0
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Clinical management and innovation in fracture nonunion

ORCID Icon, , , , , , , , , , , , , , , , , , & show all
Received 21 May 2024, Accepted 08 Aug 2024, Accepted author version posted online: 09 Aug 2024
Accepted author version

REFERENCES

  • Hak DJ, Fitzpatrick D, Bishop JA, et al. Delayed union and nonunions: Epidemiology, clinical issues, and financial aspects. Injury. 2014;45:S3–S7.10.1016/j.injury.2014.04.002
  • Copuroglu C, Calori GM, Giannoudis PV. Fracture non-union: who is at risk? Injury. 2013;44(11):1379–1382. doi: 10.1016/j.injury.2013.08.003
  • Dimitriou R, Kanakaris N, Soucacos PN, Giannoudis PV. Genetic predisposition to non-union: Evidence today. Injury. 2013;44:S50–S3.
  • Mills LA, Aitken SA, Simpson A. The risk of non-union per fracture: current myths and revised figures from a population of over 4 million adults. Acta Orthop. 2017;88(4):434–439. doi: 10.1080/17453674.2017.1321351
  • Malgaigne JF. Traité des fractures et des luxations: Chez J.-B. Baillière; 1847.
  • Ekegren CL, Edwards ER, de Steiger R, et al. Incidence, costs and predictors of non-union, delayed union and Mal-union following long bone fracture. Int J Environ Res Public Health. 2018;15(12):2845. doi: 10.3390/ijerph15122845
  • Metsemakers WJ, Moriarty TF, Morgenstern M, Marais L, Onsea J, O’Toole RV, et al. The global burden of fracture-related infection: can we do better? Lancet Infect Dis. 2023.
  • Kanakaris NK, Giannoudis PV. The health economics of the treatment of long-bone non-unions. Injury. 2007;38 Suppl 2:S77–84.
  • Antonova E, Le TK, Burge R, et al. Tibia shaft fractures: costly burden of nonunions. BMC Musculoskelet Disord. 2013;14(1):42. doi: 10.1186/1471-2474-14-42
  • Wittauer M, Burch MA, McNally M, et al. Definition of long-bone nonunion: a scoping review of prospective clinical trials to evaluate current practice. Injury. 2021;52(11):3200–3205. doi: 10.1016/j.injury.2021.09.008
  • Taylor JC. Campbell’s Operative Orthopaedics. Crenshaw AH, Daugherty, K. & Campbell, W. C., editor: Mosby; 1992.
  • Wildemann B, Ignatius A, Leung F, et al. Non-union bone fractures. Nat Rev Dis Primers. 2021;7(1):57. doi: 10.1038/s41572-021-00289-8
  • Weber BG, Cech Oi, Konstam PG. Pseudarthrosis : pathophysiology, biomechanics, therapy, results. Bern [etc.]: Hans Huber Publishers Bern [etc.]; 1976.
  • Megas P. Classification of non-union. Injury. 2005;36 Suppl 4:S30–7.
  • Andrzejowski P, Giannoudis PV. The ‘diamond concept’ for long bone non-union management. J Orthop Traumatol. 2019;20(1):21. doi: 10.1186/s10195-019-0528-0
  • Elliott DS, Newman KJ, Forward DP, Hahn DM, Ollivere B, Kojima K, et al. A unified theory of bone healing and nonunion: BHN theory. Bone Joint J. 2016;98 -B(7):884–91.
  • Saul D, Menger MM, Ehnert S, Nussler AK, Histing T, Laschke MW. Bone Healing Gone Wrong: Pathological Fracture Healing and Non-Unions-Overview of Basic and Clinical Aspects and Systematic Review of Risk Factors. Bioengineering (Basel). 2023;10(1).
  • Carlier A, Lammens J, Van Oosterwyck H, Geris L. Computational modeling of bone fracture non-unions: four clinically relevant case studies. In silico cell tissue sci. 2015;2(1):1. doi: 10.1186/s40482-015-0004-x
  • Neagu TP, Tiglis M, Cocolos I, et al. The relationship between periosteum and fracture healing. Rom J Morphol Embryol. 2016;57(4):1215–1220.
  • Santolini E, Goumenos SD, Giannoudi M, et al. Femoral and tibial blood supply: a trigger for non-union? Injury. 2014;45(11):1665–1673. doi: 10.1016/j.injury.2014.09.006
  • Reed AA, Joyner CJ, Brownlow HC, et al. Human atrophic fracture non-unions are not avascular. J Orthop Res. 2002;20(3):593–599. doi: 10.1016/S0736-0266(01)00142-5
  • Schwabe P, Simon P, Kronbach Z, et al. A pilot study investigating the histology and growth factor content of human non-union tissue. Int Orthop. 2014;38(12):2623–2629. doi: 10.1007/s00264-014-2496-6
  • Menger MM, Laschke MW, Nussler AK, et al. The vascularization paradox of non-union formation. Angiogenesis. 2022;25(3):279–290. doi: 10.1007/s10456-022-09832-x
  • Ding ZC, Zeng WN, Rong X, et al. Do patients with diabetes have an increased risk of impaired fracture healing? A systematic review and meta-analysis. ANZ J Surg. 2020;90(7–8):1259–1264. doi: 10.1111/ans.15878
  • Foulke BA, Kendal AR, Murray DW, et al. Fracture healing in the elderly: A review. Maturitas. 2016;92:49–55.10.1016/j.maturitas.2016.07.014
  • Gorter EA, Reinders CR, Krijnen P, et al. The effect of osteoporosis and its treatment on fracture healing a systematic review of animal and clinical studies. Bone Rep. 2021;15:101117. 10.1016/j.bonr.2021.101117
  • Loggers SAI, Willems HC, Van Balen R, et al. Evaluation of quality of life after nonoperative or operative management of proximal femoral fractures in frail institutionalized patients: the FRAIL-HIP study. JAMA Surg. 2022;157(5):424–434. doi: 10.1001/jamasurg.2022.0089
  • Santolini E, West R, Giannoudis PV. Risk factors for long bone fracture non-union: a stratification approach based on the level of the existing scientific evidence. Injury. 2015;46 Suppl 8:S8–S19.
