0
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Considerations for the development of monoclonal antibodies to address new viral variants in COVID-19

, &
Received 26 May 2024, Accepted 31 Jul 2024, Accepted author version posted online: 01 Aug 2024
Accepted author version

REFERENCES

  • Kohler G, Milstein C Continuous cultures of fused cells secreting antibody of predefined specificity. Nature, 256, 495–497 (1975). 5517 10.1038/256495a0
  • Focosi D, McConnell S, Casadevall A, et al. Monoclonal antibody therapies against SARS-CoV-2. Lancet Infect Dis, 22(11), e311–e326 (2022).10.1016/S1473-3099(22)00311-5
  • Shang J, Wan Y, Luo C et al. Cell entry mechanisms of SARS-CoV-2. Proceedings of the National Academy of Sciences of the United States of America, 117(21), 11727–11734 (2020).
  • Pang X, Xu W, Liu Y, et al. The research progress of SARS-CoV-2 main protease inhibitors from 2020 to 2022. Eur J Med Chem, 257, 115491 (2023).10.1016/j.ejmech.2023.115491
  • Focosi D, McConnell S, Sullivan DJ, et al. Analysis of SARS-CoV-2 mutations associated with resistance to therapeutic monoclonal antibodies that emerge after treatment. Drug Resist Updat, 71, 100991 (2023).10.1016/j.drup.2023.100991
  • Gottlieb RL, Nirula A, Chen P, et al. Effect of Bamlanivimab as Monotherapy or in Combination With Etesevimab on Viral Load in Patients With Mild to Moderate COVID-19: A Randomized Clinical Trial. JAMA, 325(7), 632–644 (2021). 10.1001/jama.2021.0202
  • ACTIV-3/TICO LY-CoV555 Study Group. A Neutralizing Monoclonal Antibody for Hospitalized Patients with Covid-19. N Engl J Med, 384(10), 905–914 (2020).
  • Dougan M, Azizad M, Chen P et al. Bebtelovimab, alone or together with bamlanivimab and etesevimab, as a broadly neutralizing monoclonal antibody treatment for mild to moderate, ambulatory COVID-19. 2022.2003.2010.22272100 (2022).
  • Gupta A, Gonzalez-Rojas Y, Juarez E, et al. Early Treatment for Covid-19 with SARS-CoV-2 Neutralizing Antibody Sotrovimab. N Engl J Med, 385(21), 1941–1950 (2021).10.1056/NEJMoa2107934
  • Syed YY. Regdanvimab: First Approval. Drugs, 81(18), 2133–2137 (2021).
  • Weinreich DM, Sivapalasingam S, Norton T, et al. REGEN-COV Antibody Combination and Outcomes in Outpatients with Covid-19. N Engl J Med, 385(23), e81 (2021).10.1056/NEJMoa2108163
  • Isa F, Forleo-Neto E, Meyer J et al. Repeat Subcutaneous Administration of REGEN-COV® in Adults is Well-Tolerated and Prevents the Occurrence of COVID-19. Int J Infect Dis, 122, 585–592 (2021).
  • O’Brien MP, Forleo-Neto E, Musser BJ, et al. Subcutaneous REGEN-COV Antibody Combination to Prevent Covid-19. N Engl J Med, 385, 1184–1195 (2021). 13 10.1056/NEJMoa2109682
  • Group RC, Horby PW, Mafham M et al. Casirivimab and imdevimab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet, 399(10325), 665–676 (2022).
  • Aleem A, Vaqar S. Monoclonal Antibody Therapy For High-Risk Coronavirus (COVID 19) Patients With Mild To Moderate Disease Presentations. In: StatPearls. ( StatPearls PublishingCopyright © 2023, StatPearls Publishing LLC. Treasure Island (FL) ineligible companies. 2023).
  • Montgomery H, Hobbs FDR, Padilla F et al. Efficacy and safety of intramuscular administration of tixagevimab’cilgavimab for early outpatient treatment of COVID-19 (TACKLE): a phase 3, randomised, double-blind, placebo-controlled trial. The Lancet Respiratory Medicine, 10(10), 985’996 (2022).
