52
Views
0
CrossRef citations to date
0
Altmetric
Review

Targeting gut and intratumoral microbiota: a novel strategy to improve therapy resistance in cancer with a focus on urologic tumors

, , , , , & ORCID Icon show all
Received 07 Apr 2024, Accepted 19 Jun 2024, Published online: 24 Jun 2024

References

  • Pasolli E, Asnicar F, Manara S, et al. Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle. Cell. 2019 Jan 24;176(3):649–662.e20. doi: 10.1016/j.cell.2019.01.001
  • Weersma RK, Zhernakova A, Fu J. Interaction between drugs and the gut microbiome. Gut. 2020 Aug;69(8):1510–1519. doi: 10.1136/gutjnl-2019-320204
  • Legesse Bedada T, Feto TK, Awoke KS, et al. Probiotics for cancer alternative prevention and treatment. Biomed Pharmacother. 2020 Sep;129:110409. doi: 10.1016/j.biopha.2020.110409
  • de Visser KE, Joyce JA. The evolving tumor microenvironment: from cancer initiation to metastatic outgrowth. Cancer Cell. 2023 Mar 13;41(3):374–403. doi: 10.1016/j.ccell.2023.02.016
  • Zhao K, Hu Y. Microbiome harbored within tumors: a new chance to revisit our understanding of cancer pathogenesis and treatment. Signal Transduct Target Ther. 2020 Jul 29;5(1):136. doi: 10.1038/s41392-020-00244-1
  • Qi X, Yun C, Pang Y, et al. The impact of the gut microbiota on the reproductive and metabolic endocrine system. Gut Microbes. 2021 Jan;13(1):1–21. doi: 10.1080/19490976.2021.1894070
  • Zhou CB, Zhou YL, Fang JY. Gut microbiota in cancer immune response and immunotherapy. Trends Cancer. 2021 Jul;7(7):647–660. doi: 10.1016/j.trecan.2021.01.010
  • Peng C, Ouyang Y, Lu N, et al. The NF-κB signaling pathway, the microbiota, and gastrointestinal tumorigenesis: recent advances. Front Immunol. 2020;11:1387. doi: 10.3389/fimmu.2020.01387
  • Priadko K, Romano L, Olivieri S, et al. Intestinal microbiota, intestinal permeability and the urogenital tract: is there a pathophysiological link? J Physiol Pharmacol. 2022 Oct;73(5). doi: 10.26402/jpp.2022.5.01
  • Arifuzzaman M, Collins N, Guo CJ, et al. Nutritional regulation of microbiota-derived metabolites: implications for immunity and inflammation. Immunity. 2024 Jan 9;57(1):14–27. doi: 10.1016/j.immuni.2023.12.009
  • Dzutsev A, Goldszmid RS, Viaud S, et al. The role of the microbiota in inflammation, carcinogenesis, and cancer therapy. Eur J Immunol. 2015 Jan;45(1):17–31. doi: 10.1002/eji.201444972
  • Wang L, Sfakianos JP, Beaumont KG, et al. Myeloid cell-associated resistance to PD-1/PD-L1 blockade in urothelial cancer revealed through bulk and single-cell RNA sequencing. Clin Cancer Res. 2021 Aug 1;27(15):4287–4300. doi: 10.1158/1078-0432.CCR-20-4574
  • Pan Y, Lu X, Shu G, et al. Extracellular vesicle-mediated transfer of LncRNA IGFL2-AS1 confers sunitinib resistance in renal cell carcinoma. Cancer Res. 2023 Jan 4;83(1):103–116. doi: 10.1158/0008-5472.CAN-21-3432
  • Fernandes MR, Aggarwal P, Costa RGF, et al. Targeting the gut microbiota for cancer therapy. Nat Rev Cancer. 2022 Dec;22(12):703–722. doi: 10.1038/s41568-022-00513-x
  • Boumahdi S, de Sauvage FJ. The great escape: tumour cell plasticity in resistance to targeted therapy. Nat Rev Drug Discov. 2020 Jan;19(1):39–56. doi: 10.1038/s41573-019-0044-1
  • Zhang Y, Zhang Z. The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell Mol Immunol. 2020 Aug;17(8):807–821. doi: 10.1038/s41423-020-0488-6
  • Arner EN, Rathmell JC. Metabolic programming and immune suppression in the tumor microenvironment. Cancer Cell. 2023 Mar 13;41(3):421–433. doi: 10.1016/j.ccell.2023.01.009