  • Wallimann A, Magrath W, Thompson K, et al. Gut microbial-derived short-chain fatty acids and bone: a potential role in fracture healing. Eur Cell Mater. 2021;41:454–470. 10.22203/eCM.v041a29
  • Maruyama M, Rhee C, Utsunomiya T, et al. Modulation of the Inflammatory Response and Bone Healing. Front Endocrinol (Lausanne). 2020;11:386. 10.3389/fendo.2020.00386
  • Claes L, Recknagel S, Ignatius A. Fracture healing under healthy and inflammatory conditions. Nat Rev Rheumatol. 2012;8(3):133–143. doi: 10.1038/nrrheum.2012.1
  • Loi F, Cordova LA, Pajarinen J, et al. Inflammation, fracture and bone repair. Bone. 2016;86:119–130.10.1016/j.bone.2016.02.020
  • Zura R, Mehta S, Della Rocca GJ, et al. Biological Risk Factors for Nonunion of Bone Fracture. JBJS Rev. 2016;4(1). doi: 10.2106/JBJS.RVW.O.00008
  • Clark D, Nakamura M, Miclau T, et al. Effects of aging on fracture healing. Curr Osteoporos Rep. 2017;15(6):601–608. doi: 10.1007/s11914-017-0413-9
  • Richards CJ, Graf KW Jr., Mashru RP. The effect of opioids, alcohol, and Nonsteroidal Anti-inflammatory drugs on fracture union. Orthop Clin North Am. 2017;48(4):433–443. doi: 10.1016/j.ocl.2017.06.002
  • George MD, Baker JF, Leonard CE, et al. Risk of nonunion with Nonselective NSAIDs, COX-2 inhibitors, and opioids. J Bone Joint Surg Am. 2020;102(14):1230–1238. doi: 10.2106/JBJS.19.01415
  • Brinker MR, O’Connor DP, Monla YT, Earthman TP. Metabolic and endocrine abnormalities in patients with nonunions. J Orthop Trauma. 2007;21(8):557–70.
  • Chang CJ, Jou IM, Wu TT, et al. Cigarette smoke inhalation impairs angiogenesis in early bone healing processes and delays fracture union. Bone Joint Res. 2020;9(3):99–107. doi: 10.1302/2046-3758.93.BJR-2019-0089.R1
  • Scolaro JA, Schenker ML, Yannascoli S, et al. Cigarette smoking increases complications following fracture: a systematic review. J Bone Joint Surg Am. 2014;96(8):674–681. doi: 10.2106/JBJS.M.00081
  • Cross MB, Yi PH, Thomas CF, et al. Evaluation of malnutrition in orthopaedic surgery. J Am Acad Orthop Surg. 2014;22(3):193–199. doi: 10.5435/JAAOS-22-03-193
  • Metsemakers WJ, Kortram K, Morgenstern M, et al. Definition of infection after fracture fixation: a systematic review of randomized controlled trials to evaluate current practice. Injury. 2018;49(3):497–504. doi: 10.1016/j.injury.2017.02.010
  • Darouiche RO. Treatment of infections associated with surgical implants. N Engl J Med. 2004;350(14):1422–1429. doi: 10.1056/NEJMra035415
  • Zura R, Xiong Z, Einhorn T, et al. Epidemiology of fracture nonunion in 18 human bones. JAMA Surg. 2016;151(11):e162775. doi: 10.1001/jamasurg.2016.2775
  • Wagner RK, van Trikt CH, Visser CE, Janssen SJ, Kloen P. Surprise positive culture rate in the treatment of presumed aseptic long-bone nonunion: a systematic review with meta-analysis of 2397 patients. Arch Orthop Trauma Surg. 2023.
  • Mills L, Tsang J, Hopper G, et al. The multifactorial aetiology of fracture nonunion and the importance of searching for latent infection. Bone Joint Res. 2016;5(10):512–519. doi: 10.1302/2046-3758.510.BJR-2016-0138
  • Otchwemah R, Moczko T, Marche B, et al. High prevalence of bacteria in clinically aseptic non-unions of the tibia and the femur in tissue biopsies. Eur J Trauma Emerg Surg. 2020;46(5):1093–1097. doi: 10.1007/s00068-018-1010-z
  • Hackl S, Keppler L, von Ruden C, et al. The role of low-grade infection in the pathogenesis of apparently aseptic tibial shaft nonunion. Injury. 2021;52(11):3498–3504. 10.1016/j.injury.2021.08.014
  • Gerstenfeld LC, Cullinane DM, Barnes GL, et al. Fracture healing as a post-natal developmental process: molecular, spatial, and temporal aspects of its regulation. J Cell Biochem. 2003;88(5):873–884. doi: 10.1002/jcb.10435
  • Windolf M, L. H-F, Epari D. Basic mechanobiology of bone healing and biomechanics of fracture fixation. In: Bavonratanavech S, Babst R, Oh, W. C, editors. Minimally Invasive Plate Osteosynthesis - Third Edition: AO Trauma, Thieme; 2023. p. 24–43.
  • Goodship AE, Kenwright J. The influence of induced micromovement upon the healing of experimental tibial fractures. J Bone Joint Surg Br. 1985;67(4):650–5.
  • Giannoudis PV, Einhorn TA, Marsh D. Fracture healing: the diamond concept. Injury. 2007;38 Suppl 4:S3–6.
  • Cheal EJ, Mansmann KA, DiGioia AM, 3rd, Hayes WC, Perren SM. Role of interfragmentary strain in fracture healing: ovine model of a healing osteotomy. J Orthop Res. 1991;9(1):131–42.
  • Perren SM. Fracture healing: fracture healing understood as the result of a fascinating cascade of physical and biological interactions. Part I. An Attempt to Integrate Observations from 30 Years AO Research. Acta Chir Orthop Traumatol Cech. 2014;81(6):355–64.
  • Perren SM, Cordey J. The concept of interfragmentary strain. In: Uhthoff HK, editor. Current concepts of internal fixation of fractures. Berlin, Heidelberg, New York: Springer; 1980 - published 1979 symposium. p. 63–77.