  • Evering TH, Chew KW, Giganti MJ, et al. Safety and Efficacy of Combination SARS-CoV-2 Neutralizing Monoclonal Antibodies Amubarvimab Plus Romlusevimab in Nonhospitalized Patients With COVID-19. Ann Intern Med, 176(5), 658–666 (2023).10.7326/M22-3428
  • Self WH, Sandkovsky U, Reilly CS et al. Efficacy and safety of two neutralising monoclonal antibody therapies, sotrovimab and BRII-196 plus BRII-198, for adults hospitalised with COVID-19 (TICO): a randomised controlled trial. The Lancet Infectious Diseases, 22(5), 622–635 (2022).10.1016/S1473-3099(21)00751-9
  • Group A–TfIwC-TS. Tixagevimab-cilgavimab for treatment of patients hospitalised with COVID-19: a randomised, double-blind, phase 3 trial. The Lancet Respiratory Medicine, 10, 972–984 (2022).
  • Levin MJ, Ustianowski A, De Wit S et al. Intramuscular AZD7442 (Tixagevimab-Cilgavimab) for Prevention of Covid-19. N Engl J Med, 386, 2188–2200 (2022).
  • Wafa IA, Pratama NR, Budi DS, et al. The Efficacy and Safety of Monoclonal Antibody Treatments Against COVID-19: A Systematic Review and Meta-analysis of Randomized Clinical Trials. Acta Med Indones, 55(3), 243–254 (2023).
  • Yu SY, Choi M, Cheong C, et al. Clinical efficacy and safety of SARS-CoV-2-neutralizing monoclonal antibody in patients with COVID-19: A living systematic review and meta-analysis. J Microbiol Immunol Infect, 56(5), 909–920 (2023).10.1016/j.jmii.2023.07.009
  • Strohl WR, Ku Z, An Z, et al. Passive Immunotherapy Against SARS-CoV-2: From Plasma-Based Therapy to Single Potent Antibodies in the Race to Stay Ahead of the Variants. BioDrugs, 36(3), 231–323 (2022).10.1007/s40259-022-00529-7
  • Hwang YC, Lu RM, Su SC, et al. Monoclonal antibodies for COVID-19 therapy and SARS-CoV-2 detection. J Biomed Sci, 29(1), 1 (2022).10.1186/s12929-021-00784-w
  • Anderson TS, O’Donoghue A, Mechanic O, Dechen T, Stevens J. Administration of Anti–SARS-CoV-2 Monoclonal Antibodies After US Food and Drug Administration Deauthorization. JAMA Network Open, 5(8), e2228997–e2228997 (2022).
  • Focosi D, Tuccori M Prescription of Anti-Spike Monoclonal Antibodies in COVID-19 Patients with Resistant SARS-CoV-2 Variants in Italy. Pathogens, 11(8) (2022). 823 10.3390/pathogens11080823
  • Jones JM, Manrique IM, Stone MS et al. Estimates of SARS-CoV-2 Seroprevalence and Incidence of Primary SARS-CoV-2 Infections Among Blood Donors, by COVID-19 Vaccination Status - United States, April 2021-September 2022. MMWR Morb Mortal Wkly Rep, 72(22), 601–605 (2023).
  • Senefeld JW, Gorman EK, Johnson PW et al. Rates Among Hospitalized Patients With COVID-19 Treated With Convalescent Plasma: A Systematic Review and Meta-Analysis. Mayo Clinic Proceedings: Innovations, Quality & Outcomes, 7(5), 499–513 (2023).
  • da Silva RP, Thomé BL, da Souza APD. Exploring the Immune Response against RSV and SARS-CoV-2 Infection in Children. Biology, 12(9) (2023).
