37
Views
0
CrossRef citations to date
0
Altmetric
Review

Treatment options for advanced hepatocellular carcinoma: the potential of biologics

, , , , &
Pages 455-470 | Received 08 Apr 2024, Accepted 30 May 2024, Published online: 24 Jun 2024

References

  • Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. doi: 10.3322/caac.21492
  • Reig M, Forner A, Rimola J, et al. BCLC strategy for prognosis prediction and treatment recommendation: the 2022 update. J Hepatol. 2022;76(3):681–693. doi: 10.1016/j.jhep.2021.11.018
  • Vitale A, Cabibbo G, Iavarone M, et al. Personalised management of patients with hepatocellular carcinoma: a multiparametric therapeutic hierarchy concept. Lancet Oncol. 2023;24(7):e312–e322. doi: 10.1016/S1470-2045(23)00186-9
  • Llovet JM, Kelley RK, Villanueva A, et al. Hepatocellular carcinoma. Nat Rev Dis Prim. 2021;7(1):6. doi: 10.1038/s41572-020-00240-3
  • Marin JJG, Macias RIR, Monte MJ, et al. Molecular bases of drug resistance in hepatocellular carcinoma. Cancers (Basel). 2020;12(6):1663. doi: 10.3390/cancers12061663
  • Lohitesh K, Chowdhury R, Mukherjee S. Resistance a major hindrance to chemotherapy in hepatocellular carcinoma: an insight. Cancer Cell Int. 2018;18(1):44. doi: 10.1186/s12935-018-0538-7
  • Pinato DJ, Guerra N, Fessas P, et al. Immune-based therapies for hepatocellular carcinoma. Oncogene. 2020;39(18):3620–3637. doi: 10.1038/s41388-020-1249-9
  • Zhu AX, Duda DG, Sahani DV, et al. HCC and angiogenesis: possible targets and future directions. Nat Rev Clin Oncol. 2011;8(5):292–301. doi: 10.1038/nrclinonc.2011.30
  • Llovet JM, Ricci S, Mazzaferro V, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359(4):378–390. doi: 10.1056/NEJMoa0708857
  • Zhu Y, Zheng B, Wang H, et al. New knowledge of the mechanisms of sorafenib resistance in liver cancer. Acta Pharmacol Sin. 2017;38(5):614–622. doi: 10.1038/aps.2017.5
  • Kudo M, Finn RS, Qin S, et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. Lancet. 2018;391(10126):1163–1173. doi: 10.1016/S0140-6736(18)30207-1
  • Abou-Alfa GK, Meyer T, Cheng A-L, et al. Cabozantinib in patients with advanced and progressing hepatocellular carcinoma. N Engl J Med. 2018;379(1):54–63. doi: 10.1056/NEJMoa1717002
  • Bruix J, Qin S, Merle P, et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2017;389(10064):56–66. doi: 10.1016/S0140-6736(16)32453-9
  • Ntellas P, Chau I. Updates on systemic therapy for hepatocellular carcinoma. Am Soc Clin Oncol Educ B. 2024;44(1). doi: 10.1200/EDBK_430028
  • Cheng A-L, Qin S, Ikeda M, et al. Updated efficacy and safety data from IMbrave150: atezolizumab plus bevacizumab vs. sorafenib for unresectable hepatocellular carcinoma. J Hepatol. 2022;76(4):862–873. doi: 10.1016/j.jhep.2021.11.030
  • Finn RS, Qin S, Ikeda M, et al. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N Engl J Med. 2020;382(20):1894–1905. doi: 10.1056/NEJMoa1915745
  • Bristol Myers Squibb’s Press Release. Bristol Myers Squibb Announces CheckMate-9DW Trial Evaluating Opdivo (nivolumab) Plus Yervoy (ipilimumab) Meets Primary Endpoint of Overall Survival for the First-Line Treatment of Advanced Hepatocellular Carcinoma. 2024. [cited 2023 June 4]. Available from: https://news.bms.com/news/details/2024/Bristol-Myers-Squibb-Announces-CheckMate--9DW-Trial-Evaluating-Opdivo-nivolumab-Plus-Yervoy-ipilimumab-Meets-Primary-Endpoint-of-Overall-Survival-for-the-First-Line-Treatment-of-Advanced-Hepatocellular-Carcinoma/default.aspx
  • Persano M, Rimini M, Tada T, et al. Sequential therapies after atezolizumab plus bevacizumab or lenvatinib first-line treatments in hepatocellular carcinoma patients. Eur J Cancer. 2023;189:112933. doi: 10.1016/j.ejca.2023.05.021
  • Zhu AX, Kang Y-K, Yen C-J, et al. Ramucirumab after sorafenib in patients with advanced hepatocellular carcinoma and increased α-fetoprotein concentrations (REACH-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2019;20(2):282–296. doi: 10.1016/S1470-2045(18)30937-9