  • Hente RW, Perren SM Tissue deformation controlling fracture healing. J Biomech. 2021;125:110576. 10.1016/j.jbiomech.2021.110576
  • Inacio JV, Schwarzenberg P, Kantzos A, Malige A, Nwachuku CO, Dailey HL. Rethinking the 10% strain rule in fracture healing: A distal femur fracture case series. J Orthop Res. 2022.
  • Nicholson JA, Yapp LZ, Keating JF, Simpson A. Monitoring of fracture healing. Update on current and future imaging modalities to predict union. Injury. 2021;52 Suppl 2:S29–S34.
  • Schumann J, Burgess B, Ryan D, et al. A retrospective analysis of distal fibula fractures treated with intramedullary fibular nail fixation. J Foot Ankle Surg. 2023;62(4):737–741. doi: 10.1053/j.jfas.2023.03.005
  • Calori GM, Phillips M, Jeetle S, Tagliabue L, Giannoudis PV. Classification of non-union: need for a new scoring system? Injury. 2008;39 Suppl 2:S59–63.
  • Sollini M, Trenti N, Malagoli E, Catalano M, Di Mento L, Kirienko A, et al. [(18)F]FDG PET/CT in non-union: improving the diagnostic performances by using both PET and CT criteria. Eur J Nucl Med Mol Imaging. 2019;46(8):1605–15.
  • Schwarz GM, Huber S, Wassipaul C, Kasparek M, Hirtler L, Hofstatter JG, et al. Influence of Scan Parameters of Single and Dual-Energy CT Protocols in Combination with Metal Artifact Suppression Algorithms for THA: An ex Vivo Study. J Bone Joint Surg Am. 2023.
  • Stern C, Sommer S, Germann C, et al. Pelvic bone CT: can tin-filtered ultra-low-dose CT and virtual radiographs be used as alternative for standard CT and digital radiographs? Eur Radiol. 2021;31(9):6793–6801. doi: 10.1007/s00330-021-07824-x
  • Kanis JA, Cooper C, Rizzoli R, Reginster JY, Scientific Advisory Board of the European Society for C, Economic Aspects of O, et al. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int. 2019;30(1):3–44.
  • Metsemakers WJ, Morgenstern M, McNally MA, et al. Fracture-related infection: a consensus on definition from an international expert group. Injury. 2018;49(3):505–510. doi: 10.1016/j.injury.2017.08.040
  • McNally M, Govaert G, Dudareva M, et al. Definition and diagnosis of fracture-related infection. EFORT Open Rev. 2020;5(10):614–619. doi: 10.1302/2058-5241.5.190072
  • Onsea J, Van Lieshout EMM, Zalavras C, et al. Validation of the diagnostic criteria of the consensus definition of fracture-related infection. Injury. 2022;53(6):1867–1879. doi: 10.1016/j.injury.2022.03.024
  • Sigmund IK, Dudareva M, Watts D, Morgenstern M, Athanasou NA, McNally MA. Limited diagnostic value of serum inflammatory biomarkers in the diagnosis of fracture-related infections. Bone Joint J. 2020;102 -B(7):904–11.
  • van den Kieboom J, Bosch P, Plate JDJ, FFA IJ, Kuehl R, McNally MA, et al. Diagnostic accuracy of serum inflammatory markers in late fracture-related infection: a systematic review and meta-analysis. Bone Joint J. 2018;100 -B(12):1542–50.
  • Bosch P, van den Kieboom J, Plate JDJ, et al. Limited predictive value of serum inflammatory markers for diagnosing fracture-related infections: results of a large retrospective multicenter cohort study. J Bone Jt Infect. 2018;3(3):130–137. doi: 10.7150/jbji.26492
  • Brinker MR, Macek J, Laughlin M, et al. Utility of common biomarkers for diagnosing infection in nonunion. J Orthop Trauma. 2021;35(3):121–127. doi: 10.1097/BOT.0000000000001925
  • Govaert GAM, Kuehl R, Atkins BL, et al. Diagnosing fracture-related infection: Current concepts and recommendations. J Orthop Trauma. 2020;34(1):8–17. doi: 10.1097/BOT.0000000000001614
  • Stucken C, Olszewski DC, Creevy WR, et al. Preoperative diagnosis of infection in patients with nonunions. J Bone Joint Surg Am. 2013;95(15):1409–1412. doi: 10.2106/JBJS.L.01034
  • Zalavras CG, Marcus RE, Sontich JK. How can I get this bone to heal? Instr Course Lect. 2018;67:511–528.
  • Egol KA, Karunakar MA, Marroum MC, Sims SH, Kellam JF, Bosse MJ. Detection of indolent infection at the time of revision fracture surgery. J Trauma. 2002;52(6):1198–201.
  • Amorosa LF, Buirs LD, Bexkens R, et al. A single-stage treatment protocol for presumptive aseptic diaphyseal nonunions: a review of outcomes. J Orthop Trauma. 2013;27(10):582–586. doi: 10.1097/BOT.0b013e31828b76f2
  • Olszewski D, Streubel PN, Stucken C, et al. Fate of patients with a “surprise” positive culture after nonunion surgery. J Orthop Trauma. 2016;30(1):e19–23. doi: 10.1097/BOT.0000000000000417
  • Shah NS, Simpson NA, Frederickson M, et al. Diagnosis of occult infection using fracture-related infection criteria at the time of nonunion repair. J Orthop Trauma. 2023;37(6):276–281. doi: 10.1097/BOT.0000000000002569
  • Daneshvar K, Anwander H. Diagnostic imaging of diabetic foot disorders. Foot Ankle Clin. 2022;27(3):513–527. doi: 10.1016/j.fcl.2022.01.002
  • Akter A, Lyons O, Mehra V, Isenman H, Abbate V. Radiometal chelators for infection diagnostics. Front Nucl Med. 2023;2:1058388.
