nature. 2020 Jan 15;577(7791):556–560. doi: 10.1038/s41586-019-1906-8
  • Lapointe R, Bellemare-Pelletier A, Housseau F, et al. CD40-stimulated B lymphocytes pulsed with tumor antigens are effective antigen-presenting cells that can generate specific T Cells1. Cancer Res. 2003;63(11):2836–2843.
  • Carpenter EL, Mick R, Ruter J, et al. Activation of human B cells by the agonist CD40 antibody CP-870,893 and augmentation with simultaneous toll-like receptor 9 stimulation. J Transl Med. 2009 Nov 11;7(1):93. doi: 10.1186/1479-5876-7-93
  • van Hooren L, Vaccaro A, Ramachandran M, et al. Agonistic CD40 therapy induces tertiary lymphoid structures but impairs responses to checkpoint blockade in glioma. Nat Commun. 2021 Jul 05;12(1):4127. doi: 10.1038/s41467-021-24347-7
  • Vono M, Lin A, Norrby-Teglund A, et al. Neutrophils acquire the capacity for antigen presentation to memory CD4+ T cells in vitro and ex vivo. Blood. 2017;129(14):1991–2001. doi: 10.1182/blood-2016-10-744441
  • Khan SY, Kelher MR, Heal JM, et al. Soluble CD40 ligand accumulates in stored blood components, primes neutrophils through CD40, and is a potential cofactor in the development of transfusion-related acute lung injury. Blood. 2006;108(7):2455–2462. doi: 10.1182/blood-2006-04-017251
  • Ren Y, Wang R, Weng S, et al. Multifaceted role of redox pattern in the tumor immune microenvironment regarding autophagy and apoptosis. Mol Cancer. 2023 Aug 10;22(1):130. doi: 10.1186/s12943-023-01831-w
  • Enell Smith K, Deronic A, Hagerbrand K, et al. Rationale and clinical development of CD40 agonistic antibodies for cancer immunotherapy. Expert Opin Biol Ther. 2021 Dec;21(12):1635–1646. doi: 10.1080/14712598.2021.1934446
  • Llopiz D, Dotor J, Zabaleta A, et al. Combined immunization with adjuvant molecules poly(I: C) and anti-CD40 plus a tumor antigen has potent prophylactic and therapeutic antitumor effects. Cancer Immunol Immun. 2008 Jan;57(1):19–29. doi: 10.1007/s00262-007-0346-8
  • Yin W, Duluc D, Joo H, et al. Therapeutic HPV Cancer Vaccine Targeted to CD40 Elicits Effective CD8+ T-cell Immunity. Cancer Immunol Res. 2016 Oct;4(10):823–834. doi: 10.1158/2326-6066.CIR-16-0128
  • Nimanong S, Ostroumov D, Wingerath J, et al. CD40 signaling drives potent cellular immune responses in heterologous cancer vaccinations. Cancer Res. 2017 Apr 15;77(8):1918–1926. doi: 10.1158/0008-5472.CAN-16-2089
  • Lau SP, van Montfoort N, Kinderman P, et al. Dendritic cell vaccination and CD40-agonist combination therapy licenses T cell-dependent antitumor immunity in a pancreatic carcinoma murine model. J Immunother Cancer. 2020 Jul;8(2):e000772. doi: 10.1136/jitc-2020-000772
  • Nowak AK, Robinson BW, Lake RA. Synergy between chemotherapy and immunotherapy in the treatment of established murine solid tumors. Cancer Res. 2003 Aug 1;63(15):4490–4496.
  • Long KB, Gladney WL, Tooker GM, et al. IFNgamma and CCL2 cooperate to redirect tumor-infiltrating monocytes to degrade fibrosis and enhance chemotherapy efficacy in pancreatic carcinoma. Cancer Discov. 2016 Apr;6(4):400–413. doi: 10.1158/2159-8290.CD-15-1032
  • Yao W, Maitra A, Ying H. Recent insights into the biology of pancreatic cancer. EBioMedicine. 2020 Mar;53:102655. doi: 10.1016/j.ebiom.2020.102655
  • Ma HS, Poudel B, Torres ER, et al. A CD40 Agonist and PD-1 antagonist antibody reprogram the microenvironment of nonimmunogenic tumors to allow T-cell-mediated anticancer activity. Cancer Immunol Res. 2019 Mar;7(3):428–442. doi: 10.1158/2326-6066.CIR-18-0061
  • Ngiow SF, Young A, Blake SJ, et al. Agonistic CD40 mAb-Driven IL12 reverses resistance to anti-PD1 in a T-cell-rich tumor. Cancer Res. 2016 Nov 1;76(21):6266–6277. doi: 10.1158/0008-5472.CAN-16-2141
  • Zippelius A, Schreiner J, Herzig P, et al. Induced PD-L1 expression mediates acquired resistance to agonistic anti-CD40 treatment. Cancer Immunol Res. 2015 Mar;3(3):236–244. doi: 10.1158/2326-6066.CIR-14-0226
  • Selvaraj S, Raundhal M, Patidar A, et al. Anti-VEGF antibody enhances the antitumor effect of CD40. Int J Cancer. 2014 Oct 15;135(8):1983–1988. doi: 10.1002/ijc.28833
  • Kashyap AS, Schmittnaegel M, Rigamonti N, et al. Optimized antiangiogenic reprogramming of the tumor microenvironment potentiates CD40 immunotherapy. Proc Natl Acad Sci USA. 2020 Jan 7;117(1):541–551. doi: 10.1073/pnas.1902145116
  • Haslam A, Gill J, Prasad V. Estimation of the percentage of us patients with cancer who are eligible for immune checkpoint inhibitor drugs. JAMA Netw Open. 2020 Mar 2;3(3):e200423. doi: 10.1001/jamanetworkopen.2020.0423