  • Sumiyoshi A, Fujii H, Okuma Y. Targeting microbiome, drug metabolism, and drug delivery in oncology. Adv Drug Deliv Rev. 2023 Aug;199:114902. doi: 10.1016/j.addr.2023.114902
  • Chen D, Jin D, Huang S, et al. Clostridium butyricum, a butyrate-producing probiotic, inhibits intestinal tumor development through modulating Wnt signaling and gut microbiota. Cancer Lett. 2020 Jan 28;469:456–467. doi: 10.1016/j.canlet.2019.11.019
  • Ubachs J, Ziemons J, Soons Z, et al. Gut microbiota and short-chain fatty acid alterations in cachectic cancer patients. J Cachexia Sarcopenia Muscle. 2021 Dec;12(6):2007–2021. doi: 10.1002/jcsm.12804
  • Huang C, Deng W, Xu HZ, et al. Short-chain fatty acids reprogram metabolic profiles with the induction of reactive oxygen species production in human colorectal adenocarcinoma cells. Comput Struct Biotechnol J. 2023;21:1606–1620. doi: 10.1016/j.csbj.2023.02.022
  • Coutzac C, Jouniaux JM, Paci A, et al. Systemic short chain fatty acids limit antitumor effect of CTLA-4 blockade in hosts with cancer. Nat Commun. 2020 May 1;11(1):2168. doi: 10.1038/s41467-020-16079-x
  • Yang W, Yu T, Huang X, et al. Intestinal microbiota-derived short-chain fatty acids regulation of immune cell IL-22 production and gut immunity. Nat Commun. 2020 Sep 8;11(1):4457. doi: 10.1038/s41467-020-18262-6
  • Hu C, Xu B, Wang X, et al. Gut microbiota-derived short-chain fatty acids regulate group 3 innate lymphoid cells in HCC. Hepatology. 2023 Jan 1;77(1):48–64. doi: 10.1002/hep.32449
  • Zhu X, Li K, Liu G, et al. Microbial metabolite butyrate promotes anti-PD-1 antitumor efficacy by modulating T cell receptor signaling of cytotoxic CD8 T cell. Gut Microbes. 2023 Dec;15(2):2249143. doi: 10.1080/19490976.2023.2249143
  • Okumura S, Konishi Y, Narukawa M, et al. Gut bacteria identified in colorectal cancer patients promote tumourigenesis via butyrate secretion. Nat Commun. 2021 Sep 28;12(1):5674. doi: 10.1038/s41467-021-25965-x
  • Ternes D, Tsenkova M, Pozdeev VI, et al. The gut microbial metabolite formate exacerbates colorectal cancer progression. Nat Metab. 2022 Apr;4(4):458–475. doi: 10.1038/s42255-022-00558-0
  • Jin D, Huang K, Xu M, et al. Deoxycholic acid induces gastric intestinal metaplasia by activating STAT3 signaling and disturbing gastric bile acids metabolism and microbiota. Gut Microbes. 2022 Jan;14(1):2120744. doi: 10.1080/19490976.2022.2120744
  • Wang S, Kuang J, Zhang H, et al. Bile Acid-Microbiome Interaction Promotes Gastric Carcinogenesis. Adv Sci (Weinh). 2022 May;9(16):e2200263. doi: 10.1002/advs.202200263
  • Liu J, Wei Y, Jia W, et al. Chenodeoxycholic acid suppresses AML progression through promoting lipid peroxidation via ROS/p38 MAPK/DGAT1 pathway and inhibiting M2 macrophage polarization. Redox Biol. 2022 Oct;56:102452. doi: 10.1016/j.redox.2022.102452
  • Feng L, Zhang W, Shen Q, et al. Bile acid metabolism dysregulation associates with cancer cachexia: roles of liver and gut microbiome. J Cachexia Sarcopenia Muscle. 2021 Dec;12(6):1553–1569. doi: 10.1002/jcsm.12798
  • Chen J, Hu S, Ji D, et al. Hemolysin BL from novel Bacillus toyonensis BV-17 induces antitumor activity both in vitro and in vivo. Gut Microbes. 2020 Nov 9;12(1):1782158. doi: 10.1080/19490976.2020.1782158
  • Chen W, Wen L, Bao Y, et al. Gut flora disequilibrium promotes the initiation of liver cancer by modulating tryptophan metabolism and up-regulating SREBP2. Proc Natl Acad Sci USA. 2022 Dec 27;119(52):e2203894119. doi: 10.1073/pnas.2203894119
