0
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Intraparenchymal delivery of adeno-associated virus vectors for the gene therapy of neurological diseases

ORCID Icon, ORCID Icon & ORCID Icon
Received 09 Jun 2024, Accepted 25 Jul 2024, Accepted author version posted online: 27 Jul 2024
Accepted author version

REFERENCES

  • American Society of Gene + Cell Therapy. Q1 2024 Quarterly Data Report 2024 [cited 2024 June 8]. Available from: https://www.asgct.org/publications/landscape-report
  • Wang JH, Gessler DJ, Zhan W, et al. Adeno-associated virus as a delivery vector for gene therapy of human diseases. Signal Transduct Target Ther. 2024 Apr 3;9(1):78.10.1038/s41392-024-01780-w
  • Parrish CR. Parvoviridae. In: Kaipe DM HP, editor. Fields VIROLOGY. 7 ed. Philadelphia: Lippincott Williams & Wilkins; 2021. p. 172–196.
  • Shteyer E, Mor O, Waisbourd-Zinman O, et al. The Outbreak of Unexplained Acute Hepatitis in Children: The Role of Viral Infections in View of the COVID-19 Pandemic. Viruses. 2024 May 20;16(5). 808 10.3390/v16050808
  • Mimuro J, Mizukami H, Shima M, et al. The prevalence of neutralizing antibodies against adeno-associated virus capsids is reduced in young Japanese individuals. J Med Virol. 2014 Nov;86(11):1990–1997. 10.1002/jmv.23818
  • Schulz M, Levy DI, Petropoulos CJ, et al. Binding and neutralizing anti-AAV antibodies: Detection and implications for rAAV-mediated gene therapy. Mol Ther. 2023 Mar 1;31(3):616–630. 10.1016/j.ymthe.2023.01.010
  • Wang D, Tai PWL, Gao G Adeno-associated virus vector as a platform for gene therapy delivery. Nat Rev Drug Discov. 2019 May;18(5):358–378.10.1038/s41573-019-0012-9
  • Lek A, Keeler A, Flotte TR. Death after High-Dose rAAV9 Gene Therapy in a Patient with Duchenne’s Muscular Dystrophy. Reply. N Engl J Med. 2023 Dec 7;389(23):2211.
  • Hino T, Omura SN, Nakagawa R, et al. An AsCas12f-based compact genome-editing tool derived by deep mutational scanning and structural analysis. Cell. 2023 Oct 26;186(22):4920–4935 e23.
  • Daci R, Flotte TR Delivery of Adeno-Associated Virus Vectors to the Central Nervous System for Correction of Single Gene Disorders. Int J Mol Sci. 2024 Jan 15;25(2). 1050 10.3390/ijms25021050
  • Ortega A, Chernicki B, Ou G, et al. From Lab Bench to Hope: Emerging Gene Therapies in Clinical Trials for Alzheimer’s Disease. Mol Neurobiol. 2024 Jul 3.10.1007/s12035-024-04285-3
  • Bugiani M, Abbink TEM, Edridge AWD, et al. Focal lesions following intracerebral gene therapy for mucopolysaccharidosis IIIA. Ann Clin Transl Neurol. 2023 Jun;10(6):904–917.10.1002/acn3.51772
  • Flotte TR, Cataltepe O, Puri A, et al. AAV gene therapy for Tay-Sachs disease. Nat Med. 2022 Feb;28(2):251–259.10.1038/s41591-021-01664-4
  • Sevigny J, Uspenskaya O, Heckman LD, et al. Progranulin AAV gene therapy for frontotemporal dementia: translational studies and phase 1/2 trial interim results. Nat Med. 2024 May;30(5):1406–1415.10.1038/s41591-024-02973-0
  • Duan D Lethal immunotoxicity in high-dose systemic AAV therapy. Mol Ther. 2023 Nov 1;31(11):3123–3126. 10.1016/j.ymthe.2023.10.015
  • Wills CA, Drago D, Pietrusko RG Clinical holds for cell and gene therapy trials: Risks, impact, and lessons learned. Mol Ther Methods Clin Dev. 2023 Dec 14;31:101125. 10.1016/j.omtm.2023.101125