  • Chan LL, Kung JWC, Chan SL. Neoadjuvant immunotherapy for early-stage hepatocellular carcinoma: the arts and science. ESMO Gastrointest Oncol. 2023;1:15–20. doi: 10.1016/j.esmogo.2023.08.001
  • Chick RC, Ruff SM, Pawlik TM. Neoadjuvant systemic therapy for hepatocellular carcinoma. Front Immunol. 2024;15. doi: 10.3389/fimmu.2024.1355812
  • Li X, Wang Y, Ye X, et al. Locoregional combined with systemic therapies for advanced hepatocellular carcinoma: an inevitable trend of rapid development. Front Mol Biosci. 2021;8. doi: 10.3389/fmolb.2021.635243
  • Palmer DH, Malagari K, Kulik LM. Role of locoregional therapies in the wake of systemic therapy. J Hepatol. 2020;72(2):277–287. doi: 10.1016/j.jhep.2019.09.023
  • Guo B, Chen Q, Liu Z, et al. Adjuvant therapy following curative treatments for hepatocellular carcinoma: current dilemmas and prospects. Front Oncol. 2023;13. doi: 10.3389/fonc.2023.1098958
  • Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252–264. doi: 10.1038/nrc3239
  • Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013;39(1):1–10. doi: 10.1016/j.immuni.2013.07.012
  • Llovet JM, Castet F, Heikenwalder M, et al. Immunotherapies for hepatocellular carcinoma. Nat Rev Clin Oncol. 2022;19(3):151–172. doi: 10.1038/s41571-021-00573-2
  • Rowshanravan B, Halliday N, Sansom DM. CTLA-4: a moving target in immunotherapy. Blood. 2018;131(1):58–67. doi: 10.1182/blood-2017-06-741033
  • Camacho LH. CTLA-4 blockade with ipilimumab: biology, safety, efficacy, and future considerations. Cancer Med. 2015;4(5):661–672. doi: 10.1002/cam4.371
  • Sangro B, Gomez-Martin C, de la Mata M, et al. A clinical trial of CTLA-4 blockade with tremelimumab in patients with hepatocellular carcinoma and chronic hepatitis C. J Hepatol. 2013;59(1):81–88. doi: 10.1016/j.jhep.2013.02.022
  • Liu J, Chen Z, Li Y, et al. PD-1/PD-L1 checkpoint inhibitors in tumor immunotherapy. Front Pharmacol. 2021. doi: 10.3389/fphar.2021.731798
  • Wherry EJ, Kurachi M. Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol. 2015;15(8):486–499. doi: 10.1038/nri3862
  • Kudo M, Finn RS, Edeline J, et al. Updated efficacy and safety of KEYNOTE-224: a phase II study of pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib. Eur J Cancer. 2022;167:1–12. doi: 10.1016/j.ejca.2022.02.009
  • Merle P, Kudo M, Edeline J, et al. Pembrolizumab as second-line therapy for advanced hepatocellular carcinoma: longer term follow-up from the phase 3 KEYNOTE-240 trial. Liver Cancer. 2023;12(4):309–320. doi: 10.1159/000529636
  • El-Khoueiry AB, Trojan J, Meyer T, et al. Nivolumab in sorafenib-naive and sorafenib-experienced patients with advanced hepatocellular carcinoma: 5-year follow-up from CheckMate 040. Ann Oncol. 2023;35(4):381–391. doi: 10.1016/j.annonc.2023.12.008
  • Qin S, Ren Z, Meng Z, et al. Camrelizumab in patients with previously treated advanced hepatocellular carcinoma: a multicentre, open-label, parallel-group, randomised, phase 2 trial. Lancet Oncol. 2020;21(4):571–580. doi: 10.1016/S1470-2045(20)30011-5
  • Ren Z, Ducreux M, Abou-Alfa GK, et al. Tislelizumab in patients with previously treated advanced hepatocellular carcinoma (RATIONALE-208): a multicenter, non-randomized, open-label, phase 2 trial. Liver Cancer. 2023;12(1):72–84. doi: 10.1159/000527175
  • Yau T, Park J-W, Finn RS, et al. Nivolumab versus sorafenib in advanced hepatocellular carcinoma (CheckMate 459): a randomised, multicentre, open-label, phase 3 trial. Lancet Oncol. 2022;23(1):77–90. doi: 10.1016/S1470-2045(21)00604-5
  • Qin S, Kudo M, Meyer T, et al. Tislelizumab vs sorafenib as first-line treatment for unresectable hepatocellular carcinoma. JAMA Oncol. 2023;9(12):1651. doi: 10.1001/jamaoncol.2023.4003