  • Hezaveh K, Shinde RS, Klötgen A, et al. Tryptophan-derived microbial metabolites activate the aryl hydrocarbon receptor in tumor-associated macrophages to suppress anti-tumor immunity. Immunity. 2022 Feb 8;55(2):324–340.e8. doi: 10.1016/j.immuni.2022.01.006
  • Lim KH, Staudt LM. Toll-like receptor signaling. Cold Spring Harb Perspect Biol. 2013 Jan 1;5(1):a011247. doi: 10.1101/cshperspect.a011247
  • Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. 2010 Mar 19;140(6):805–820. doi: 10.1016/j.cell.2010.01.022
  • Dapito DH, Mencin A, Gwak GY, et al. Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell. 2012 Apr 17;21(4):504–516. doi: 10.1016/j.ccr.2012.02.007
  • Fan L, Xu C, Ge Q, et al. A. Muciniphila suppresses colorectal tumorigenesis by inducing TLR2/NLRP3-mediated M1-like TAMs. Cancer Immunol Res. 2021 Oct;9(10):1111–1124. doi: 10.1158/2326-6066.CIR-20-1019
  • Yunna C, Mengru H, Lei W, et al. Macrophage M1/M2 polarization. Eur J Pharmacol. 2020 Jun 15;877:173090. doi: 10.1016/j.ejphar.2020.173090
  • Burgueño JF, Fritsch J, González EE, et al. Epithelial TLR4 signaling activates DUOX2 to induce microbiota-driven tumorigenesis. Gastroenterology. 2021 Feb;160(3):797–808.e6. doi: 10.1053/j.gastro.2020.10.031
  • Li R, Zhou R, Wang H, et al. Gut microbiota-stimulated cathepsin K secretion mediates TLR4-dependent M2 macrophage polarization and promotes tumor metastasis in colorectal cancer. Cell Death Differ. 2019 Nov;26(11):2447–2463. doi: 10.1038/s41418-019-0312-y
  • Nejman D, Livyatan I, Fuks G, et al. The human tumor microbiome is composed of tumor type-specific intracellular bacteria. Science. 2020 May 29;368(6494):973–980. doi: 10.1126/science.aay9189
  • Yang L, Li A, Wang Y, et al. Intratumoral microbiota: roles in cancer initiation, development and therapeutic efficacy. Signal Transduct Target Ther. 2023 Jan 16;8(1):35. doi: 10.1038/s41392-022-01304-4
  • Liu W, Zhang X, Xu H, et al. Microbial community heterogeneity within colorectal neoplasia and its correlation with colorectal carcinogenesis. Gastroenterology. 2021 Jun;160(7):2395–2408. doi: 10.1053/j.gastro.2021.02.020
  • Galeano Nino JL, Wu H, LaCourse KD, et al. Effect of the intratumoral microbiota on spatial and cellular heterogeneity in cancer. Nature. 2022 Nov;611(7937):810–817. doi: 10.1038/s41586-022-05435-0
  • Fu A, Yao B, Dong T, et al. Tumor-resident intracellular microbiota promotes metastatic colonization in breast cancer. Cell. 2022 Apr 14;185(8):1356–1372.e26. doi: 10.1016/j.cell.2022.02.027
  • Shi Y, Zheng W, Yang K, et al. Intratumoral accumulation of gut microbiota facilitates CD47-based immunotherapy via STING signaling. J Exp Med. 2020 May 4;217(5). doi: 10.1084/jem.20192282
  • Lam KC, Araya RE, Huang A, et al. Microbiota triggers STING-type I IFN-dependent monocyte reprogramming of the tumor microenvironment. Cell. 2021 Oct 14;184(21):5338–5356.e21. doi: 10.1016/j.cell.2021.09.019
  • Yuan L, Yang P, Wei G, et al. Tumor microbiome diversity influences papillary thyroid cancer invasion. Commun Biol. 2022 Aug 24;5(1):864. doi: 10.1038/s42003-022-03814-x
  • Zhu Z, Cai J, Hou W, et al. Microbiome and spatially resolved metabolomics analysis reveal the anticancer role of gut Akkermansia muciniphila by crosstalk with intratumoral microbiota and reprogramming tumoral metabolism in mice. Gut Microbes. 2023 Jan;15(1):2166700. doi: 10.1080/19490976.2023.2166700