  • Hammond SL, Leek AN, Richman EH, et al. Cellular selectivity of AAV serotypes for gene delivery in neurons and astrocytes by neonatal intracerebroventricular injection. PLoS One. 2017;12(12):e0188830. doi: 10.1371/journal.pone.0188830
  • Muramatsu S, Fujimoto K, Ikeguchi K, et al. Behavioral recovery in a primate model of Parkinson’s disease by triple transduction of striatal cells with adeno-associated viral vectors expressing dopamine-synthesizing enzymes. Hum Gene Ther. 2002 Feb 10;13(3):345–354. 10.1089/10430340252792486
  • Shen Y, Muramatsu SI, Ikeguchi K, et al. Triple transduction with adeno-associated virus vectors expressing tyrosine hydroxylase, aromatic-L-amino-acid decarboxylase, and GTP cyclohydrolase I for gene therapy of Parkinson’s disease. Hum Gene Ther. 2000 Jul 20;11(11):1509–1519. 10.1089/10430340050083243
  • Theofilas P, Brar S, Stewart KA, et al. Adenosine kinase as a target for therapeutic antisense strategies in epilepsy. Epilepsia. 2011 Mar;52(3):589–601.10.1111/j.1528-1167.2010.02947.x
  • Young D, Fong DM, Lawlor PA, et al. Adenosine kinase, glutamine synthetase and EAAT2 as gene therapy targets for temporal lobe epilepsy. Gene Ther. 2014 Dec;21(12):1029–1040.10.1038/gt.2014.82
  • Lonser RR, Akhter AS, Zabek M, et al. Direct convective delivery of adeno-associated virus gene therapy for treatment of neurological disorders. J Neurosurg. 2020 Jul 10;134(6):1751–1763.
  • Su X, Kells AP, Salegio EA, et al. Real-time MR imaging with Gadoteridol predicts distribution of transgenes after convection-enhanced delivery of AAV2 vectors. Mol Ther. 2010 Aug;18(8):1490–1495. 10.1038/mt.2010.114
  • White E, Bienemann A, Sena-Esteves M, et al. Evaluation and optimization of the administration of recombinant adeno-associated viral vectors (serotypes 2/1, 2/2, 2/rh8, 2/9, and 2/rh10) by convection-enhanced delivery to the striatum. Hum Gene Ther. 2011 Feb;22(2):237–251. 10.1089/hum.2010.129
  • Wanneveich M, Moisan F, Jacqmin-Gadda H, et al. Projections of prevalence, lifetime risk, and life expectancy of Parkinson’s disease (2010-2030) in France. Mov Disord. 2018 Sep;33(9):1449–1455.10.1002/mds.27447
  • Coukos R, Krainc D Key genes and convergent pathogenic mechanisms in Parkinson disease. Nat Rev Neurosci. 2024 Apr 10. 25 6 393–413 10.1038/s41583-024-00812-2
  • Trevisan L, Gaudio A, Monfrini E, et al. Genetics in Parkinson’s disease, state-of-the-art and future perspectives. Br Med Bull. 2024 Mar 13;149(1):60–71. 10.1093/bmb/ldad035
  • Frequin HL, Verschuur CVM, Suwijn SR, et al. Long-Term Follow-Up of the LEAP Study: Early Versus Delayed Levodopa in Early Parkinson’s Disease. Mov Disord. 2024 Apr 21. 39 6 975–982 10.1002/mds.29796
  • Sandoval-Pistorius SS, Hacker ML, Waters AC, et al. Advances in Deep Brain Stimulation: From Mechanisms to Applications. J Neurosci. 2023 Nov 8;43(45):7575–7586. 10.1523/JNEUROSCI.1427-23.2023
  • Chaudhuri KR, Kovacs N, Pontieri FE, et al. Levodopa Carbidopa Intestinal Gel in Advanced Parkinson’s Disease: DUOGLOBE Final 3-Year Results. J Parkinsons Dis. 2023;13(5):769–783. doi: 10.3233/JPD-225105
  • Espay AJ, Stocchi F, Pahwa R, et al. Safety and efficacy of continuous subcutaneous levodopa-carbidopa infusion (ND0612) for Parkinson’s disease with motor fluctuations (BouNDless): a phase 3, randomised, double-blind, double-dummy, multicentre trial. Lancet Neurol. 2024 May;23(5):465–476.