  • Zhu Q, McAuliffe JM, Patel NK, et al. Analysis of respiratory syncytial virus preclinical and clinical variants resistant to neutralization by monoclonal antibodies palivizumab and/or motavizumab. J Infect Dis, 203(5), 674–682 (2011).10.1093/infdis/jiq100
  • Gupta A, Konnova A, Smet M, et al. Host immunological responses facilitate development of SARS-CoV-2 mutations in patients receiving monoclonal antibody treatments. J Clin Invest, 133(6) (2023).10.1172/JCI166032
  • Weinreich DM, Sivapalasingam S, Norton T, et al. REGN-COV2, a Neutralizing Antibody Cocktail, in Outpatients with Covid-19. N Engl J Med, 384(3), 238–251 (2021).10.1056/NEJMoa2035002
  • Simões EAF, Forleo-Neto E, Geba GP, et al. Suptavumab for the Prevention of Medically Attended Respiratory Syncytial Virus Infection in Preterm Infants. Clin Infect Dis, 73(11), e4400–e4408 (2021).10.1093/cid/ciaa951
  • Huygens S, GeurtsvanKessel C, Gharbharan A et al. Clinical and Virological Outcome of Monoclonal Antibody Therapies Across Severe Acute Respiratory Syndrome Coronavirus 2 Variants in 245 Immunocompromised Patients: A Multicenter Prospective Cohort Study. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America, (2024). **Study reports that patients receiving mAb monotherapy are much more likely to develop antibody escape variants than those receiving a two mAb cocktail
  • Mulangu S, Dodd LE, Davey RT Jr., et al. A Randomized, Controlled Trial of Ebola Virus Disease Therapeutics. N Engl J Med, 381(24), 2293–2303 (2019).10.1056/NEJMoa1910993
  • Tshiani Mbaya O, Mukumbayi P, Mulangu S Review: Insights on Current FDA-Approved Monoclonal Antibodies Against Ebola Virus Infection. Front Immunol, 12, 721328 (2021). 10.3389/fimmu.2021.721328
  • Sullivan DJ, Focosi D, Hanley DF, et al. Outpatient randomized controlled trials to reduce COVID-19 hospitalization: Systematic review and meta-analysis. J Med Virol, 95(12), e29310 (2023).10.1002/jmv.29310
  • Siedentop B, Kachalov VN, Witzany C, Egger M, Kouyos RD, Bonhoeffer S. The effect of combining antibiotics on resistance: A systematic review and meta-analysis. medRxiv, (2023).
  • Maenza J, Flexner C. Combination antiretroviral therapy for HIV infection. Am Fam Physician, 57(11), 2789–2798 (1998).
  • Manns MP, Maasoumy B. Breakthroughs in hepatitis C research: from discovery to cure. Nature reviews. Gastroenterology & hepatology, 19(8), 533–550 (2022).
  • Franchini M, Focosi D, Cruciani M, et al. Safety and Efficacy of Convalescent Plasma Combined with Other Pharmaceutical Agents for Treatment of COVID-19 in Hospitalized Patients: A Systematic Review and Meta-Analysis. Diseases, 12(3), 41 (2024).10.3390/diseases12030041
  • Focosi D, Maggi F, D’Abramo A, et al. Antiviral combination therapies for persistent COVID-19 in immunocompromised patients. Int J Infect Dis, (2023). 137 55–59 10.1016/j.ijid.2023.09.021
  • Pommeret F, Colomba J, Bigenwald C et al. Bamlanivimab+ etesevimab therapy induces SARS-CoV-2 immune escape mutations and secondary clinical deterioration in COVID-19 patients with B-cell malignancies. Annals of Oncology, 32(11), 1445–1447 (2021).10.1016/j.annonc.2021.07.015
  • Arvin AM, Fink K, Schmid MA, et al. A perspective on potential antibody-dependent enhancement of SARS-CoV-2. Nature, 584(7821), 353–363 (2020). 10.1038/s41586-020-2538-8
  • Joyner MJ, Wright RS, Fairweather D, et al. Early safety indicators of COVID-19 convalescent plasma in 5000 patients. J Clin Invest, 130(9), 4791–4797 (2020).10.1172/JCI140200
  • Quinlan BD, Mou H, Zhang L et al. The SARS-CoV-2 receptor-binding domain elicits a potent neutralizing response without antibody-dependent enhancement. Biorxiv, 2020.2004. 2010.036418 (2020).
