428
Views
0
CrossRef citations to date
0
Altmetric
Special Report

Small molecule-regulated switches to provide functional control of CAR T cells within the patient

, , &
Pages 425-432 | Received 21 Mar 2024, Accepted 18 Jun 2024, Published online: 29 Jun 2024

References

  • Cappell KM, Kochenderfer JN. Long-term outcomes following CAR T cell therapy: what we know so far. Nat Rev Clin Oncol. 2023 Jun;20(6):359–371. doi: 10.1038/s41571-023-00754-1
  • Wu CY, Roybal KT, Puchner EM, et al. Remote control of therapeutic T cells through a small molecule-gated chimeric receptor. Sci. 2015 Oct 16;350(6258):aab4077. doi: 10.1126/science.aab4077
  • Ali ES, Mitra K, Akter S, et al. Recent advances and limitations of mTOR inhibitors in the treatment of cancer. Cancer Cell Int. 2022 Sep 15;22(1):284. doi: 10.1186/s12935-022-02706-8
  • Hill ZB, Martinko AJ, Nguyen DP, et al. Human antibody-based chemically induced dimerizers for cell therapeutic applications. Nat Chem Biol. 2018 Feb;14(2):112–117. doi: 10.1038/nchembio.2529
  • Martinko AJ, Simonds EF, Prasad S, et al. Switchable assembly and function of antibody complexes in vivo using a small molecule. Proc Natl Acad Sci USA. 2022 Mar 1;119(9). doi: 10.1073/pnas.2117402119
  • DiNardo CD, Jonas BA, Pullarkat V, et al. Azacitidine and venetoclax in previously untreated acute myeloid leukemia. N Engl J Med. 2020 Aug 13;383(7):617–629. doi: 10.1056/NEJMoa2012971
  • Pratz KW, Jonas BA, Pullarkat V, et al. Long-term follow-up of VIALE-A: venetoclax and azacitidine in chemotherapy-ineligible untreated acute myeloid leukemia. Am J Hematol. 2024 Apr;99(4):615–624. doi: 10.1002/ajh.27246
  • Zajc CU, Dobersberger M, Schaffner I, et al. A conformation-specific ON-switch for controlling CAR T cells with an orally available drug. Proc Natl Acad Sci USA. 2020 Jun 30;117(26):14926–14935. doi: 10.1073/pnas.1911154117
  • McCarthy PL, Owzar K, Hofmeister CC, et al. Lenalidomide after stem-cell transplantation for multiple myeloma. N Engl J Med. 2012 May 10;366(19):1770–1781. doi: 10.1056/NEJMoa1114083
  • Pulte ED, Dmytrijuk A, Nie L, et al. FDA approval summary: lenalidomide as maintenance therapy after autologous stem cell transplant in newly diagnosed multiple myeloma. Oncology. 2018 Jun;23(6):734–739. doi: 10.1634/theoncologist.2017-0440
  • Raedler LA. Revlimid (Lenalidomide) now FDA approved as first-line therapy for patients with multiple myeloma. Am Health Drug Benefits. 2016 Mar;9(Spec Feature):140–143.
  • Jan M, Scarfo I, Larson RC, et al. Reversible ON- and OFF-switch chimeric antigen receptors controlled by lenalidomide. Sci Transl Med. 2021 Jan 6;13(575). doi: 10.1126/scitranslmed.abb6295
  • Foster AE, Mahendravada A, Shinners NP, et al. Regulated expansion and survival of chimeric antigen receptor-modified T cells using small molecule-dependent inducible MyD88/CD40. Mol Ther. 2017 Sep 6;25(9):2176–2188. doi: 10.1016/j.ymthe.2017.06.014
  • Salzer B, Schueller CM, Zajc CU, et al. Engineering AvidCARs for combinatorial antigen recognition and reversible control of CAR function. Nat Commun. 2020 Aug 20;11(1):4166. doi: 10.1038/s41467-020-17970-3
  • Li HS, Israni DV, Gagnon KA, et al. Multidimensional control of therapeutic human cell function with synthetic gene circuits. Science. 2022 Dec 16;378(6625):1227–1234. doi: 10.1126/science.ade0156
  • Giordano-Attianese G, Gainza P, Gray-Gaillard E, et al. A computationally designed chimeric antigen receptor provides a small-molecule safety switch for T-cell therapy. Nat Biotechnol. 2020 Apr;38(4):426–432. doi: 10.1038/s41587-019-0403-9
  • Baldwin HE, Ward DB Jr. Fifty years of minocycline and its evolution: a dermatological perspective. J Drugs Dermatol. 2021 Oct 1;20(10):1031–1036.