  • Goto Y, Iwata S, Miyahara M, et al. Discovery oF intratumoral oncolytic bacteria toward targeted anticancer theranostics. Adv Sci (Weinh). 2023 Jul;10(20):e2301679. doi: 10.1002/advs.202301679
  • Kawanabe-Matsuda H, Takeda K, Nakamura M, et al. Dietary lactobacillus-derived exopolysaccharide enhances immune-checkpoint blockade therapy. Cancer Discov. 2022 May 2;12(5):1336–1355. doi: 10.1158/2159-8290.CD-21-0929
  • Choi Y, Lichterman JN, Coughlin LA, et al. Immune checkpoint blockade induces gut microbiota translocation that augments extraintestinal antitumor immunity. Sci Immunol. 2023 Mar 10;8(81):eabo2003. doi: 10.1126/sciimmunol.abo2003
  • Li Z, Zhang Y, Hong W, et al. Gut microbiota modulate radiotherapy-associated antitumor immune responses against hepatocellular carcinoma via STING signaling. Gut Microbes. 2022 Jan;14(1):2119055. doi: 10.1080/19490976.2022.2119055
  • Di Modica M, Gargari G, Regondi V, et al. GuT microbiota condition the therapeutic efficacy of trastuzumab in HER2-positive breast cancer. Cancer Res. 2021 Apr 15;81(8):2195–2206. doi: 10.1158/0008-5472.CAN-20-1659
  • Uribe-Herranz M, Rafail S, Beghi S, et al. Gut microbiota modulate dendritic cell antigen presentation and radiotherapy-induced antitumor immune response. J Clin Invest. 2020 Jan 2;130(1):466–479. doi: 10.1172/JCI124332
  • Yang K, Hou Y, Zhang Y, et al. Suppression of local type I interferon by gut microbiota-derived butyrate impairs antitumor effects of ionizing radiation. J Exp Med. 2021 Mar 1;218(3). doi: 10.1084/jem.20201915
  • Uribe-Herranz M, Beghi S, Ruella M, et al. Modulation of the gut microbiota engages antigen cross-presentation to enhance antitumor effects of CAR T cell immunotherapy. Mol Ther. 2023 Mar 1;31(3):686–700. doi: 10.1016/j.ymthe.2023.01.012
  • Martini G, Ciardiello D, Dallio M, et al. Gut microbiota correlates with antitumor activity in patients with mCRC and NSCLC treated with cetuximab plus avelumab. Int J Cancer. 2022 Aug 1;151(3):473–480. doi: 10.1002/ijc.34033
  • Overacre-Delgoffe AE, Bumgarner HJ, Cillo AR, et al. Microbiota-specific T follicular helper cells drive tertiary lymphoid structures and anti-tumor immunity against colorectal cancer. Immunity. 2021 Dec 14;54(12):2812–2824.e4. doi: 10.1016/j.immuni.2021.11.003
  • Griffin ME, Espinosa J, Becker JL, et al. Enterococcus peptidoglycan remodeling promotes checkpoint inhibitor cancer immunotherapy. Science. 2021 Aug 27;373(6558):1040–1046. doi: 10.1126/science.abc9113
  • Jiang SS, Xie YL, Xiao XY, et al. Fusobacterium nucleatum-derived succinic acid induces tumor resistance to immunotherapy in colorectal cancer. Cell Host Microbe. 2023 May 10;31(5):781–797.e9. doi: 10.1016/j.chom.2023.04.010
  • Mirji G, Worth A, Bhat SA, et al. The microbiome-derived metabolite TMAO drives immune activation and boosts responses to immune checkpoint blockade in pancreatic cancer. Sci Immunol. 2022 Sep 9;7(75):eabn0704. doi: 10.1126/sciimmunol.abn0704
  • He Y, Fu L, Li Y, et al. Gut microbial metabolites facilitate anticancer therapy efficacy by modulating cytotoxic CD8(+) T cell immunity. Cell Metab. 2021 May 4;33(5):988–1000.e7. doi: 10.1016/j.cmet.2021.03.002
  • Ma C, Han M, Heinrich B, et al. Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells. Science. 2018 May 25;360(6391). doi: 10.1126/science.aan5931