  • Wang F, Sun Z, Peng D, et al. Cell-therapy for Parkinson’s disease: a systematic review and meta-analysis. J Transl Med. 2023 Sep 7;21(1):601.10.1186/s12967-023-04484-x
  • Abeliovich A, Hefti F, Sevigny J, et al. Gene therapy for Parkinson’s disease associated with GBA1 mutations. J Parkinsons Dis. 2021;11(s2):S183–S188. doi: 10.3233/JPD-212739
  • Huang Q, Chan KY, Wu J, et al. An AAV capsid reprogrammed to bind human transferrin receptor mediates brain-wide gene delivery. Science. 2024 Jun 14;384(6701):1220–1227.10.1126/science.adm8386
  • Choi-Lundberg DL, Lin Q, Chang YN, et al. Dopaminergic neurons protected from degeneration by GDNF gene therapy. Science. 1997 Feb 7;275(5301):838–841.10.1126/science.275.5301.838
  • Wang L, Muramatsu S, Lu Y, et al. Delayed delivery of AAV-GDNF prevents nigral neurodegeneration and promotes functional recovery in a rat model of Parkinson’s disease. Gene Ther. 2002 Mar;9(6):381–389.10.1038/sj.gt.3301682
  • McGrath J, Lintz E, Hoffer BJ, et al. Adeno-associated viral delivery of GDNF promotes recovery of dopaminergic phenotype following a unilateral 6-hydroxydopamine lesion. Cell Transplant. 2002;11(3):215–227. doi: 10.3727/096020198389988
  • Marks WJ Jr., Bartus RT, Siffert J, et al. Gene delivery of AAV2-neurturin for Parkinson’s disease: a double-blind, randomised, controlled trial. Lancet Neurol. 2010 Dec;9(12):1164–1172. 10.1016/S1474-4422(10)70254-4
  • Asari S, Fujimoto K, Miyauchi A, et al. Subregional 6-[18F]fluoro-L-m-tyrosine uptake in the striatum in Parkinson’s disease. BMC Neurol. 2011 Mar 23;11:35.
  • Kordower JH, Olanow CW, Dodiya HB, et al. Disease duration and the integrity of the nigrostriatal system in Parkinson’s disease. Brain. 2013 Aug;136(Pt 8):2419–31.
  • Chu Y, Morfini GA, Langhamer LB, et al. Alterations in axonal transport motor proteins in sporadic and experimental Parkinson’s disease. Brain. 2012 Jul;135(Pt 7):2058–73.
  • Bartus RT, Kordower JH, Johnson EM, Jr., et al. Post-mortem assessment of the short and long-term effects of the trophic factor neurturin in patients with alpha-synucleinopathies. Neurobiol Dis. 2015 Jun;78:162–71.
  • Warren Olanow C, Bartus RT, Baumann TL, et al. Gene delivery of neurturin to putamen and substantia nigra in parkinson disease: a double-blind, randomized, controlled trial. Ann Neurol. 2015 Aug;78(2):248–257. doi: 10.1002/ana.24436
  • Chu Y, Kordower JH. Post-Mortem Studies of Neurturin Gene Therapy for Parkinson’s Disease: Two Subjects with 10 Years CERE120 Delivery. Mov Disord. 2023 Sep;38(9):1728–1736.
  • Heiss JD, Ray-Chaudhury A, Kleiner DE, et al. Persistent GDNF Expression 45 Months after Putaminal Infusion of AAV2-GDNF in a Patient with Parkinson’s Disease. Mov Disord. 2024 May 8.
  • Kirik D, Rosenblad C, Bjorklund A, et al. Long-term rAAV-mediated gene transfer of GDNF in the rat Parkinson’s model: intrastriatal but not intranigral transduction promotes functional regeneration in the lesioned nigrostriatal system. J Neurosci. 2000 Jun 15;20(12):4686–4700. 10.1523/JNEUROSCI.20-12-04686.2000
  • Barker RA, Bjorklund A, Gash DM, et al. GDNF and Parkinson’s disease: where next? A summary from a recent workshop. J Parkinsons Dis. 2020;10(3):875–891. doi: 10.3233/JPD-202004
  • Bjorklund A. GDNF therapy: can we make it work? J Parkinsons Dis. 2021;11(3):1019–1022. doi: 10.3233/JPD-212706
  • LeWitt PA, Rezai AR, Leehey MA, et al. AAV2-GAD gene therapy for advanced Parkinson’s disease: a double-blind, sham-surgery controlled, randomised trial. Lancet Neurol. 2011 Apr;10(4):309–319. doi: 10.1016/S1474-4422(11)70039-4
  • Niethammer M, Tang CC, Vo A, et al. Gene therapy reduces Parkinson’s disease symptoms by reorganizing functional brain connectivity. Sci Transl Med. 2018 Nov 28;10(469). 10.1126/scitranslmed.aau0713
  • Elsworth JD, Roth RH Dopamine synthesis, uptake, metabolism, and receptors: relevance to gene therapy of Parkinson’s disease. Exp Neurol. 1997 Mar;144(1):4–9.10.1006/exnr.1996.6379
  • Nagatsu T. Catecholamines and Parkinson’s disease: tyrosine hydroxylase (TH) over tetrahydrobiopterin (BH4) and GTP cyclohydrolase I (GCH1) to cytokines, neuromelanin, and gene therapy: a historical overview. J Neural Transm (Vienna). 2023 Aug 28.