  • Abou-Alfa GK, Chan SL, Kudo M, et al. Phase 3 randomized, open-label, multicenter study of tremelimumab (T) and durvalumab (D) as first-line therapy in patients (pts) with unresectable hepatocellular carcinoma (uHCC): HIMALAYA. J Clin Oncol. 2022;40(4_suppl):379–379. doi: 10.1200/JCO.2022.40.4_suppl.379
  • Sangro B, Chan SL, Kelley RK, et al. Four-year overall survival update from the phase III HIMALAYA study of tremelimumab plus durvalumab in unresectable hepatocellular carcinoma. Ann Oncol. 2024;35(5):448–457. doi: 10.1016/j.annonc.2024.02.005
  • Bruni D, Angell HK, Galon J. The immune contexture and immunoscore in cancer prognosis and therapeutic efficacy. Nat Rev Cancer. 2020;20(11):662–680. doi: 10.1038/s41568-020-0285-7
  • Havel JJ, Chowell D, Chan TA. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nat Rev Cancer. 2019;19(3):133–150. doi: 10.1038/s41568-019-0116-x
  • Fukumura D, Kloepper J, Amoozgar Z, et al. Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges. Nat Rev Clin Oncol. 2018;15:325–340. doi: 10.1038/nrclinonc.2018.29
  • Ma L, Hernandez MO, Zhao Y, et al. Tumor cell biodiversity drives microenvironmental reprogramming in liver cancer. Cancer Cell. 2019;36(4):418–430.e6. doi: 10.1016/j.ccell.2019.08.007
  • Ren Z, Xu J, Bai Y, et al. Sintilimab plus a bevacizumab biosimilar (IBI305) versus sorafenib in unresectable hepatocellular carcinoma (ORIENT-32): a randomised, open-label, phase 2–3 study. Lancet Oncol. 2021;22(7):977–990. doi: 10.1016/S1470-2045(21)00252-7
  • Llovet JM, Kudo M, Merle P, et al. Lenvatinib plus pembrolizumab versus lenvatinib plus placebo for advanced hepatocellular carcinoma (LEAP-002): a randomised, double-blind, phase 3 trial. Lancet Oncol. 2023;24(12):1399–1410. doi: 10.1016/S1470-2045(23)00469-2
  • Yau T, Kaseb A, Cheng A-L, et al. Cabozantinib plus atezolizumab versus sorafenib for advanced hepatocellular carcinoma (COSMIC-312): final results of a randomised phase 3 study. Lancet Gastroenterol Hepatol. 2024;9(4):310–322. doi: 10.1016/S2468-1253(23)00454-5
  • Vogel A, Siegler GM, Siebler J, et al. IMMUNIB trial (AIO-HEP-0218/ass): a single-arm, phase II study evaluating safety and efficacy of immunotherapy nivolumab in combination with lenvatinib in advanced-stage hepatocellular carcinoma (HCC). J Clin Oncol. 2022;40(16_suppl):4107–4107. doi: 10.1200/JCO.2022.40.16_suppl.4107
  • Qin S, Chan LS, Gu S, et al. LBA35 camrelizumab (C) plus rivoceranib (R) vs. sorafenib (S) as first-line therapy for unresectable hepatocellular carcinoma (uHCC): a randomized, phase III trial. Ann Oncol. 2022;33:S1401–S1402. doi: 10.1016/j.annonc.2022.08.032
  • Yau T, Kang Y-K, Kim T-Y, et al. Efficacy and safety of nivolumab plus ipilimumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib. JAMA Oncol. 2020;6(11):e204564. doi: 10.1001/jamaoncol.2020.4564
  • Topalian SL, Sharpe AH. Balance and imbalance in the immune system: life on the edge. Immunity. 2014;41(5):682–684. doi: 10.1016/j.immuni.2014.11.005
  • Haanen J, Obeid M, Spain L, et al. Management of toxicities from immunotherapy: ESMO clinical practice guideline for diagnosis, treatment and follow-up. Ann Oncol. 2022;33(12):1217–1238. doi: 10.1016/j.annonc.2022.10.001
  • Kim C. Association of High Levels of Antidrug Antibodies Against Atezolizumab With Clinical Outcomes and T-Cell Responses in Patients With Hepatocellular Carcinoma. JAMA Oncol. 2022;8(12):1825. doi: 10.1001/jamaoncol.2022.4733
  • Green BL, Myojin Y, Ma C, et al. Immunosuppressive CD29 + treg accumulation in the liver in mice on checkpoint inhibitor therapy. Gut. 2023;gutjnl-2023-330024. doi: 10.1136/gutjnl-2023-330024
  • Fu Y, Liu S, Zeng S, et al. From bench to bed: the tumor immune microenvironment and current immunotherapeutic strategies for hepatocellular carcinoma. J Exp Clin Cancer Res. 2019;38(1):396. doi: 10.1186/s13046-019-1396-4