  • Fidelle M, Rauber C, Alves Costa Silva C, et al. A microbiota-modulated checkpoint directs immunosuppressive intestinal T cells into cancers. Science. 2023 Jun 9;380(6649):eabo2296. doi: 10.1126/science.abo2296
  • Banerjee S, Alwine JC, Wei Z, et al. Microbiome signatures in prostate cancer. Carcinogenesis. 2019 Jul 6;40(6):749–764. doi: 10.1093/carcin/bgz008
  • Hurst R, Meader E, Gihawi A, et al. Microbiomes of urine and the prostate are linked to human prostate cancer risk groups. Eur Urol Oncol. 2022 Aug;5(4):412–419. doi: 10.1016/j.euo.2022.03.006
  • Cavarretta I, Ferrarese R, Cazzaniga W, et al. The microbiome of the prostate tumor microenvironment. Eur Urol. 2017 Oct;72(4):625–631. doi: 10.1016/j.eururo.2017.03.029
  • Ma X, Chi C, Fan L, et al. The microbiome of prostate fluid is associated with prostate cancer. Front Microbiol. 2019;10:1664. doi: 10.3389/fmicb.2019.01664
  • Yu H, Meng H, Zhou F, et al. Urinary microbiota in patients with prostate cancer and benign prostatic hyperplasia. Arch Med Sci. 2015 Apr 25;11(2):385–394. doi: 10.5114/aoms.2015.50970
  • Tsai KY, Wu DC, Wu WJ, et al. Exploring the association between gut and urine microbiota and prostatic disease including benign prostatic hyperplasia and prostate cancer using 16S rRNA sequencing. Biomedicines. 2022 Oct 23;10(11):2676. doi: 10.3390/biomedicines10112676
  • Shrestha E, White JR, Yu SH, et al. Profiling the urinary microbiome in men with positive versus negative biopsies for prostate cancer. J Urol. 2018 Jan;199(1):161–171. doi: 10.1016/j.juro.2017.08.001
  • Terrisse S, Goubet AG, Ueda K, et al. Immune system and intestinal microbiota determine efficacy of androgen deprivation therapy against prostate cancer. J Immunother Cancer. 2022 Mar;10(3):e004191. doi: 10.1136/jitc-2021-004191
  • Wang L. Changes in the gut microbial profile during long-term androgen deprivation therapy for prostate cancer. Prostate Cancer Prostatic Dis. 2023 Sep 11. doi: 10.1038/s41391-023-00723-w
  • Liu Y, Jiang H. Compositional differences of gut microbiome in matched hormone-sensitive and castration-resistant prostate cancer. Transl Androl Urol. 2020 Oct;9(5):1937–1944. doi: 10.21037/tau-20-566
  • Pernigoni N, Zagato E, Calcinotto A, et al. Commensal bacteria promote endocrine resistance in prostate cancer through androgen biosynthesis. Science. 2021 Oct 8;374(6564):216–224. doi: 10.1126/science.abf8403
  • Bui NN, Li CY, Wang LY, et al. Clostridium scindens metabolites trigger prostate cancer progression through androgen receptor signaling. J Microbiol Immunol Infect. 2023 Apr;56(2):246–256. doi: 10.1016/j.jmii.2022.12.009
  • Hsiao TH, Chou CH, Chen YL, et al. Circulating androgen regulation by androgen-catabolizing gut bacteria in male mouse gut. Gut Microbes. 2023 Jan;15(1):2183685. doi: 10.1080/19490976.2023.2183685
  • Zhong W, Wu K, Long Z, et al. Gut dysbiosis promotes prostate cancer progression and docetaxel resistance via activating NF-κB-IL6-STAT3 axis. Microbiome. 2022 Jun 16;10(1):94. doi: 10.1186/s40168-022-01289-w
  • Matsushita M, Fujita K, Hayashi T, et al. Gut microbiota-derived short-chain fatty acids promote prostate cancer growth via IGF1 signaling. Cancer Res. 2021 Aug 1;81(15):4014–4026. doi: 10.1158/0008-5472.CAN-20-4090
  • Liu Y, Zhou Q, Ye F, et al. Gut microbiota-derived short-chain fatty acids promote prostate cancer progression via inducing cancer cell autophagy and M2 macrophage polarization. Neoplasia. 2023 Sep;43:100928. doi: 10.1016/j.neo.2023.100928