  • Sehara Y, Fujimoto KI, Ikeguchi K, et al. Persistent Expression of Dopamine-Synthesizing Enzymes 15 Years After Gene Transfer in a Primate Model of Parkinson’s Disease. Hum Gene Ther Clin Dev. 2017 Jun;28(2):74–79. 10.1089/humc.2017.010
  • Muramatsu S, Fujimoto K, Kato S, et al. A phase I study of aromatic l-amino acid decarboxylase gene therapy for Parkinson’s disease. Mol Ther. 2010 Sep;18(9):1731–5.
  • Christine CW, Starr PA, Larson PS, et al. Safety and tolerability of putaminal AADC gene therapy for Parkinson disease. Neurology. 2009 Nov 17;73(20):1662–1669. 10.1212/WNL.0b013e3181c29356
  • Mittermeyer G, Christine CW, Rosenbluth KH, et al. Long-term evaluation of a phase 1 study of AADC gene therapy for Parkinson’s disease. Hum Gene Ther. 2012 Apr;23(4):377–381. 10.1089/hum.2011.220
  • Christine CW, Richardson RM, Van Laar AD, et al. Safety of AADC Gene Therapy for Moderately Advanced Parkinson Disease: Three-Year Outcomes From the PD-1101 Trial. Neurology. 2022 Jan 4;98(1):e40–e50. 10.1212/WNL.0000000000012952
  • Palfi S, Gurruchaga JM, Lepetit H, et al. Long-Term Follow-Up of a Phase I/II Study of ProSavin, a Lentiviral Vector Gene Therapy for Parkinson’s Disease. Hum Gene Ther Clin Dev. 2018 Sep;29(3):148–155. 10.1089/humc.2018.081
  • Hwu WL, Muramatsu S, Tseng SH, et al. Gene therapy for aromatic L-amino acid decarboxylase deficiency. Sci Transl Med. 2012 May 16;4(134):134ra61. 10.1126/scitranslmed.3003640
  • Tai CH, Lee NC, Chien YH, et al. Long-term efficacy and safety of eladocagene exuparvovec in patients with AADC deficiency. Mol Ther. 2022 Feb 2;30(2):509–518. 10.1016/j.ymthe.2021.11.005
  • Kojima K, Nakajima T, Taga N, et al. Gene therapy improves motor and mental function of aromatic l-amino acid decarboxylase deficiency. Brain. 2019 Feb 1;142(2):322–333. 10.1093/brain/awy331
  • Himmelreich N, Montioli R, Bertoldi M, et al. Aromatic amino acid decarboxylase deficiency: Molecular and metabolic basis and therapeutic outlook. Mol Genet Metab. 2019 May;127(1):12–22. 10.1016/j.ymgme.2019.03.009
  • Onuki Y, Ono S, Nakajima T, et al. Dopaminergic restoration of prefrontal cortico-putaminal network in gene therapy for aromatic l-amino acid decarboxylase deficiency. Brain Commun. 2021;3(3):fcab078.
  • Keam SJ. Eladocagene Exuparvovec: First Approval. Drugs. 2022 Sep;82(13):1427–1432.