  • Zhang N, Yang X, Piao M, et al. Biomarkers and prognostic factors of PD-1/PD-L1 inhibitor-based therapy in patients with advanced hepatocellular carcinoma. Biomark Res. 2024;12(1):26. doi: 10.1186/s40364-023-00535-z
  • Pelizzaro F, Farinati F, Trevisani F. Immune checkpoint inhibitors in hepatocellular carcinoma: current strategies and biomarkers predicting response and/or resistance. Biomedicines. 2023;11(4):1020. doi: 10.3390/biomedicines11041020
  • Haber PK, Castet F, Torres-Martin M, et al. Molecular markers of response to anti-PD1 therapy in advanced hepatocellular carcinoma. Gastroenterology. 2023;164(1):72–88.e18. doi: 10.1053/j.gastro.2022.09.005
  • Pfister D, Núñez NG, Pinyol R, et al. NASH limits anti-tumour surveillance in immunotherapy-treated HCC. Nature. 2021;592:450–456. doi: 10.1038/s41586-021-03362-0
  • Rimini M, Rimassa L, Ueshima K, et al. Atezolizumab plus bevacizumab versus lenvatinib or sorafenib in non-viral unresectable hepatocellular carcinoma: an international propensity score matching analysis. ESMO Open. 2022;7(6):100591. doi: 10.1016/j.esmoop.2022.100591
  • Shimose S, Hiraoka A, Casadei‐Gardini A, et al. The beneficial impact of metabolic dysfunction‐associated fatty liver disease on lenvatinib treatment in patients with non‐viral hepatocellular carcinoma. Hepatol Res. 2023;53(2):104–115. doi: 10.1111/hepr.13843
  • Casadei-Gardini A, Rimini M, Tada T, et al. Atezolizumab plus bevacizumab versus lenvatinib for unresectable hepatocellular carcinoma: a large real-life worldwide population. Eur J Cancer. 2023;180:9–20. doi: 10.1016/j.ejca.2022.11.017
  • Espinoza M, Muquith M, Lim M, et al. Disease etiology and outcomes after atezolizumab plus bevacizumab in hepatocellular carcinoma: post-hoc analysis of IMbrave150. Gastroenterology. 2023;165(1):286–288.e4. doi: 10.1053/j.gastro.2023.02.042
  • Meyer T, Galani S, Lopes A, et al. Aetiology of liver disease and response to immune checkpoint inhibitors: an updated meta-analysis confirms benefit in those with non-viral liver disease. J Hepatol. 2023;79(2):e73–e76. doi: 10.1016/j.jhep.2023.04.012
  • Rossari F, Tada T, Suda G, et al. Disease etiology impact on outcomes of hepatocellular carcinoma patients treated with atezolizumab plus bevacizumab: a real-world, multicenter study. Liver Cancer. 2024:1–15. doi: 10.1159/000537915
  • Rossari F, Tada T, Suda G, et al. α‐FAtE: a new predictive score of response to atezolizumab plus bevacizumab for unresectable hepatocellular carcinoma. Int J Cancer. 2023;154(6):1043–1056. doi: 10.1002/ijc.34799
  • Chan SL, Ryoo B-Y, Mo F, et al. Multicentre phase II trial of cabozantinib in patients with hepatocellular carcinoma after immune checkpoint inhibitor treatment. J Hepatol. 2024. doi: 10.1016/j.jhep.2024.03.033
  • Finn RS, Ryoo B-Y, Hsu C-H, et al. Results from the MORPHEUS-liver study: phase Ib/II randomized evaluation of tiragolumab (tira) in combination with atezolizumab (atezo) and bevacizumab (bev) in patients with unresectable, locally advanced or metastatic hepatocellular carcinoma (uHCC). J Clin Oncol. 2023;41(16_suppl):4010–4010. doi: 10.1200/JCO.2023.41.16_suppl.4010
  • Ren Z, Huang Y, Guo Y, et al. 945MO AdvanTIG-206: phase II randomized open-label study of ociperlimab (OCI) + tislelizumab (TIS) + BAT1706 (bevacizumab biosimilar) versus TIS + BAT1706 in patients (pts) with advanced hepatocellular carcinoma (HCC). Ann Oncol. 2023;34:S594. doi: 10.1016/j.annonc.2023.09.2091
  • Bach N, Winzer R, Tolosa E, et al. The clinical significance of CD73 in cancer. Int J Mol Sci. 2023;24(14):11759. doi: 10.3390/ijms241411759
  • Xia C, Yin S, Kkw T, et al. CD39/CD73/A2AR pathway and cancer immunotherapy. Mol Cancer. 2023;22(1):44. doi: 10.1186/s12943-023-01733-x
  • Perrot I, Michaud H-A, Giraudon-Paoli M, et al. Blocking antibodies targeting the CD39/CD73 immunosuppressive pathway unleash immune responses in combination cancer therapies. Cell Rep. 2019;27(8):2411–2425.e9. doi: 10.1016/j.celrep.2019.04.091