  • Jain S, Samal AG, Das B, et al. Escherichia coli, a common constituent of benign prostate hyperplasia-associated microbiota induces inflammation and DNA damage in prostate epithelial cells. Prostate. 2020 Nov;80(15):1341–1352. doi: 10.1002/pros.24063
  • Ma J, Gnanasekar A, Lee A, et al. Influence of intratumor microbiome on clinical outcome and immune processes in prostate cancer. Cancers (Basel). 2020 Sep 5;12(9):2524. doi: 10.3390/cancers12092524
  • Wang Y, Han Y, Yang C, et al. Long-term relapse-free survival enabled by integrating targeted antibacteria in antitumor treatment. Nat Commun. 2024 May 17;15(1):4194. doi: 10.1038/s41467-024-48662-x
  • Kim JH, Seo H, Kim S, et al. Biochemical recurrence in prostate cancer is associated with the composition of lactobacillus: microbiome analysis of prostatic tissue. Int J Mol Sci. 2023 Jun 21;24(13):10423. doi: 10.3390/ijms241310423
  • Ahn HK, Kim K, Park J, et al. Urinary microbiome profile in men with genitourinary malignancies. Investig Clin Urol. 2022 Sep;63(5):569–576. doi: 10.4111/icu.20220124
  • Davidsson S, Carlsson J, Greenberg L, et al. Cutibacterium acnes induces the expression of immunosuppressive genes in macrophages and is associated with an increase of regulatory T-cells in prostate cancer. Microbiol Spectr. 2021 Dec 22;9(3):e0149721. doi: 10.1128/spectrum.01497-21
  • Wang J, Li X, Wu X, et al. Uncovering the microbiota in renal cell carcinoma tissue using 16S rRNA gene sequencing. J Cancer Res Clin Oncol. 2021 Feb;147(2):481–491. doi: 10.1007/s00432-020-03462-w
  • Heidler S, Lusuardi L, Madersbacher S, et al. The microbiome in benign renal tissue and in renal cell carcinoma. Urol Int. 2020;104(3–4):247–252. doi: 10.1159/000504029
  • Derosa L, Routy B, Fidelle M, et al. Gut bacteria composition drives primary resistance to cancer immunotherapy in renal cell carcinoma patients. Eur Urol. 2020 Aug;78(2):195–206. doi: 10.1016/j.eururo.2020.04.044
  • Lalani AA, Xie W, Braun DA, et al. Effect of antibiotic use on outcomes with systemic therapies in metastatic renal cell carcinoma. Eur Urol Oncol. 2020 Jun;3(3):372–381. doi: 10.1016/j.euo.2019.09.001
  • Hahn AW, Froerer C, VanAlstine S, et al. TargetinG bacteroides in stool microbiome and response to treatment with first-line VEGF tyrosine kinase inhibitors in metastatic renal-cell carcinoma. Clin Genitourin Cancer. 2018 Oct;16(5):365–368. doi: 10.1016/j.clgc.2018.05.001
  • Yang BY, Zhao FZ, Li XH, et al. Alteration of pro-carcinogenic gut microbiota is associated with clear cell renal cell carcinoma tumorigenesis. Front Microbiol. 2023;14:1133782. doi: 10.3389/fmicb.2023.1133782
  • Dizman N, Hsu J, Bergerot PG, et al. Randomized trial assessing impact of probiotic supplementation on gut microbiome and clinical outcome from targeted therapy in metastatic renal cell carcinoma. Cancer Med. 2021 Jan;10(1):79–86. doi: 10.1002/cam4.3569
  • Salgia NJ, Bergerot PG, Maia MC, et al. Stool microbiome profiling of patients with metastatic renal cell carcinoma receiving anti-PD-1 immune checkpoint inhibitors. Eur Urol. 2020 Oct;78(4):498–502. doi: 10.1016/j.eururo.2020.07.011
  • Chen Y, Ma J, Dong Y, et al. Characteristics of gut microbiota in patients with clear cell renal cell carcinoma. Front Microbiol. 2022;13:913718. doi: 10.3389/fmicb.2022.913718
  • Dai G, Chen X, He Y. The gut microbiota activates AhR through the tryptophan metabolite kyn to mediate renal cell carcinoma metastasis. Front Nutr. 2021;8:712327.