  • Garrido-Mesa N, Zarzuelo A, Galvez J. Minocycline: far beyond an antibiotic. Br J Pharmacol. 2013 May;169(2):337–352. doi: 10.1111/bph.12139
  • Jha R, Kinna A, Hotblack A, et al. Designer small-molecule control system based on minocycline-induced disruption of protein-protein interaction. ACS Chem Biol. 2024 Feb 16;19(2):308–324. doi: 10.1021/acschembio.3c00521
  • Park S, Pascua E, Lindquist KC, et al. Direct control of CAR T cells through small molecule-regulated antibodies. Nat Commun. 2021 Jan 29;12(1):710. doi: 10.1038/s41467-020-20671-6
  • Weinblatt ME. Methotrexate in rheumatoid arthritis: a quarter century of development. Trans Am Clin Climatol Assoc. 2013;124:16–25.
  • Weinblatt ME, Coblyn JS, Fox DA, et al. Efficacy of low-dose methotrexate in rheumatoid arthritis. N Engl J Med. 1985 Mar 28;312(13):818–822. doi: 10.1056/NEJM198503283121303
  • Williams HJ, Willkens RF, Samuelson CO Jr., et al. Comparison of low-dose oral pulse methotrexate and placebo in the treatment of rheumatoid arthritis. A controlled clinical trial. Arthritis Rheum. 1985 Jul;28(7):721–730. doi: 10.1002/art.1780280702
  • Labanieh L, Majzner RG, Klysz D, et al. Enhanced safety and efficacy of protease-regulated CAR-T cell receptors. Cell. 2022 May 12;185(10):1745–1763 e22. doi: 10.1016/j.cell.2022.03.041
  • Keating GM. Elbasvir/Grazoprevir: first global approval. Drugs. 2016 Apr;76(5):617–624. doi: 10.1007/s40265-016-0558-3
  • Abbott BL. Dasatinib: from treatment of imatinib-resistant or -intolerant patients with chronic myeloid leukemia to treatment of patients with newly diagnosed chronic phase chronic myeloid leukemia. Clin Ther. 2012 Feb;34(2):272–281. doi: 10.1016/j.clinthera.2012.01.009
  • Mestermann K, Giavridis T, Weber J, et al. The tyrosine kinase inhibitor dasatinib acts as a pharmacologic on/off switch for CAR T cells. Sci Transl Med. 2019 Jul 3;11(499). doi: 10.1126/scitranslmed.aau5907
  • Weber EW, Lynn RC, Sotillo E, et al. Pharmacologic control of CAR-T cell function using dasatinib. Blood Adv. 2019 Mar 12;3(5):711–717. doi: 10.1182/bloodadvances.2018028720
  • Weber EW, Parker KR, Sotillo E, et al. Transient rest restores functionality in exhausted CAR-T cells through epigenetic remodeling. Science. 2021 Apr 2;372(6537). doi: 10.1126/science.aba1786
  • Chang EC, Liu H, West JA, et al. Clonal dynamics in vivo of virus integration sites of T cells expressing a safety switch. Mol Ther. 2016 Apr;24(4):736–745. doi: 10.1038/mt.2015.217
  • Zhou X, Naik S, Dakhova O, et al. Serial activation of the inducible caspase 9 safety switch after human stem cell transplantation. Mol Ther. 2016 Apr;24(4):823–831. doi: 10.1038/mt.2015.234
  • Baker R. FDA approves oral ganciclovir as first drug to prevent CMV disease. San Francisco, CA: San Francisco AIDS Foundation; 1995.