  • Fu Y, Mackowiak B, Feng D, et al. MicroRNA-223 attenuates hepatocarcinogenesis by blocking hypoxia-driven angiogenesis and immunosuppression. Gut. 2023;72(10):1942–1958. doi: 10.1136/gutjnl-2022-327924
  • Tabrizian P, Abdelrahim M, Schwartz M. Immunotherapy and transplantation for hepatocellular carcinoma. J Hepatol. 2024;80(5):822–825. doi: 10.1016/j.jhep.2024.01.011
  • Wassmer C-H, El Hajji S, Papazarkadas X, et al. Immunotherapy and liver transplantation: a narrative review of basic and clinical data. Cancers (Basel). 2023;15(18):4574. doi: 10.3390/cancers15184574
  • Qin S, Chen M, Cheng A-L, et al. Atezolizumab plus bevacizumab versus active surveillance in patients with resected or ablated high-risk hepatocellular carcinoma (IMbrave050): a randomised, open-label, multicentre, phase 3 trial. Lancet. 2023;402(10415):1835–1847. doi: 10.1016/S0140-6736(23)01796-8
  • Lencioni R, Kudo M, Erinjeri J, et al. EMERALD-1: a phase 3, randomized, placebo-controlled study of transarterial chemoembolization combined with durvalumab with or without bevacizumab in participants with unresectable hepatocellular carcinoma eligible for embolization. J Clin Oncol. 2024;42(3_suppl):LBA432–LBA432. doi: 10.1200/JCO.2024.42.3_suppl.LBA432
  • Pinto E, Pelizzaro F, Farinati F, et al. Angiogenesis and hepatocellular carcinoma: from molecular mechanisms to systemic therapies. Med (B Aires). 2023;59(6):1115. doi: 10.3390/medicina59061115
  • Lanza E, Donadon M, Poretti D, et al. Transarterial Therapies for Hepatocellular Carcinoma. Liver Cancer. 2017;6(1):27–33. doi: 10.1159/000449347
  • Zhu AX, Park JO, Ryoo B-Y, et al. Ramucirumab versus placebo as second-line treatment in patients with advanced hepatocellular carcinoma following first-line therapy with sorafenib (REACH): a randomised, double-blind, multicentre, phase 3 trial. Lancet Oncol. 2015;16(7):859–870. doi: 10.1016/S1470-2045(15)00050-9
  • Yao C, Wu S, Kong J, et al. Angiogenesis in hepatocellular carcinoma: mechanisms and anti-angiogenic therapies. Cancer Biol Med. 2023;20(1):25–43. doi: 10.20892/j.issn.2095-3941.2022.0449
  • Weiner LM, Surana R, Wang S. Monoclonal antibodies: versatile platforms for cancer immunotherapy. Nat Rev Immunol. 2010;10(5):317–327. doi: 10.1038/nri2744
  • Zahavi D, Weiner L. Monoclonal antibodies in cancer therapy. Antibodies. 2020;9(3):34. doi: 10.3390/antib9030034
  • Fu Z, Li S, Han S, et al. Antibody drug conjugate: the “biological missile” for targeted cancer therapy. Signal Transduct Target Ther. 2022;7(1):93. doi: 10.1038/s41392-022-00947-7
  • Zheng X, Liu X, Lei Y, et al. Glypican-3: a novel and promising target for the treatment of hepatocellular carcinoma. Front Oncol. 2022;12. doi: 10.3389/fonc.2022.824208
  • Abou-Alfa GK, Puig O, Daniele B, et al. Randomized phase II placebo controlled study of codrituzumab in previously treated patients with advanced hepatocellular carcinoma. J Hepatol. 2016;65(2):289–295. doi: 10.1016/j.jhep.2016.04.004
  • Gao W, Tang Z, Zhang Y-F, et al. Immunotoxin targeting glypican-3 regresses liver cancer via dual inhibition of wnt signalling and protein synthesis. Nat Commun. 2015;6(1):6536. doi: 10.1038/ncomms7536
  • Feng M, Gao W, Wang R, et al. Therapeutically targeting glypican-3 via a conformation-specific single-domain antibody in hepatocellular carcinoma. Proc Natl Acad Sci. 2013;110(12):110. doi: 10.1073/pnas.1217868110
  • Fu Y, Urban DJ, Nani RR, et al. Glypican‐3‐specific antibody drug conjugates targeting hepatocellular carcinoma. Hepatology. 2019;70(2):563–576. doi: 10.1002/hep.30326
  • Huang LR, Hsu HC. Cloning and expression of CD24 gene in human hepatocellular carcinoma: a potential early tumor marker gene correlates with p53 mutation and tumor differentiation. Cancer Res. 1995;55(20):4717–4721.