  • Leighton R, Watson JT, Giannoudis P, et al. Healing of fracture nonunions treated with low-intensity pulsed ultrasound (LIPUS): a systematic review and meta-analysis. Injury. 2017;48(7):1339–1347. doi: 10.1016/j.injury.2017.05.016
  • Griffin XL, Costa ML, Parsons N, et al. Electromagnetic field stimulation for treating delayed union or non-union of long bone fractures in adults. Cochrane Database Syst Rev. 2011(4): CD008471. 2011 10.1002/14651858.CD008471.pub2
  • Willems A, van der Jagt OP, Meuffels DE. Extracorporeal Shock Wave Treatment for Delayed Union and Nonunion Fractures: A Systematic Review. J Orthop Trauma. 2019;33(2):97–103.
  • Schlickewei CW, Kleinertz H, Thiesen DM, et al. Current and future concepts for the treatment of impaired fracture healing. Int J Mol Sci. 2019;20(22):5805. doi: 10.3390/ijms20225805
  • Stewart SK. Fracture Non-Union: A Review of Clinical Challenges and Future Research Needs. Malays Orthop J. 2019;13(2):1–10.
  • Calori GM, Giannoudis PV. Enhancement of fracture healing with the diamond concept: the role of the biological chamber. Injury. 2011;42(11):1191–1193. doi: 10.1016/j.injury.2011.04.016
  • Ahlmann E, Patzakis M, Roidis N, et al. Comparison of anterior and posterior iliac crest bone grafts in terms of harvest-site morbidity and functional outcomes. J Bone Joint Surg Am. 2002;84(5):716–720. doi: 10.2106/00004623-200205000-00003
  • Dawson J, Kiner D, Gardner W, 2nd, Swafford R, Nowotarski PJ. The reamer-irrigator-aspirator as a device for harvesting bone graft compared with iliac crest bone graft: union rates and complications. J Orthop Trauma. 2014;28(10):584–90.
  • Masquelet AC, Begue T The concept of induced membrane for reconstruction of long bone defects. Orthop Clin North Am. 2010;41(1):27–37; table of contents. 10.1016/j.ocl.2009.07.011
  • Metsemakers WJ, Morgenstern M, Senneville E, et al. General treatment principles for fracture-related infection: recommendations from an international expert group. Arch Orthop Trauma Surg. 2020;140(8):1013–1027. doi: 10.1007/s00402-019-03287-4
  • Salazar VS, Gamer LW, Rosen V. BMP signalling in skeletal development, disease and repair. Nat Rev Endocrinol. 2016;12(4):203–221. doi: 10.1038/nrendo.2016.12
  • McKay WF, Peckham SM, Badura JM. A comprehensive clinical review of recombinant human bone morphogenetic protein-2 (INFUSE Bone Graft). Int Orthop. 2007;31(6):729–34.
  • Burkus JK, Gornet MF, Dickman CA, Zdeblick TA. Anterior lumbar interbody fusion using rhBMP-2 with tapered interbody cages. J Spinal Disord Tech. 2002;15(5):337–49.
  • Boyne PJ, Marx RE, Nevins M, et al. A feasibility study evaluating rhBMP-2/absorbable collagen sponge for maxillary sinus floor augmentation. Int J Periodontics Restorative Dent. 1997;17(1):11–25.
  • Carragee EJ, Hurwitz EL, Weiner BK. A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned. Spine J. 2011;11(6):471–491. doi: 10.1016/j.spinee.2011.04.023
  • James AW, LaChaud G, Shen J, et al. A review of the clinical side effects of bone morphogenetic protein-2. Tissue Eng Part B Rev. 2016;22(4):284–297. doi: 10.1089/ten.teb.2015.0357
  • Govender S, Csimma C, Genant HK, Valentin-Opran A, Amit Y, Arbel R, et al. Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures: a prospective, controlled, randomized study of four hundred and fifty patients. J Bone Joint Surg Am. 2002;84(12):2123–34.
  • Fuchs T, Stolberg-Stolberg J, Michel PA, et al. Effect of bone morphogenetic protein-2 in the treatment of long bone non-unions. J Clin Med. 2021;10(19):4597. doi: 10.3390/jcm10194597
  • Tressler MA, Richards JE, Sofianos D, et al. Bone morphogenetic protein-2 compared to autologous iliac crest bone graft in the treatment of long bone nonunion. Orthopedics. 2011;34(12):e877–84. doi: 10.3928/01477447-20111021-09
  • Tabisz B, Schmitz W, Schmitz M, et al. Site-directed immobilization of BMP-2: two approaches for the production of innovative osteoinductive scaffolds. Biomacromolecules. 2017;18(3):695–708. doi: 10.1021/acs.biomac.6b01407
  • Siverino C, Fahmy-Garcia S, Mumcuoglu D, et al. Site-directed immobilization of an engineered bone morphogenetic protein 2 (BMP2) variant to Collagen-based microspheres induces bone formation in vivo. Int J Mol Sci. 2022;23(7):3928. doi: 10.3390/ijms23073928
  • Pohl TLM, Boergermann JH, Schwaerzer GK, et al. Surface immobilization of bone morphogenetic protein 2 via a self-assembled monolayer formation induces cell differentiation. Acta Biomater. 2012;8(2):772–780. doi: 10.1016/j.actbio.2011.10.019
  • Alaoui-Ismaili MH, Falb D. Design of second generation therapeutic recombinant bone morphogenetic proteins. Cytokine Growth Factor Rev. 2009;20(5–6):501–507. doi: 10.1016/j.cytogfr.2009.10.001
  • Seeherman HJ, Berasi SP, Brown CT, et al. A BMP/activin A chimera is superior to native BMPs and induces bone repair in nonhuman primates when delivered in a composite matrix. Sci Transl Med. 2019;11(489). 10.1126/scitranslmed.aar4953
  • Dahabreh Z, Calori GM, Kanakaris NK, et al. A cost analysis of treatment of tibial fracture nonunion by bone grafting or bone morphogenetic protein-7. Int Orthop. 2009;33(5):1407–1414. doi: 10.1007/s00264-008-0709-6
  • Pountos I, Georgouli T, Pneumaticos S, et al. Fracture non-union: can biomarkers predict outcome? Injury. 2013;44(12):1725–1732. doi: 10.1016/j.injury.2013.09.009
  • Reinke S, Geissler S, Taylor WR, Schmidt-Bleek K, Juelke K, Schwachmeyer V, et al. Terminally differentiated CD8(+) T cells negatively affect bone regeneration in humans. Sci Transl Med. 2013;5(177):177ra36.