  • Ianiro G, Rossi E, Thomas AM, et al. Faecal microbiota transplantation for the treatment of diarrhoea induced by tyrosine-kinase inhibitors in patients with metastatic renal cell carcinoma. Nat Commun. 2020 Aug 28;11(1):4333. doi: 10.1038/s41467-020-18127-y
  • Routy B, Le Chatelier E, Derosa L, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science. 2018 Jan 5;359(6371):91–97. doi: 10.1126/science.aan3706
  • Davar D, Dzutsev AK, McCulloch JA, et al. Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patients. Science. 2021 Feb 5;371(6529):595–602. doi: 10.1126/science.abf3363
  • Ninkov M, Schmerk CL, Moradizadeh M, et al. Improved MAIT cell functions following fecal microbiota transplantation for metastatic renal cell carcinoma. Cancer Immunol Immun. 2023 May;72(5):1247–1260. doi: 10.1007/s00262-022-03329-8
  • Karam A, Mjaess G, Albisinni S, et al. Uncovering the role of urinary microbiota in urological tumors: a systematic review of literature. World J Urol. 2022 Apr;40(4):951–964. doi: 10.1007/s00345-021-03924-x
  • Hussein AA, Elsayed AS, Durrani M, et al. Investigating the association between the urinary microbiome and bladder cancer: an exploratory study. Urol Oncol. 2021 Jun;39(6):.e370.9–.e370.19. doi: 10.1016/j.urolonc.2020.12.011
  • Hrbáček J, Tláskal V, Čermák P, et al. Bladder cancer is associated with decreased urinary microbiota diversity and alterations in microbial community composition. Urol Oncol. 2023 Feb;41(2):e107.15–.e107.22. doi: 10.1016/j.urolonc.2022.09.018
  • Bukavina L, Isali I, Ginwala R, et al. Global meta-analysis of urine microbiome: colonization of polycyclic aromatic hydrocarbon-degrading bacteria among bladder cancer patients. Eur Urol Oncol. 2023 Apr;6(2):190–203. doi: 10.1016/j.euo.2023.02.004
  • Huang X, Pan T, Yan L, et al. The inflammatory microenvironment and the urinary microbiome in the initiation and progression of bladder cancer. Genes Dis. 2021 Nov;8(6):781–797. doi: 10.1016/j.gendis.2020.10.002
  • Chen C, Huang Z, Huang P, et al. Urogenital microbiota: potentially important determinant of PD-L1 expression in male patients with non-muscle invasive bladder cancer. BMC Microbiol. 2022 Jan 4;22(1):7. doi: 10.1186/s12866-021-02407-8
  • Wu P, Zhang G, Zhao J, et al. Profiling the urinary microbiota in male patients with bladder cancer in China. Front Cell Infect Microbiol. 2018;8:167. doi: 10.3389/fcimb.2018.00167
  • Bucevic Popovic V, Situm M, Chow CT, et al. The urinary microbiome associated with bladder cancer. Sci Rep. 2018 Aug 14;8(1):12157. doi: 10.1038/s41598-018-29054-w
  • Sun JX, Xia QD, Zhong XY, et al. The bladder microbiome of NMIBC and MIBC patients revealed by 2bRAD-M. Front Cell Infect Microbiol. 2023;13:1182322. doi: 10.3389/fcimb.2023.1182322
  • Oresta B, Braga D, Lazzeri M, et al. The microbiome of catheter collected urine in males with bladder cancer according to disease stage. J Urol. 2021 Jan;205(1):86–93. doi: 10.1097/JU.0000000000001336
  • Liu F, Liu A, Lu X, et al. Dysbiosis signatures of the microbial profile in tissue from bladder cancer. Cancer Med. 2019 Nov;8(16):6904–6914. doi: 10.1002/cam4.2419