  • Pearson TS, Gupta N, San Sebastian W, et al. Gene therapy for aromatic L-amino acid decarboxylase deficiency by MR-guided direct delivery of AAV2-AADC to midbrain dopaminergic neurons. Nat Commun. 2021 Jul 12;12(1):4251. Phase 1 trial results of gene therapy for AADC deficiency.10.1038/s41467-021-24524-8
  • Fisher RS, Acevedo C, Arzimanoglou A, et al. ILAE official report: a practical clinical definition of epilepsy. Epilepsia. 2014;55(4):475–482. doi: 10.1111/epi.12550
  • Fiest KM, Sauro KM, Wiebe S, et al. Prevalence and incidence of epilepsy: A systematic review and meta-analysis of international studies. Neurology. 2017 Jan 17;88(3):296–303.10.1212/WNL.0000000000003509
  • Saxena S, Li S Defeating epilepsy: A global public health commitment. Epilepsia Open. 2017 Jun;2(2):153–155.10.1002/epi4.12010
  • Mbizvo GK, Bennett K, Simpson CR, et al. Epilepsy-related and other causes of mortality in people with epilepsy: A systematic review of systematic reviews. Epilepsy Res. 2019 Nov;157:106192. 10.1016/j.eplepsyres.2019.106192
  • Luoni C, Bisulli F, Canevini MP, et al. Determinants of health-related quality of life in pharmacoresistant epilepsy: results from a large multicenter study of consecutively enrolled patients using validated quantitative assessments. Epilepsia. 2011 Dec;52(12):2181–2191.10.1111/j.1528-1167.2011.03325.x
  • Wang M, Perera K, Josephson CB, et al. Association between antiseizure medications and quality of life in epilepsy: A mediation analysis. Epilepsia. 2021;63(2):440–450.
  • Allers K, Essue BM, Hackett ML, et al. The economic impact of epilepsy: a systematic review. BMC Neurol. 2015 Nov 25;15(1):245.10.1186/s12883-015-0494-y
  • Thijs RD, Surges R, O’Brien TJ, et al. Epilepsy in adults. The Lancet. 2019 Feb 16;393(10172):689–701. 10.1016/S0140-6736(18)32596-0
  • Kalilani L, Sun X, Pelgrims B, et al. The epidemiology of drug-resistant epilepsy: A systematic review and meta-analysis. Epilepsia. 2018 Dec;59(12):2179–2193.10.1111/epi.14596
  • Chen Z, Brodie MJ, Liew D, et al. Treatment Outcomes in Patients With Newly Diagnosed Epilepsy Treated With Established and New Antiepileptic Drugs: A 30-Year Longitudinal Cohort Study. JAMA Neurol. 2018 Mar 1;75(3):279–286.10.1001/jamaneurol.2017.3949
  • Perucca E, Brodie MJ, Kwan P, et al. 30 years of second-generation antiseizure medications: impact and future perspectives. Lancet Neurol. 2020 Jun;19(6):544–556. 10.1016/S1474-4422(20)30035-1
  • Ryvlin P, Cross JH, Rheims S Epilepsy surgery in children and adults. Lancet Neurol. 2014 Nov;13(11):1114–1126. 10.1016/S1474-4422(14)70156-5
  • Jetté N, Sander JW, Keezer MR. Surgical treatment for epilepsy: the potential gap between evidence and practice. The Lancet Neurology. 201620160801;15(9):982–994.
  • Ryvlin P, Rheims S, Hirsch LJ, et al. Neuromodulation in epilepsy: state-of-the-art approved therapies. Lancet Neurol. 2021 Dec;20(12):1038–1047. 10.1016/S1474-4422(21)00300-8
  • Wiebe S, Blume WT, Girvin JP, et al. A randomized, controlled trial of surgery for temporal-lobe epilepsy. N Engl J Med. 2001 Aug 2;345(5):311–318.10.1056/NEJM200108023450501
  • Dwivedi R, Ramanujam B, Chandra PS, et al. Surgery for Drug-Resistant Epilepsy in Children. N Engl J Med. 2017 Oct 26;377(17):1639–1647.10.1056/NEJMoa1615335
  • Tellez-Zenteno JF, Hernandez Ronquillo L, Moien-Afshari F, et al. Surgical outcomes in lesional and non-lesional epilepsy: a systematic review and meta-analysis. Epilepsy Res. 2010 May;89(2–3):310–318. 10.1016/j.eplepsyres.2010.02.007
  • Kohling R, Wolfart J Potassium Channels in Epilepsy. Cold Spring Harb Perspect Med. 2016 May 2;6(5):a022871.10.1101/cshperspect.a022871
  • Wengert ER, Patel MK The Role of the Persistent Sodium Current in Epilepsy. Epilepsy Curr. 2021 Jan-Feb;21(1):40–47.10.1177/1535759720973978
  • Wei F, Yan LM, Su T, et al. Ion Channel Genes and Epilepsy: Functional Alteration, Pathogenic Potential, and Mechanism of Epilepsy. Neurosci Bull. 2017 Aug;33(4):455–477. 10.1007/s12264-017-0134-1
  • Wykes RC, Heeroma JH, Mantoan L, et al. Optogenetic and potassium channel gene therapy in a rodent model of focal neocortical epilepsy. Sci Transl Med. 2012 Nov 21;4(161):161ra152. 10.1126/scitranslmed.3004190
  • Snowball A, Chabrol E, Wykes RC, et al. Epilepsy Gene Therapy Using an Engineered Potassium Channel. J Neurosci. 2019 Apr 17;39(16):3159–3169. 10.1523/JNEUROSCI.1143-18.2019
  • Qiu Y, O’Neill N, Maffei B, et al. On-demand cell-autonomous gene therapy for brain circuit disorders. Science. 2022 Nov 4;378(6619):523–532. Preclinical study of engineered potassium channel gene transfer.10.1126/science.abq6656
  • Almacellas Barbanoj A, Graham RT, Maffei B, et al. Anti-seizure gene therapy for focal cortical dysplasia. Brain. 2024 Feb 1;147(2):542–553.10.1093/brain/awad387
  • Ogiwara I, Miyamoto H, Morita N, et al. Nav1.1 Localizes to Axons of Parvalbumin-Positive Inhibitory Interneurons: A Circuit Basis for Epileptic Seizures in Mice Carrying anScn1aGene Mutation. The Journal of Neuroscience. 2007;27(22):5903–5914.