  • Ma Z, He H, Sun F, et al. Selective targeted delivery of doxorubicin via conjugating to anti-CD24 antibody results in enhanced antitumor potency for hepatocellular carcinoma both in vitro and in vivo. J Cancer Res Clin Oncol. 2017;143(10):1929–1940. doi: 10.1007/s00432-017-2436-0
  • Sun F, Wang T, Jiang J, et al. Engineering a high-affinity humanized anti-CD24 antibody to target hepatocellular carcinoma by a novel CDR grafting design. Oncotarget. 2017;8(31):51238–51252. doi: 10.18632/oncotarget.17228
  • Sun F, Wang Y, Luo X, et al. Anti-CD24 antibody–nitric oxide conjugate selectively and potently suppresses hepatic carcinoma. Cancer Res. 2019;79(13):3395–3405. doi: 10.1158/0008-5472.CAN-18-2839
  • Roehlen N, Muller M, Nehme Z, et al. Treatment of HCC with claudin-1-specific antibodies suppresses carcinogenic signaling and reprograms the tumor microenvironment. J Hepatol. 2023;78(2):343–355. doi: 10.1016/j.jhep.2022.10.011
  • Stebbing J, Filipović A, Giamas G. Claudin-1 as a promoter of EMT in hepatocellular carcinoma. Oncogene. 2013;32(41):4871–4872. doi: 10.1038/onc.2012.591
  • Saxena M, van der Burg SH, Melief CJM, et al. Therapeutic cancer vaccines. Nat Rev Cancer. 2021;21(6):360–378. doi: 10.1038/s41568-021-00346-0
  • Stanley M. Tumour virus vaccines: hepatitis B virus and human papillomavirus. Philos Trans R Soc B Biol Sci. 2017;372:20160268. doi: 10.1098/rstb.2016.0268
  • Tojjari A, Saeed A, Singh M, et al. A comprehensive review on cancer vaccines and vaccine strategies in hepatocellular carcinoma. Vaccines. 2023;11(8):1357. doi: 10.3390/vaccines11081357
  • Greten TF, Forner A, Korangy F, et al. A phase II open label trial evaluating safety and efficacy of a telomerase peptide vaccination in patients with advanced hepatocellular carcinoma. BMC Cancer. 2010;10(1):209. doi: 10.1186/1471-2407-10-209
  • Sawada Y, Yoshikawa T, Nobuoka D, et al. Phase I trial of a glypican-3–Derived peptide vaccine for advanced hepatocellular carcinoma: immunologic evidence and potential for improving overall survival. Clin Cancer Res. 2012;18(13):3686–3696. doi: 10.1158/1078-0432.CCR-11-3044
  • Sawada Y, Sakai M, Yoshikawa T, et al. A glypican-3-derived peptide vaccine against hepatocellular carcinoma. Oncoimmunology. 2012;1(8):1448–1450. doi: 10.4161/onci.21351
  • Lu X, Deng S, Xu J, et al. Combination of AFP vaccine and immune checkpoint inhibitors slows hepatocellular carcinoma progression in preclinical models. J Clin Invest. 2023;133(11). doi: 10.1172/JCI163291
  • Löffler MW, Gori S, Izzo F, et al. Phase I/II multicenter trial of a novel therapeutic cancer vaccine, HepaVac-101, for hepatocellular carcinoma. Clin Cancer Res. 2022;28(12):2555–2566. doi: 10.1158/1078-0432.CCR-21-4424
  • Wang X, Bayer ME, Chen X, et al. Phase I trial of active specific immunotherapy with autologous dendritic cells pulsed with autologous irradiated tumor stem cells in hepatitis B‐positive patients with hepatocellular carcinoma. J Surg Oncol. 2015;111(7):862–867. doi: 10.1002/jso.23897
  • Elster JD, Krishnadas DK, Lucas KG. Dendritic cell vaccines: a review of recent developments and their potential pediatric application. Hum Vaccin Immunother. 2016;12(9):2232–2239. doi: 10.1080/21645515.2016.1179844
  • Rizell M, Sternby Eilard M, Andersson M, et al. Phase 1 trial with the cell-based immune primer ilixadencel, alone, and combined with sorafenib, in advanced hepatocellular carcinoma. Front Oncol. 2019;9. doi: 10.3389/fonc.2019.00019
  • Lopes A, Vandermeulen G, Préat V. Cancer DNA vaccines: current preclinical and clinical developments and future perspectives. J Exp Clin Cancer Res. 2019;38(1):146. doi: 10.1186/s13046-019-1154-7
  • Yarchoan M, Gane E, Marron TU, et al. Personalized DNA neoantigen vaccine in combination with plasmid IL-12 and pembrolizumab for the treatment of patients with advanced hepatocellular carcinoma. J Clin Oncol. 2021;39(15_suppl):TPS2680. doi: 10.1200/JCO.2021.39.15_suppl.TPS2680