  • Wilkinson I, Hale G Systematic analysis of the varied designs of 819 therapeutic antibodies and Fc fusion proteins assigned international nonproprietary names. MAbs, 14(1), 2123299 (2022).10.1080/19420862.2022.2123299
  • Loo YM, McTamney PM, Arends RH, et al. The SARS-CoV-2 monoclonal antibody combination, AZD7442, is protective in nonhuman primates and has an extended half-life in humans. Sci Transl Med, 14(635), eabl8124 (2022).10.1126/scitranslmed.abl8124
  • Taylor PC, Adams AC, Hufford MM, et al. Neutralizing monoclonal antibodies for treatment of COVID-19. Nat Rev Immunol, 21(6), 382–393 (2021).10.1038/s41577-021-00542-x
  • Natarajan H, Crowley AR, Butler SE et al. Markers of Polyfunctional SARS-CoV-2 Antibodies in Convalescent Plasma. mBio, 12(2) (2021). **Fc functions contribute to antiviral activity of antibodies to SARS-CoV-2.
  • McConnell SA, Sachithanandham J, Mudrak NJ et al. Spike-protein proteolytic antibodies in COVID-19 convalescent plasma contribute to SARS-CoV-2 neutralization. Cell Chem Biol, 30(7), 726–738.e724 (2023).
  • Timofeeva AM, Sedykh SE, Sedykh TA, et al. Natural antibodies produced in vaccinated patients and COVID-19 convalescents recognize and hydrolyze oligopeptides corresponding to the S-protein of SARS-CoV-2. Vaccines (Basel), 11(9), 1494 (2023). 10.3390/vaccines11091494
  • Timofeeva AM, Shayakhmetova LS, Nikitin AO, et al. Natural Antibodies Produced in Vaccinated Patients and COVID-19 Convalescents Hydrolyze Recombinant RBD and Nucleocapsid (N) Proteins. Biomedicines, 12(5), 1007 (2024).10.3390/biomedicines12051007
  • Timofeeva AM, Sedykh SE, Dmitrenok PS, et al. Identification of Antibody-Mediated Hydrolysis Sites of Oligopeptides Corresponding to the SARS-CoV-2 S-Protein by MALDI-TOF Mass Spectrometry. Int J Mol Sci, 24(18), 14342 (2023).10.3390/ijms241814342
  • Das NC, Chakraborty P, Bayry J, Mukherjee S. In Silico Analyses on the Comparative Potential of Therapeutic Human Monoclonal Antibodies Against Newly Emerged SARS-CoV-2 Variants Bearing Mutant Spike Protein. Front Immunol, 12, 782506 (2021).
  • Pinto D, Park YJ, Beltramello M, et al. Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature, 583(7815), 290–295 (2020).10.1038/s41586-020-2349-y
  • Chen Y, Zhao X, Zhou H, et al. Broadly neutralizing antibodies to SARS-CoV-2 and other human coronaviruses. Nat Rev Immunol, 23(3), 189–199 (2023).10.1038/s41577-022-00784-3
  • Zhou D, Ren J, Fry EE, et al. Broadly neutralizing antibodies against COVID-19. Curr Opin Virol, 61, 101332 (2023).10.1016/j.coviro.2023.101332
  • Zhao X, Qiu T, Huang X, et al. Potent and broadly neutralizing antibodies against sarbecoviruses induced by sequential COVID-19 vaccination. Cell Discov, 10(1), 14 (2024).10.1038/s41421-024-00648-1
  • Dacon C, Tucker C, Peng L, et al. Broadly neutralizing antibodies target the coronavirus fusion peptide. Science, 377(6607), 728–735 (2022).10.1126/science.abq3773
  • Park YJ, De Marco A, Starr TN, et al. Antibody-mediated broad sarbecovirus neutralization through ACE2 molecular mimicry. Science, 375(6579), 449–454 (2022).10.1126/science.abm8143
  • Alfaleh MA, Zawawi A, Al-Amri SS, Hashem AM. David versus goliath: ACE2-Fc receptor traps as potential SARS-CoV-2 inhibitors. MAbs, 14(1), 2057832 (2022).