  • Cheah CS, Yu FH, Westenbroek RE, et al. Specific deletion of NaV1.1 sodium channels in inhibitory interneurons causes seizures and premature death in a mouse model of dravet syndrome. Proc Natl Acad Sci U S A. 2012;109(36):14646–14651. doi: 10.1073/pnas.1211591109
  • Chamberlain K, Riyad JM, Weber T Expressing Transgenes That Exceed the Packaging Capacity of Adeno-Associated Virus Capsids. Hum Gene Ther Methods. 2016 Feb;27(1):1–12.10.1089/hgtb.2015.140
  • Tanenhaus A, Stowe T, Young A, et al. Cell-selective adeno-associated virus-mediated SCN1A gene regulation therapy rescues mortality and seizure phenotypes in a dravet syndrome mouse Model and is well tolerated in nonhuman primates. Hum Gene Ther. 2022 Jun;33(11–12):579–597. doi: 10.1089/hum.2022.037
  • Baudouin S, Scheiffele P. SnapShot: Neuroligin-neurexin complexes. Cell. 2010 May 28;141(5):908, 908 e1.
  • Oguro K, Shimazaki K, Yokota H, et al. Global brain delivery of neuroligin 2 gene ameliorates seizures in a mouse model of epilepsy. J Gene Med. 2022 Mar;24(3):e3402. 10.1002/jgm.3402
  • Maljevic S, Moller RS, Reid CA, et al. Spectrum of GABAA receptor variants in epilepsy. Curr Opin Neurol. 2019 Apr;32(2):183–190. 10.1097/WCO.0000000000000657
  • Pirker S, Schwarzer C, Wieselthaler A, et al. GABA(A) receptors: immunocytochemical distribution of 13 subunits in the adult rat brain. Neuroscience. 2000;101(4):815–50.
  • Ghit A, Assal D, Al-Shami AS, et al. GABA(A) receptors: structure, function, pharmacology, and related disorders. J Genet Eng Biotechnol. 2021 Aug 21;19(1):123.
  • Raol YH, Lund IV, Bandyopadhyay S, et al. Enhancing GABA(A) receptor alpha 1 subunit levels in hippocampal dentate gyrus inhibits epilepsy development in an animal model of temporal lobe epilepsy. J Neurosci. 2006 Nov 1;26(44):11342–6.
  • Rivera C, Voipio J, Payne JA, et al. The K+/Cl− co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature. 199919990101;397(6716):251–255.
  • Magloire V, Cornford J, Lieb A, et al. KCC2 overexpression prevents the paradoxical seizure-promoting action of somatic inhibition. Nat Commun. 2019 Mar 15;10(1):1225.10.1038/s41467-019-08933-4
  • Reiner A, Levitz J Glutamatergic Signaling in the Central Nervous System: Ionotropic and Metabotropic Receptors in Concert. Neuron. 2018 Jun 27;98(6):1080–1098.10.1016/j.neuron.2018.05.018
  • Boileau C, Deforges S, Peret A, et al. GluK2 Is a Target for Gene Therapy in Drug-Resistant Temporal Lobe Epilepsy. Ann Neurol. 2023 Oct;94(4):745–761. 10.1002/ana.26723
  • Noe’ F, Nissinen J, Pitkänen A, et al. Gene therapy in epilepsy: The focus on NPY. Peptides. 200720070201;28(2):377–383.