  • Morozov AV, Morozov VA, Astakhova TM, et al. DNA vaccine encoding α-fetoprotein fused with the ornithine decarboxylase degradation signal significantly suppresses the hepatocellular carcinoma growth in mice. Mol Biol. 2012;46(3):391–406. doi: 10.1134/S0026893312030089
  • Deng Z, Yang H, Tian Y, et al. An OX40L mRNA vaccine inhibits the growth of hepatocellular carcinoma. Front Oncol. 2022;12. doi: 10.3389/fonc.2022.975408
  • Tian Y, Xie D, Yang L. Engineering strategies to enhance oncolytic viruses in cancer immunotherapy. Signal Transduct Target Ther. 2022;7(1):1–21. doi: 10.1038/s41392-022-00951-x
  • Rossari F, Birocchi F, Naldini L, et al. Gene-based delivery of immune-activating cytokines for cancer treatment. Trends Mol Med. 2023;29(4):329–342. doi: 10.1016/j.molmed.2023.01.006
  • Andtbacka RHI, Kaufman HL, Collichio F, et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol. 2015;33(25):2780–2788. doi: 10.1200/JCO.2014.58.3377
  • Abou-Alfa GK, Galle PR, Chao Y, et al. PHOCUS: a phase 3, randomized, open-label study of sequential treatment with pexa-vec (JX-594) and sorafenib in patients with advanced hepatocellular carcinoma. Liver Cancer. 2023:1–17. doi: 10.1159/000533650
  • Mitchison NA. Studies on the immunological response to foreign tumor transplants in the mouse. J Exp Med. 1955;102(2):157–177. doi: 10.1084/jem.102.2.157
  • Rosenberg SA, Packard BS, Aebersold PM, et al. Use of tumor-infiltrating lymphocytes and Interleukin-2 in the immunotherapy of patients with metastatic melanoma. N Engl J Med. 1988;319(25):1676–1680. doi: 10.1056/NEJM198812223192527
  • Jiang S-S, Tang Y, Zhang Y-J, et al. A phase I clinical trial utilizing autologous tumor-infiltrating lymphocytes in patients with primary hepatocellular carcinoma. Oncotarget. 2015;6(38):41339–41349. doi: 10.18632/oncotarget.5463
  • Lee JH, Lee J-H, Lim Y-S, et al. Adjuvant immunotherapy with autologous cytokine-induced killer cells for hepatocellular carcinoma. Gastroenterology. 2015;148(7):1383–1391.e6. doi: 10.1053/j.gastro.2015.02.055
  • Lee J-H, Lee JH, Lim Y-S, et al. Sustained efficacy of adjuvant immunotherapy with cytokine-induced killer cells for hepatocellular carcinoma: an extended 5-year follow-up. Cancer Immunol Immun. 2019;68(1):23–32. doi: 10.1007/s00262-018-2247-4
  • Met Ö, Jensen KM, Chamberlain CA, et al. Principles of adoptive T cell therapy in cancer. Semin Immunopathol. Springer Verlag. 2019;41(1):49–58. doi: 10.1007/s00281-018-0703-z
  • Govers C, Sebestyén Z, Coccoris M, et al. T cell receptor gene therapy: strategies for optimizing transgenic TCR pairing. Trends Mol Med Trends Mol Med. 2010;16(2):77–87. doi: 10.1016/j.molmed.2009.12.004
  • Provasi E, Genovese P, Lombardo A, et al. Editing T cell specificity towards leukemia by zinc finger nucleases and lentiviral gene transfer. Nat Med. 2012;18(5):807–815. doi: 10.1038/nm.2700
  • Albers JJ, Ammon T, Gosmann D, et al. Gene editing enables T-cell engineering to redirect antigen specificity for potent tumor rejection. Life Sci Alliance. 2019;2(2):e201900367. doi: 10.26508/lsa.201900367
  • Tan AT, Bertoletti A. HBV-HCC treatment with mRNA electroporated HBV-TCR T cells. Immunother Adv. 2022;2(1). doi: 10.1093/immadv/ltab026
  • Yang F, Zheng X, Koh S, et al. Messenger RNA electroporated hepatitis B virus (HBV) antigen-specific T cell receptor (TCR) redirected T cell therapy is well-tolerated in patients with recurrent HBV-related hepatocellular carcinoma post-liver transplantation: results from a phase I tria. Hepatol Int. 2023;17(4):850–859. doi: 10.1007/s12072-023-10524-x
  • Luo X, Cui H, Cai L, et al. Selection of a clinical lead TCR targeting alpha-fetoprotein-positive liver cancer based on a balance of risk and benefit. Front Immunol. 2020;11. doi: 10.3389/fimmu.2020.00623
  • Ozer M, Goksu SY, Akagunduz B, et al. Adoptive cell therapy in hepatocellular carcinoma: a review of clinical trials. Cancers (Basel). 2023;15(6):1808. doi: 10.3390/cancers15061808