  • Zhang L, Narayanan KK, Cooper L, et al. An ACE2 decoy can be administered by inhalation and potently targets omicron variants of SARS-CoV-2. EMBO Mol Med, 14(11), e16109 (2022).10.15252/emmm.202216109
  • Barnes CO, Jette CA, Abernathy ME, et al. SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies. Nature, 588(7839), 682–687 (2020).10.1038/s41586-020-2852-1
  • Wang X, Hu A, Chen X, et al. A potent human monoclonal antibody with pan-neutralizing activities directly dislocates S trimer of SARS-CoV-2 through binding both up and down forms of RBD. Signal Transduct Target Ther, 7(1), 114 (2022).10.1038/s41392-022-00954-8
  • Zhou D, Duyvesteyn HME, Chen CP et al. Structural basis for the neutralization of SARS-CoV-2 by an antibody from a convalescent patient. Nature structural & molecular biology, 27(10), 950–958 (2020).
  • V’Kovski P, Kratzel A, Steiner S, et al. Coronavirus biology and replication: implications for SARS-CoV-2. Nat Rev Microbiol, 19(3), 155–170 (2021).10.1038/s41579-020-00468-6
  • Starr TN, Greaney AJ, Hilton SK et al. Deep Mutational Scanning of SARS-CoV-2 Receptor Binding Domain Reveals Constraints on Folding and ACE2 Binding. Cell, 182(5), 1295–1310.e1220 (2020).
  • Pinto D, Sauer MM, Czudnochowski N et al. Broad betacoronavirus neutralization by a stem helix-specific human antibody. Science, 373(6559), 1109–1116 (2021).
  • Low JS, Jerak J, Tortorici MA, et al. ACE2-binding exposes the SARS-CoV-2 fusion peptide to broadly neutralizing coronavirus antibodies. Science, 377(6607), 735–742 (2022).10.1126/science.abq2679
  • Spelios MG, Capanelli JM, Li AW A novel antibody against the furin cleavage site of SARS-CoV-2 spike protein: Effects on proteolytic cleavage and ACE2 binding. Immunol Lett, 242, 1–7 (2022).10.1016/j.imlet.2022.01.002
  • Montastruc F, Lafaurie M, Flumian C, de Canecaude C. Increased reporting of venous and arterial thromboembolic events reported with tixagevimab-cilgavimab for coronavirus disease 2019. Clin Microbiol Infect, 29(4), 543.e541-543.e543 (2023).
  • Zou J, Jing F. Cardiovascular Adverse Events Associated with Monoclonal Antibody Products in Patients with COVID-19. Pharmaceuticals (Basel, Switzerland), 15(12) (2022).
  • Kim PS, Dimcheff DE, Siler A, et al. Effect of monoclonal antibody therapy on the endogenous SARS-CoV-2 antibody response. Clin Immunol, 236, 108959 (2022).10.1016/j.clim.2022.108959
  • Benschop RJ, Tuttle JL, Zhang L et al. The anti-SARS-CoV-2 monoclonal antibody bamlanivimab minimally affects the endogenous immune response to COVID-19 vaccination. Sci Transl Med, 14(655), eabn3041 (2022).
  • Casadevall A, Focosi D SARS-CoV-2 variants resistant to monoclonal antibodies in immunocompromised patients constitute a public health concern. J Clin Invest, 133(6) (2023).10.1172/JCI168603
  • Casadevall A, Focosi D Anti-Spike monoclonal antibody monotherapies and immune escape risk minimization strategies. Clin Infect Dis, (2024).10.1093/cid/ciae254
  • Focosi D, McConnell S, Sullivan D, Casadevall A. Analysis of SARS-CoV-2 mutations associated with resistance to therapeutic monoclonal antibodies that emerge after treatment. Drug Resistance Updates, 100991 (2023).