  • Jensen MC, Popplewell L, Cooper LJ, et al. Antitransgene rejection responses contribute to attenuated persistence of adoptively transferred CD20/CD19-specific chimeric antigen receptor redirected T cells in humans. Biol Blood Marrow Transplant. 2010 Sep;16(9):1245–1256. doi: 10.1016/j.bbmt.2010.03.014
  • Amberger M, Grueso E, Ivics Z. CRISISS: a novel, transcriptionally and post-translationally inducible CRISPR/Cas9-based cellular suicide switch. Int J Mol Sci. 2023 Jun 6;24(12):9799. doi: 10.3390/ijms24129799
  • Peters DT, Savoldo B, Grover NS. Building safety into CAR-T therapy. Hum Vaccin Immunother. 2023 Dec 15;19(3):2275457. doi: 10.1080/21645515.2023.2275457
  • Duong MT, Collinson-Pautz MR, Morschl E, et al. Two-dimensional regulation of CAR-T cell therapy with orthogonal switches. Mol Ther Oncolytics. 2019 Mar 29;12:124–137. doi: 10.1016/j.omto.2018.12.009
  • Del Bufalo F, De Angelis B, Caruana I, et al. GD2-CART01 for relapsed or refractory high-risk neuroblastoma. N Engl J Med. 2023 Apr 6;388(14):1284–1295. doi: 10.1056/NEJMoa2210859
  • Lu L, Xie M, Yang B, et al. Enhancing the safety of CAR-T cell therapy: Synthetic genetic switch for spatiotemporal control. Sci Adv. 2024 Feb 23;10(8):eadj6251. doi: 10.1126/sciadv.adj6251
  • Berger C, Flowers ME, Warren EH, et al. Analysis of transgene-specific immune responses that limit the in vivo persistence of adoptively transferred HSV-TK-modified donor T cells after allogeneic hematopoietic cell transplantation. Blood. 2006 Mar 15;107(6):2294–2302. doi: 10.1182/blood-2005-08-3503
  • Zajc CU, Salzer B, Taft JM, et al. Driving CARs with alternative navigation tools - the potential of engineered binding scaffolds. Febs J. 2021 Apr;288(7):2103–2118. doi: 10.1111/febs.15523
  • Foster MC, Savoldo B, Lau W, et al. Utility of a safety switch to abrogate CD19.CAR T-cell-associated neurotoxicity. Blood. 2021 Jun 10;137(23):3306–3309. doi: 10.1182/blood.2021010784
  • Flugel CL, Majzner RG, Krenciute G, et al. Overcoming on-target, off-tumour toxicity of CAR T cell therapy for solid tumours. Nat Rev Clin Oncol. 2023 Jan;20(1):49–62. doi: 10.1038/s41571-022-00704-3
  • Morgan RA, Yang JC, Kitano M, et al. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther. 2010 Apr;18(4):843–851. doi: 10.1038/mt.2010.24
  • Jarisch A, Wiercinska E, Huenecke S, et al. Immune responses to SARS-CoV-2 vaccination in young patients with anti-CD19 chimeric antigen receptor T cell-induced B cell aplasia. Transpl Cell Ther. 2022 Jul;28(7):e366 1–e366 7. doi: 10.1016/j.jtct.2022.04.017
  • Maude SL, Frey N, Shaw PA, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014 Oct 16;371(16):1507–1517. doi: 10.1056/NEJMoa1407222
  • Graham CE, Lee WH, Wiggin HR, et al. Chemotherapy-induced reversal of ciltacabtagene autoleucel-associated movement and neurocognitive toxicity. Blood. 2023 Oct 5;142(14):1248–1252. doi: 10.1182/blood.2023021429
  • Karschnia P, Miller KC, Yee AJ, et al. Neurologic toxicities following adoptive immunotherapy with BCMA-directed CAR T cells. Blood. 2023 Oct 5;142(14):1243–1248. doi: 10.1182/blood.2023020571
  • Long AH, Haso WM, Shern JF, et al. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat Med. 2015 Jun;21(6):581–590. doi: 10.1038/nm.3838
  • Choe JH, Watchmaker PB, Simic MS, et al. SynNotch-CAR T cells overcome challenges of specificity, heterogeneity, and persistence in treating glioblastoma. Sci Transl Med. 2021 Apr 28;13(591). doi: 10.1126/scitranslmed.abe7378
  • Levine BL, Pasquini MC, Connolly JE, et al. Unanswered questions following reports of secondary malignancies after CAR-T cell therapy. Nat Med. 2024 Jan 9;30(2):338–341. doi: 10.1038/s41591-023-02767-w
  • Garcia J, Daniels J, Lee Y, et al. Naturally occurring T cell mutations enhance engineered T cell therapies. Nature. 2024 Feb;626(7999):626–634. doi: 10.1038/s41586-024-07018-7
  • Lynn RC, Weber EW, Sotillo E, et al. c-Jun overexpression in CAR T cells induces exhaustion resistance. Nature. 2019 Dec;576(7786):293–300. doi: 10.1038/s41586-019-1805-z
  • Jain N, Zhao Z, Feucht J, et al. TET2 guards against unchecked BATF3-induced CAR T cell expansion. Nature. 2023 Mar;615(7951):315–322. doi: 10.1038/s41586-022-05692-z