  • Zimmermann G, Henle P, Küsswetter M, et al. TGF-β1 as a marker of delayed fracture healing. Bone. 2005;36(5):779–785. doi: 10.1016/j.bone.2005.02.011
  • Zimmermann G, Moghaddam A, Reumann M, et al. TGF-β1 as a pathophysiological factor in fracture healing. Unfallchirurg. 2007;110(2):130–136. doi: 10.1007/s00113-006-1199-x
  • Sarahrudi K, Thomas A, Mousavi M, Kaiser G, Kottstorfer J, Kecht M, et al. Elevated transforming growth factor-beta 1 (TGF-beta1) levels in human fracture healing. Injury. 2011;42(8):833–7.
  • Burska AN, Giannoudis PV, Tan BH, et al. Dynamics of early signalling events during fracture healing and potential serum biomarkers of fracture non-union in humans. J Clin Med. 2020;9(2):492. doi: 10.3390/jcm9020492
  • Liu C, Liu Y, Yu Y, et al. Identification of Up-Regulated ANXA3 Resulting in Fracture Non-Union in Patients With T2DM. Front Endocrinol (Lausanne). 2022;13:890941. 10.3389/fendo.2022.890941
  • Breulmann FL, Hatt LP, Schmitz B, et al. Prognostic and therapeutic potential of microRNAs for fracture healing processes and non-union fractures: a systematic review. Clin Transl Med. 2023;13(1):e1161. doi: 10.1002/ctm2.1161
  • Chloros GD, Kanakaris NK, Harwood PJ, Giannoudis PV. Induced membrane technique for acute bone loss and nonunion management of the tibia. OTA Int. 2022;5(2 Suppl):e170.
  • Haubruck P, Heller R, Apitz P, et al. Evaluation of matrix metalloproteases as early biomarkers for bone regeneration during the applied Masquelet therapy for non-unions. Injury. 2018;49(10):1732–1738. doi: 10.1016/j.injury.2018.07.015
  • Haubruck P, Solte A, Heller R, et al. Chemokine analysis as a novel diagnostic modality in the early prediction of the outcome of non-union therapy: a matched pair analysis. J Orthop Surg Res. 2018;13(1):249. doi: 10.1186/s13018-018-0961-4
  • Zhao XQ, Wan HY, Qin HJ, Jiang N, Yu B. Interleukin-6 versus Common Inflammatory Biomarkers for Diagnosing Fracture-Related Infection: Utility and Potential Influencing Factors. J Immunol Res. 2021;2021:1461638.
  • Gedbjerg N, LaRosa R, Hunter JG, et al. Anti-glucosaminidase IgG in sera as a biomarker of host immunity against staphylococcus aureus in orthopaedic surgery patients. J Bone Joint Surg Am. 2013;95(22):e171. doi: 10.2106/JBJS.L.01654
  • Nishitani K, Beck CA, Rosenberg AF, et al. A diagnostic serum antibody test for patients with staphylococcus aureus osteomyelitis. Clin Orthop Relat Res. 2015;473(9):2735–2749. doi: 10.1007/s11999-015-4354-2
  • Oh I, Muthukrishnan G, Ninomiya MJ, et al. Tracking Anti-Staphylococcus aureus Antibodies Produced In Vivo and Ex Vivo during Foot Salvage Therapy for Diabetic Foot Infections Reveals Prognostic Insights and Evidence of Diversified Humoral Immunity. Infect Immun. 2018;86(12). 10.1128/IAI.00629-18
  • Muthukrishnan G, Soin S, Beck CA, Grier A, Brodell JD, Jr., Lee CC, et al.. A Bioinformatic Approach to Utilize a Patient’s Antibody-Secreting Cells against Staphylococcus aureus to Detect Challenging Musculoskeletal Infections. Immunohorizons. 2020;4(6):339–351. doi: 10.4049/immunohorizons.2000024
  • Ding R, Wei S, Huang M. Long non-coding RNA KCNQ1OT1 overexpression promotes osteogenic differentiation of staphylococcus aureus-infected human bone mesenchymal stem cells by sponging microRNA miR-29b-3p. Bioengineered. 2022;13(3):5855–5867. doi: 10.1080/21655979.2022.2037898
  • Jin T, Lu Y, He QX, et al. The role of MicroRNA, miR-24, and its target CHI3L1 in osteomyelitis caused by staphylococcus aureus. J Cell Biochem. 2015;116(12):2804–2813. doi: 10.1002/jcb.25225
  • Zhang Y, Wang X, Huang X, et al. Transcriptome sequencing profiling identifies miRNA-331-3p as an osteoblast-specific miRNA in infected bone nonunion. Bone. 2021;143:115619.10.1016/j.bone.2020.115619
  • Dai Y, Huang L, Zhang H, et al. Differentially expressed microRNAs as diagnostic biomarkers for infected tibial non-union. Injury. 2021;52(1):11–18. doi: 10.1016/j.injury.2020.09.016
  • Marongiu G, Contini A, Cozzi Lepri A, et al. The treatment of acute diaphyseal long-bones fractures with orthobiologics and pharmacological interventions for bone healing enhancement: a systematic review of clinical evidence. Bioengineering (Basel). 2020;7(1):22. doi: 10.3390/bioengineering7010022
  • Khatkar H, See A. Stem Cell Therapy in the Management of Fracture Non-Union - Evaluating Cellular Mechanisms and Clinical Progress. Cureus. 2021;13(3):e13869.