  • COVID-19 update: An EUA for pemivibart (Pemgarda) for pre-exposure prophylaxis. Med Lett Drugs Ther, 66(1702), 79–80 (2024). 10.58347/tml.2024.1702e
  • Blog A, You, Hide M. SUPERNOVA Phase III trial of sipavibart long-acting antibody met primary endpoints in preventing COVID-19 in immunocompromised patient population.).
  • Focosi D, Franchini M, Casadevall A, et al. An update on the anti-Spike monoclonal antibody pipeline for SARS-CoV-2. Clin Microbiol Infect, (2024). 30 8 999–1006 10.1016/j.cmi.2024.04.012
  • Hall JE. Operation Warp Speed and the Countermeasures Acceleration Group—A Twenty-First Century Manhattan Project: Preliminary Observations on the US Department of Defense’s Role in the Supply, Production, and Distribution of COVID-19 Vaccines and Therapeutics. Journal of Advanced Military Studies, 13(1), 144–162 (2022).
  • Billi B, Cholley P, Grobost V, et al. Intravenous immunoglobulins for the treatment of prolonged COVID-19 in immunocompromised patients: a brief report. Front Immunol, 15, 1399180 (2024).10.3389/fimmu.2024.1399180
  • Zalevsky J, Chamberlain AK, Horton HM, et al. Enhanced antibody half-life improves in vivo activity. Nat Biotechnol, 28(2), 157–159 (2010).10.1038/nbt.1601
  • Dall’Acqua WF, Woods RM, Ward ES et al. Increasing the affinity of a human IgG1 for the neonatal Fc receptor: biological consequences. Journal of immunology (Baltimore, Md.: 1950), 169(9), 5171–5180 (2002).
  • Hinton PR, Xiong JM, Johlfs MG, Tang MT, Keller S, Tsurushita N. An engineered human IgG1 antibody with longer serum half-life. Journal of immunology (Baltimore, Md.: 1950), 176(1), 346–356 (2006).
  • Qiao SW, Kobayashi K, Johansen FE et al. Dependence of antibody-mediated presentation of antigen on FcRn. Proceedings of the National Academy of Sciences of the United States of America, 105(27), 9337–9342 (2008).
  • Lazar GA, Dang W, Karki S et al. Engineered antibody Fc variants with enhanced effector function. Proceedings of the National Academy of Sciences of the United States of America, 103(11), 4005–4010 (2006).
  • Weitzenfeld P, Bournazos S, Ravetch JV Antibodies targeting sialyl Lewis A mediate tumor clearance through distinct effector pathways. J Clin Invest, 129(9), 3952–3962 (2019).10.1172/JCI128437
  • Ferrara C, Grau S, Jäger C et al. Unique carbohydrate-carbohydrate interactions are required for high affinity binding between FcgammaRIII and antibodies lacking core fucose. Proceedings of the National Academy of Sciences of the United States of America, 108(31), 12669–12674 (2011).
  • Hezareh M, Hessell AJ, Jensen RC, van de Winkel JG, Parren PW. Effector function activities of a panel of mutants of a broadly neutralizing antibody against human immunodeficiency virus type 1. Journal of virology, 75(24), 12161–12168 (2001).
  • Xu D, Alegre ML, Varga SS, et al. In vitro characterization of five humanized OKT3 effector function variant antibodies. Cell Immunol, 200(1), 16–26 (2000).10.1006/cimm.2000.1617
  • Oganesyan V, Gao C, Shirinian L, Wu H, Dall’Acqua WF. Structural characterization of a human Fc fragment engineered for lack of effector functions. Acta crystallographica. Section D, Biological crystallography, 64(Pt 6), 700–704 (2008).
  • Moullan N, Asiago J, Stecco K, et al. A First-in-Human Randomized Study to Assess the Safety, Tolerability, Pharmacokinetics, and Neutralization Profile of Two Investigational Long-Acting Anti-SARS-CoV-2 Monoclonal Antibodies. Infect Dis Ther, 13(1), 173–187 (2024).10.1007/s40121-023-00908-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.