  • Kovac S, Walker MC Neuropeptides in epilepsy. Neuropeptides. 2013 Dec;47(6):467–475.10.1016/j.npep.2013.10.015
  • Richichi C, Lin EJ, Stefanin D, et al. Anticonvulsant and antiepileptogenic effects mediated by adeno-associated virus vector neuropeptide Y expression in the rat hippocampus. J Neurosci. 2004 Mar 24;24(12):3051–9.
  • Noe F, Pool AH, Nissinen J, et al. Neuropeptide Y gene therapy decreases chronic spontaneous seizures in a rat model of temporal lobe epilepsy. Brain. 2008 Jun;131(Pt 6):1506–15.
  • Sorensen AT, Nikitidou L, Ledri M, et al. Hippocampal NPY gene transfer attenuates seizures without affecting epilepsy-induced impairment of LTP. Exp Neurol. 2009 Feb;215(2):328–333. 10.1016/j.expneurol.2008.10.015
  • Noe F, Vaghi V, Balducci C, et al. Anticonvulsant effects and behavioural outcomes of rAAV serotype 1 vector-mediated neuropeptide Y overexpression in rat hippocampus. Gene Ther. 2010 May;17(5):643–652.10.1038/gt.2010.23
  • Melin E, Andersson M, Gotzsche CR, et al. Combinatorial gene therapy for epilepsy: Gene sequence positioning and AAV serotype influence expression and inhibitory effect on seizures. Gene Ther. 2023 Aug;30(7–8):649–658.10.1038/s41434-023-00399-w
  • Haberman RP, Samulski RJ, McCown TJ Attenuation of seizures and neuronal death by adeno-associated virus vector galanin expression and secretion. Nat Med. 2003 Aug;9(8):1076–1080.10.1038/nm901
  • Ferguson SM, De Camilli P Dynamin, a membrane-remodelling GTPase. Nat Rev Mol Cell Biol. 2012 Jan 11;13(2):75–88.10.1038/nrm3266
  • Aimiuwu OV, Fowler AM, Sah M, et al. RNAi-Based Gene Therapy Rescues Developmental and Epileptic Encephalopathy in a Genetic Mouse Model. Mol Ther. 2020 Jul 8;28(7):1706–1716. 10.1016/j.ymthe.2020.04.007
  • Paradiso B, Marconi P, Zucchini S, et al. Localized delivery of fibroblast growth factor-2 and brain-derived neurotrophic factor reduces spontaneous seizures in an epilepsy model. Proc Natl Acad Sci U S A. 2009 Apr 28;106(17):7191–7196.10.1073/pnas.0810710106
  • Paradiso B, Zucchini S, Su T, et al. Localized overexpression of FGF-2 and BDNF in hippocampus reduces mossy fiber sprouting and spontaneous seizures up to 4 weeks after pilocarpine-induced status epilepticus. Epilepsia. 2011 Mar;52(3):572–578.10.1111/j.1528-1167.2010.02930.x
  • Kanter-Schlifke I, Georgievska B, Kirik D, et al. Seizure suppression by GDNF gene therapy in animal models of epilepsy. Mol Ther. 2007 Jun;15(6):1106–1113. 10.1038/sj.mt.6300148
  • Boison D The adenosine kinase hypothesis of epileptogenesis. Prog Neurobiol. 2008 Mar;84(3):249–262. 10.1016/j.pneurobio.2007.12.002
  • Boon P, De Cock E, Mertens A, et al. Neurostimulation for drug-resistant epilepsy: a systematic review of clinical evidence for efficacy, safety, contraindications and predictors for response. Curr Opin Neurol. 2018 Apr;31(2):198–210. 10.1097/WCO.0000000000000534
  • Skrehot HC, Englot DJ, Haneef Z Neuro-stimulation in focal epilepsy: A systematic review and meta-analysis. Epilepsy Behav. 2023 May;142:109182. 10.1016/j.yebeh.2023.109182
  • Kawai K, Tanaka T, Baba H, et al. Outcome of vagus nerve stimulation for drug-resistant epilepsy: the first three years of a prospective Japanese registry. Epileptic Disord. 2017 Sep 1;19(3):327–338. 10.1684/epd.2017.0929
  • Wheless JW, Gienapp AJ, Ryvlin P. Vagus nerve stimulation (VNS) therapy update. Epilepsy Behav. 2018 Nov;88S:2–10.