  • Thurairajah K, Briggs GD, Balogh ZJ. Stem cell therapy for fracture non-union: the current evidence from human studies. J Orthop Surg (Hong Kong). 2021;29(3):23094990211036545. doi: 10.1177/23094990211036545
  • Imam MA, Holton J, Ernstbrunner L, et al. A systematic review of the clinical applications and complications of bone marrow aspirate concentrate in management of bone defects and nonunions. Int Orthop. 2017;41(11):2213–2220. doi: 10.1007/s00264-017-3597-9
  • Stanovici J, Le Nail LR, Brennan MA, et al. Bone regeneration strategies with bone marrow stromal cells in orthopaedic surgery. Curr Res Transl Med. 2016;64(2):83–90. doi: 10.1016/j.retram.2016.04.006
  • Goodman SB, Lin T Modifying MSC Phenotype to Facilitate Bone Healing: Biological Approaches. Front Bioeng Biotechnol. 2020;8:641. 10.3389/fbioe.2020.00641
  • Perez JR, Kouroupis D, Li DJ, et al. Tissue Engineering and Cell-Based Therapies for Fractures and Bone Defects. Front Bioeng Biotechnol. 2018;6:105. 10.3389/fbioe.2018.00105
  • Watanabe Y, Harada N, Sato K, Abe S, Yamanaka K, Matushita T. Stem cell therapy: is there a future for reconstruction of large bone defects? Injury. 2016;47 Suppl 1:S47–51.
  • Watson L, Elliman SJ, Coleman CM. From isolation to implantation: a concise review of mesenchymal stem cell therapy in bone fracture repair. Stem Cell Res Ther. 2014;5(2):51. doi: 10.1186/scrt439
  • Meyers CA, Casamitjana J, Chang L, Zhang L, James AW, Peault B. Pericytes for Therapeutic Bone Repair. Adv Exp Med Biol. 2018;1109:21–32.
  • James AW, Peault B. Perivascular mesenchymal progenitors for bone regeneration. J Orthop Res. 2019;37(6):1221–1228. doi: 10.1002/jor.24284
  • Andersen C, Wragg NM, Shariatzadeh M, et al. The use of platelet-rich plasma (PRP) for the management of non-union fractures. Curr Osteoporos Rep. 2021;19(1):1–14. doi: 10.1007/s11914-020-00643-x
  • Griffin XL, Wallace D, Parsons N, et al. Platelet rich therapies for long bone healing in adults. Cochrane Database Syst Rev. 2012(7): CD009496. 2012 10.1002/14651858.CD009496.pub2
  • Roffi A, Di Matteo B, Krishnakumar GS, et al. Platelet-rich plasma for the treatment of bone defects: from pre-clinical rational to evidence in the clinical practice. A systematic review. Int Orthop. 2017;41(2):221–237. doi: 10.1007/s00264-016-3342-9
  • Lu J, Wang QY, Sheng JG. Exosomes in the Repair of Bone Defects: Next-Generation Therapeutic Tools for the Treatment of Nonunion. Biomed Res Int. 2019;2019:1983131.
  • Schlundt C, Bucher CH, Tsitsilonis S, et al. Clinical and research approaches to treat non-union fracture. Curr Osteoporos Rep. 2018;16(2):155–168. doi: 10.1007/s11914-018-0432-1
  • Schlundt C, Reinke S, Geissler S, et al. Individual Effector/Regulator T Cell Ratios Impact Bone Regeneration. Front Immunol. 2019;10:1954. 10.3389/fimmu.2019.01954
  • Garcia-Garcia A, Martin I Extracellular Matrices to Modulate the Innate Immune Response and Enhance Bone Healing. Front Immunol. 2019;10:2256. 10.3389/fimmu.2019.02256
  • Hu Z, Ma C, Rong X, et al. Immunomodulatory ECM-like microspheres for accelerated bone regeneration in diabetes mellitus. ACS Appl Mater Interfaces. 2018;10(3):2377–2390. doi: 10.1021/acsami.7b18458
  • Shen P, Chen Y, Luo S, et al. Applications of biomaterials for immunosuppression in tissue repair and regeneration. Acta Biomater. 2021;126:31–44. 10.1016/j.actbio.2021.03.019
  • Zhang B, Su Y, Zhou J, et al. Toward a better regeneration through implant-mediated immunomodulation: harnessing the immune responses. Adv Sci (Weinh). 2021;8(16):e2100446. doi: 10.1002/advs.202100446
  • Zara JN, Siu RK, Zhang X, et al. High doses of bone morphogenetic protein 2 induce structurally abnormal bone and inflammation in vivo. Tissue Eng Part A. 2011;17(9–10):1389–1399. doi: 10.1089/ten.tea.2010.0555
  • Lee KB, Taghavi CE, Song KJ, et al. Inflammatory characteristics of rhBMP-2 in vitro and in an in vivo rodent model. Spine (phila Pa 1976). Spine (Phila Pa 1976). 2011;36(3):E149–54. doi: 10.1097/BRS.0b013e3181f2d1ec
  • Lackington WA, Gehweiler D, Zhao E, et al. Interleukin-1 receptor antagonist enhances the therapeutic efficacy of a low dose of rhBMP-2 in a weight-bearing rat femoral defect model. Acta Biomater. 2022;149:189–197. 10.1016/j.actbio.2022.07.012
  • Panos JA, Coenen MJ, Nagelli CV, et al. IL-1Ra gene transfer potentiates BMP2-mediated bone healing by redirecting osteogenesis toward endochondral ossification. Mol Ther. 2023;31(2):420–434. doi: 10.1016/j.ymthe.2022.10.007
  • Anani T, Castillo AB Mechanically-regulated bone repair. Bone. 2022;154:116223.10.1016/j.bone.2021.116223
  • Wang J, Leung KS, Chow SK, Cheung WH. The effect of whole body vibration on fracture healing - a systematic review. Eur Cell Mater. 2017;34:108–27.
  • Shen N, Maggio M, Woods I, et al. Mechanically activated mesenchymal-derived bone cells drive vessel formation via an extracellular vesicle mediated mechanism. J Tissue Eng. 2023;14:20417314231186918.10.1177/20417314231186918
  • Abood A, Farber CR. Using “-omics” data to inform genome-wide association studies (GWASs) in the Osteoporosis Field. Curr Osteoporos Rep. 2021;19(4):369–380. doi: 10.1007/s11914-021-00684-w
  • Qu H, Fu H, Han Z, Sun Y. Biomaterials for bone tissue engineering scaffolds: a review. RSC Adv. 2019;9(45):26252–62.