  • June CH, Sadelain M. Chimeric antigen receptor therapy. N Engl J Med. 2018;379(1):64–73. doi: 10.1056/NEJMra1706169
  • Aggeletopoulou I, Kalafateli M, Triantos C. Chimeric antigen receptor T cell therapy for hepatocellular carcinoma: where do we stand? Int J Mol Sci. 2024;25(5):2631. doi: 10.3390/ijms25052631
  • D’Aloia MM, Zizzari IG, Sacchetti B, et al. CAR-T cells: the long and winding road to solid tumors. Cell Death Dis. 2018;9(3):282. doi: 10.1038/s41419-018-0278-6
  • Lu L-L, Xiao S, Lin Z, et al. GPC3-IL7-CCL19-CAR-T primes immune microenvironment reconstitution for hepatocellular carcinoma therapy. Cell Biol Toxicol. 2023;39(6):3101–3119. doi: 10.1007/s10565-023-09821-w
  • Pang N, Shi J, Qin L, et al. IL-7 and CCL19-secreting CAR-T cell therapy for tumors with positive glypican-3 or mesothelin. J Hematol Oncol. 2021;14(1):118. doi: 10.1186/s13045-021-01128-9
  • Rong L, Perelson AS. Treatment of hepatitis C virus infection with interferon and small molecule direct antivirals: viral kinetics and modeling. Crit Rev Immunol. 2010;30(2):131–148. doi: 10.1615/CritRevImmunol.v30.i2.30
  • Ye J, Chen J. Interferon and hepatitis b: current and future perspectives. Front Immunol. 2021;12. doi: 10.3389/fimmu.2021.733364
  • Parker BS, Rautela J, Hertzog PJ. Antitumour actions of interferons: implications for cancer therapy. Nat Rev Cancer. 2016;16(3):131–144. doi: 10.1038/nrc.2016.14
  • Diamond MS, Kinder M, Matsushita H, et al. Type I interferon is selectively required by dendritic cells for immune rejection of tumors. J Exp Med. 2011;208(10):1989–2003. doi: 10.1084/jem.20101158
  • Fuertes MB, Kacha AK, Kline J, et al. Host type I IFN signals are required for antitumor CD8+ T cell responses through CD8α+ dendritic cells. J Exp Med. 2011;208(10):2005–2016. doi: 10.1084/jem.20101159
  • Berraondo P, Sanmamed MF, Ochoa MC, et al. Cytokines in clinical cancer immunotherapy. Br J Cancer. 2019;120(1):6–15. doi: 10.1038/s41416-018-0328-y
  • Llovet JM, Sala M, Castells L, et al. Randomized controlled trial of interferon treatment for advanced hepatocellular carcinoma. Hepatology. 2000;31(1):54–58. doi: 10.1002/hep.510310111
  • Snell LM, McGaha TL, Brooks DG. Type i interferon in chronic virus infection and cancer. Trends Immunol. 2017;38:542–557. doi: 10.1016/j.it.2017.05.005
  • Jiang S, Liu Y, Wang L, et al. A meta-analysis and systematic review: adjuvant interferon therapy for patients with viral hepatitis-related hepatocellular carcinoma. World J Surg Oncol. 2013;11(1):240. doi: 10.1186/1477-7819-11-240
  • Huang TS, Shyu YC, Chen HY, et al. A systematic review and meta‐analysis of adjuvant interferon therapy after curative treatment for patients with viral hepatitis‐related hepatocellular carcinoma. J Viral Hepat. 2013;20(10):729–743. doi: 10.1111/jvh.12096
  • Zhuang L, Zeng X, Yang Z, et al. Effect and safety of interferon for hepatocellular carcinoma: a systematic review and meta-analysis. Hoshida Y, editor. PLoS One. 2013;8(9):e61361. doi: 10.1371/journal.pone.0061361
  • Ventola CL. Cancer immunotherapy, part 1: current strategies and agents. Pharm Ther. 2017;42:375.
  • Farina F, Gentner B, Finocchiaro G, et al. Genetic engineering of hematopoietic progenitor stem cells for targeted IFN-α immunotherapy reprogramming the solid tumor microenvironment: a first-in-man study in glioblastoma multiforme (NCT03866109). Blood. 2023;142(Supplement 1):4850–4850. doi: 10.1182/blood-2023-178212
  • Birocchi F, Cusimano M, Rossari F, et al. Targeted inducible delivery of immunoactivating cytokines reprograms glioblastoma microenvironment and inhibits growth in mouse models. Sci Transl Med. 2022;14(653):eabl4106. doi: 10.1126/scitranslmed.abl4106
  • Kerzel T, Giacca G, Beretta S, et al. In vivo macrophage engineering reshapes the tumor microenvironment leading to eradication of liver metastases. Cancer Cell. 2023;41(11):1892–1910.e10. doi: 10.1016/j.ccell.2023.09.014

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.