  • Bergey GK, Morrell MJ, Mizrahi EM, et al. Long-term treatment with responsive brain stimulation in adults with refractory partial seizures. Neurology. 2015 Feb 24;84(8):810–817.10.1212/WNL.0000000000001280
  • Fisher R, Salanova V, Witt T, et al. Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy. Epilepsia. 2010 May;51(5):899–908.10.1111/j.1528-1167.2010.02536.x
  • Salanova V, Sperling MR, Gross RE, et al. The SANTÉ study at 10 years of follow‐up: effectiveness, safety, and sudden unexpected death in epilepsy. Epilepsia. 2021;62(6):1306–1317. doi: 10.1111/epi.16895
  • Haneef Z, Skrehot HC Neurostimulation in generalized epilepsy: A systematic review and meta-analysis. Epilepsia. 2023 Apr;64(4):811–820.10.1111/epi.17524
  • Iwata N, Sekiguchi M, Hattori Y, et al. Global brain delivery of neprilysin gene by intravascular administration of AAV vector in mice. Sci Rep. 2013;3(1):1472. doi: 10.1038/srep01472
  • Jackson RJ, Keiser MS, Meltzer JC, et al. APOE2 gene therapy reduces amyloid deposition and improves markers of neuroinflammation and neurodegeneration in a mouse model of Alzheimer disease. Mol Ther. 2024 May 1;32(5):1373–1386. 10.1016/j.ymthe.2024.03.024
  • Rowland NC, Sammartino F, Lozano AM Advances in surgery for movement disorders. Mov Disord. 2017 Jan;32(1):5–10. 10.1002/mds.26636
  • Zrinzo L, Foltynie T, Limousin P, et al. Reducing hemorrhagic complications in functional neurosurgery: a large case series and systematic literature review Clinical article. J Neurosurg. 2012 Jan;116(1):84–94. 10.3171/2011.8.JNS101407
  • Ball T, Gonzalez-Martinez J, Zemmar A, et al. Robotic Applications in Cranial Neurosurgery: Current and Future. Oper Neurosurg (Hagerstown). 2021 Nov 15;21(6):371–379. 10.1093/ons/opab217
  • Schulder M, Mishra A, Mammis A, et al. Advances in technical aspects of deep brain stimulation surgery. Stereotact Funct Neurosurg. 2023;101(2):112–134. doi: 10.1159/000529040
  • Hwu WL, Muramatsu SI, Gidoni-Ben-Zeev B. Reduced immunogenicity of intraparenchymal delivery of Adeno-associated virus serotype 2 vectors: brief overview. Curr Gene Ther. 2022;22(3):185–190. doi: 10.2174/1566523221666210922155413
  • Prasad S, Dimmock DP, Greenberg B, et al. Immune Responses and Immunosuppressive Strategies for Adeno-Associated Virus-Based Gene Therapy for Treatment of Central Nervous System Disorders: Current Knowledge and Approaches. Hum Gene Ther. 2022 Dec;33(23–24):1228–1245. 10.1089/hum.2022.138
  • Tervo DG, Hwang BY, Viswanathan S, et al. A Designer AAV Variant Permits Efficient Retrograde Access to Projection Neurons. Neuron. 2016 Oct 19;92(2):372–382.10.1016/j.neuron.2016.09.021
  • Guo Y, Chen J, Ji W, et al. High-titer AAV disrupts cerebrovascular integrity and induces lymphocyte infiltration in adult mouse brain. Mol Ther Methods Clin Dev. 2023 Dec 14;31:101102. 10.1016/j.omtm.2023.08.021
  • Keiser MS, Ranum PT, Yrigollen CM, et al. Toxicity after AAV delivery of RNAi expression constructs into nonhuman primate brain. Nat Med. 2021 Nov;27(11):1982–1989.10.1038/s41591-021-01522-3
  • Suriano CM, Kumar N, Verpeut JL, et al. An innate immune response to adeno-associated virus genomes decreases cortical dendritic complexity and disrupts synaptic transmission. Mol Ther. 2024 Apr 1. 32 6 1721–1738 10.1016/j.ymthe.2024.03.036
  • Abuloha S, Niu S, Adirika D, et al. A Review of the Cost-Effectiveness Evidence for FDA-Approved Cell and Gene Therapies. Hum Gene Ther. 2024 Apr 9. 35 11–12 365–373 10.1089/hum.2023.186

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.