  • Gómez-Barrena E, Rosset P, Gebhard F, et al. Feasibility and safety of treating non-unions in tibia, femur and humerus with autologous, expanded, bone marrow-derived mesenchymal stromal cells associated with biphasic calcium phosphate biomaterials in a multicentric, non-comparative trial. Biomaterials. 2019;196:100–108.10.1016/j.biomaterials.2018.03.033
  • Bohner M, Santoni BLG, Döbelin N β-tricalcium phosphate for bone substitution: Synthesis and properties. Acta Biomater. 2020;113:23–41.10.1016/j.actbio.2020.06.022
  • Leighton RK, Bhandari M, Russell TA, Trask K. Chapter 49 - Are Bone Substitutes Useful in the Treatment and Prevention of Nonunions and in the Management of Subchondral Voids? In: Wright JG, Ahn H, Graham B, Howard A, Kreder HJ, Lau JT-C, et al., editors. Evidence-Based Orthopaedics. Philadelphia: W.B. Saunders; 2009. p. 342–8.
  • Bohner M. Resorbable biomaterials as bone graft substitutes. Materials Today. 2010;13(1):24–30.
  • Huemer M, Mairpady Shambat S, Brugger SD, Zinkernagel AS. Antibiotic resistance and persistence-Implications for human health and treatment perspectives. EMBO Rep. 2020;21(12):e51034.
  • Pesch S, Hanschen M, Greve F, et al. Treatment of fracture-related infection of the lower extremity with antibiotic-eluting ceramic bone substitutes: case series of 35 patients and literature review. Infection. 2020;48(3):333–344. doi: 10.1007/s15010-020-01418-3
  • Uyttebroek S, Chen B, Onsea J, Ruythooren F, Debaveye Y, Devolder D, et al. Safety and efficacy of phage therapy in difficult-to-treat infections: a systematic review. Lancet Infect Dis. 2022;22(8):e208–e20.
  • Onsea J, Post V, Buchholz T, et al. Bacteriophage therapy for the prevention and treatment of fracture-related infection caused by staphylococcus aureus: a preclinical study. Microbiol Spectr. 2021;9(3):e0173621. doi: 10.1128/spectrum.01736-21
  • Ferry T, Batailler C, Petitjean C, Chateau J, Fevre C, Forestier E, et al. The Potential Innovative Use of Bacteriophages Within the DAC((R)) Hydrogel to Treat Patients With Knee Megaprosthesis Infection Requiring “Debridement Antibiotics and Implant Retention” and Soft Tissue Coverage as Salvage Therapy. Front Med (Lausanne). 2020;7:342.
  • Yao Y, Zhou Y, Liu L, et al. Nanoparticle-Based Drug Delivery in Cancer Therapy and Its Role in Overcoming Drug Resistance. Front Mol Biosci. 2020;7:193. 10.3389/fmolb.2020.00193
  • Gilaberte Y, Rezusta A, Juarranz A, Hamblin MR. Editorial: Antimicrobial Photodynamic Therapy: A New Paradigm in the Fight Against Infections. Front Med (Lausanne). 2021;8:788888.
  • Feng W, Li G, Kang X, et al. Cascade-targeting Poly(amino acid) nanoparticles eliminate intracellular bacteria via on-site antibiotic delivery. Adv Mater. 2022;34(12):e2109789. doi: 10.1002/adma.202109789
  • Jiang XY, Gong MQ, Zhang HJ, et al. The safety and immunogenicity of a recombinant five-antigen Staphylococcus aureus vaccine among patients undergoing elective surgery for closed fractures: a randomized, double-blind, placebo-controlled, multicenter phase 2 clinical trial. Vaccine. 2023;41(38):5562–5571. doi: 10.1016/j.vaccine.2023.07.047
  • Hixon KR, Miller AN. Animal models of impaired long bone healing and tissue engineering- and cell-based in vivo interventions. J Orthop Res. 2022;40(4):767–778. doi: 10.1002/jor.25277
  • Garcia P, Histing T, Holstein JH, Klein M, Laschke MW, Matthys R, et al. Rodent animal models of delayed bone healing and non-union formation: a comprehensive review. Eur Cell Mater. 2013;26:1–12; discussion -4.
  • Standard Guide for Preclinical in vivo Evaluation in Critical-Size Segmental Bone Defects. TEMPs SFoAf, editor: ASTM F2721–09(2023); Last Updated: Mar 07, 2023.
  • Manassero M, Viateau V, Matthys R, et al. A novel murine femoral segmental critical-sized defect model stabilized by plate osteosynthesis for bone tissue engineering purposes. Tissue Eng Part C Methods. 2013;19(4):271–280. doi: 10.1089/ten.tec.2012.0256
  • Poser L, Matthys R, Schawalder P, Pearce S, Alini M, Zeiter S. A standardized critical size defect model in normal and osteoporotic rats to evaluate bone tissue engineered constructs. Biomed Res Int. 2014;2014:348635.