  • Qin C, Chen Z, Cao R, et al. Integrated analysis of the fecal metagenome and metabolome in bladder cancer in a Chinese population. Genes (Basel). 2022 Oct 28;13(11):1967. doi: 10.3390/genes13111967
  • Pederzoli F, Riba M, Venegoni C, et al. Stool microbiome signature associated with response to neoadjuvant pembrolizumab in patients with muscle-invasive bladder cancer. Eur Urol. 2024 May;85(5):417–421. doi: 10.1016/j.eururo.2023.12.014
  • Roje B, Elek A, Palada V, et al. Microbiota alters urinary bladder weight and gene expression. Microorganisms. 2020 Mar 17;8(3):421. doi: 10.3390/microorganisms8030421
  • Qiu Y, Gao Y, Chen C, et al. Deciphering the influence of urinary microbiota on FoxP3+ regulatory T cell infiltration and prognosis in Chinese patients with non-muscle-invasive bladder cancer. Hum Cell. 2022 Mar;35(2):511–521. doi: 10.1007/s13577-021-00659-0
  • Mansour B, Monyók Á, Gajdács M, et al. Bladder tissue microbiome composition in patients of bladder cancer or benign prostatic hyperplasia and related human beta defensin levels. Biomedicines. 2022 Jul 21;10(7):1758. doi: 10.3390/biomedicines10071758
  • Álvarez ÁH, Martínez Velázquez M, Prado Montes de Oca E. Human β-defensin 1 update: potential clinical applications of the restless warrior. Int J Biochem Cell Biol. 2018 Nov;104:133–137. doi: 10.1016/j.biocel.2018.09.007
  • Kim JH, Kim SJ, Lee KM, et al. Human β-defensin 2 may inhibit internalisation of bacillus Calmette-Guérin (BCG) in bladder cancer cells. BJU Int. 2013 Oct;112(6):781–790. doi: 10.1111/bju.12196
  • Zhang Y, Wang W, Zhou H, et al. Urinary Eubacterium sp. CAG: 581 promotes non-muscle invasive bladder cancer (NMIBC) development through the ECM1/MMP9 pathway. Cancers (Basel). 2023 Jan 28;15(3):809. doi: 10.3390/cancers15030809
  • Bukavina L, Prunty M, Isali I, et al. Human gut mycobiome and fungal community interaction: the unknown musketeer in the chemotherapy response status in bladder cancer. Eur Urol Open Sci. 2022 Sep;43:5–13. doi: 10.1016/j.euros.2022.06.005
  • Griffin LE, Kohrt SE, Rathore A, et al. Microbial metabolites of flavanols in urine are associated with enhanced anti-proliferative activity in bladder cancer cells in vitro. Nutr Cancer. 2022;74(1):194–210. doi: 10.1080/01635581.2020.1869277
  • Li WT, Iyangar AS, Reddy R, et al. The bladder microbiome is associated with epithelial–mesenchymal transition in muscle invasive urothelial bladder carcinoma. Cancers (Basel). 2021 Jul 21;13(15):3649. doi: 10.3390/cancers13153649
  • Abd-El-Raouf R, Ouf SA, Gabr MM, et al. Escherichia coli foster bladder cancer cell line progression via epithelial mesenchymal transition, stemness and metabolic reprogramming. Sci Rep. 2020 Oct 22;10(1):18024. doi: 10.1038/s41598-020-74390-5
  • Lu Y, Yuan X, Wang M, et al. Gut microbiota influence immunotherapy responses: mechanisms and therapeutic strategies. J Hematol Oncol. 2022 Apr 29;15(1):47. doi: 10.1186/s13045-022-01273-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.