  • Sparks DS, Saifzadeh S, Savi FM, et al. A preclinical large-animal model for the assessment of critical-size load-bearing bone defect reconstruction. Nat Protoc. 2020;15(3):877–924. doi: 10.1038/s41596-019-0271-2
  • Teixeira JO, Urist MR. Bone morphogenetic protein induced repair of compartmentalized segmental diaphyseal defects. Arch Orthop Trauma Surg. 1998;117(1–2):27–34. doi: 10.1007/BF00703435
  • Zeiter S, Koschitzki K, Alini M, et al. Evaluation of preclinical models for the testing of bone tissue-engineered constructs. Tissue Eng Part C Methods. 2020;26(2):107–117. doi: 10.1089/ten.tec.2019.0213
  • Menger MM, Bauer D, Bleimehl M, et al. Comparison of two non-union models with damaged periosteum in mice: Segmental defect and pin-clip fixation versus transverse fracture and K-wire stabilization. Bone. 2022;162:116475.10.1016/j.bone.2022.116475
  • Choi P, Ogilvie C, Thompson Z, et al. Cellular and molecular characterization of a murine non-union model. J Orthop Res. 2004;22(5):1100–1107. doi: 10.1016/j.orthres.2004.03.008
  • Markel MD, Bogdanske JJ, Xiang Z, et al. Atrophic nonunion can be predicted with dual energy x-ray absorptiometry in a canine ostectomy model. J Orthop Res. 1995;13(6):869–875. doi: 10.1002/jor.1100130610
  • Michalski MN, Williams BO. The past, present, and future of genetically engineered mouse models for skeletal biology. Biomolecules. 2023;13(9):1311. doi: 10.3390/biom13091311
  • Colnot C, Thompson Z, Miclau T, et al. Altered fracture repair in the absence of MMP9. Development. 2003;130(17):4123–4133. doi: 10.1242/dev.00559
  • Tsuji K, Bandyopadhyay A, Harfe BD, et al. BMP2 activity, although dispensable for bone formation, is required for the initiation of fracture healing. Nat Genet. 2006;38(12):1424–1429. doi: 10.1038/ng1916
  • Jilka RL, O’Brien CA, Ali AA, Roberson PK, Weinstein RS, Manolagas SC. Intermittent PTH stimulates periosteal bone formation by actions on post-mitotic preosteoblasts. Bone. 2009;44(2):275–86.
  • Haffner-Luntzer M, Hankenson KD, Ignatius A, et al. Review of animal models of comorbidities in fracture-healing research. J Orthop Res. 2019;37(12):2491–2498. doi: 10.1002/jor.24454
  • Funk JR, Hale JE, Carmines D, et al. Biomechanical evaluation of early fracture healing in normal and diabetic rats. J Orthop Res. 2000;18(1):126–132. doi: 10.1002/jor.1100180118
  • Hu P, McKenzie JA, Buettmann EG, Migotsky N, Gardner MJ, Silva MJ. Type 1 diabetic Akita mice have low bone mass and impaired fracture healing. Bone. 2021;147:115906.
  • Li Y, Chen SK, Li L, et al. Bone defect animal models for testing efficacy of bone substitute biomaterials. J Orthop Translat. 2015;3(3):95–104. doi: 10.1016/j.jot.2015.05.002
  • Windolf M, Hofmann-Fliri L, Epari D. Basic mechanobiology of bone healing and biomechanics of fracture fixation. In: Bavonratanavech S, Babst R, Oh CW, editors. Minimally Invasive Plate Osteosynthesis Third Edition: AO Trauma - Thieme; 2023. p. 24–43.
  • Claes L. Biomechanical principles and mechanobiologic aspects of flexible and locked plating. J Orthop Trauma. 2011;25(Supplement 1):S4–S7. doi: 10.1097/BOT.0b013e318207093e
  • Stoffel K, Dieter U, Stachowiak G, Gächter A, Kuster MS. Biomechanical testing of the LCP–how can stability in locked internal fixators be controlled? Injury. 2003;34:B11–9.
  • Duda GN, Sollmann M, Sporrer S, Hoffmann JE, Kassi J-P, Khodadadyan C, Raschke M. Interfragmentary motion in tibial osteotomies stabilized with ring fixators. Clinical Orthopaedics and Related Research (1976-2007). 2002;396:163–72.
  • Bottlang M, Lesser M, Koerber J, Doornink J, von Rechenberg B, Augat P, et al.. Far cortical locking can improve healing of fractures stabilized with locking plates. The Journal of Bone and Joint Surgery American. 2010;92(7):1652. doi: 10.2106/JBJS.I.01111
  • Epari D, Hofmann-Fliri L, Gurung R, Herzog R, Windolf M. Biphasic Plate is now a CE marked medical device. AO Innovations Magazine; 2021.
  • Bogunovic L, Cherney SM, Rothermich MA, Gardner MJ. Biomechanical considerations for surgical stabilization of osteoporotic fractures. Orthopedic Clinics of North America. 2013;44(2):183–200. doi: 10.1016/j.ocl.2013.01.006
  • Lujan TJ, Henderson CE, Madey SM, et al. Locked plating of distal femur fractures leads to inconsistent and asymmetric callus formation. J Orthop Trauma. 2010;24(3):156–162. doi: 10.1097/BOT.0b013e3181be6720
  • Potter BK. From Bench to Bedside: How stiff is too stiff? Far-cortical locking or dynamic locked plating may obviate the question. Clinical Orthopaedics and Related Research®. 2016;474(7):1571–1573. doi: 10.1007/s11999-016-4885-1
  • Bottlang M, Feist F. Biomechanics of far cortical locking. J Orthop Trauma. 2011;25(Suppl Supplement 1):S21. doi: 10.1097/BOT.0b013e318207885b
  • Hofmann-Fliri L, Epari DR, Schwyn R, et al. Biphasic plating–in vivo study of a novel fixation concept to enhance mechanobiological fracture healing. Injury. 2020;51(8):1751–1758. doi: 10.1016/j.injury.2020.04.032
  • Epari DR, Gurung R, Hofmann-Fliri L, et al. Biphasic plating improves the mechanical performance of locked plating for distal femur fractures. J Biomech. 2021;115:110192. 10.1016/j.jbiomech.2020.110192
  • Windolf M, Ernst M, Schwyn R, et al. The relation between fracture activity and bone healing with special reference to the early healing phase – a preclinical study. Injury. 2021;52(1):71–77. doi: 10.1016/j.injury.2020.10.050
  • Barcik J, Ernst M, Buchholz T, et al. The absence of immediate stimulation delays bone healing. Bone. 2023;175:116834.10.1016/j.bone.2023.116834
  • Epari DR, Wehner T, Ignatius A, et al. A case for optimising fracture healing through inverse dynamization. Med Hypotheses. 2013;81(2):225–227. doi: 10.1016/j.mehy.2013.04.044
  • Glatt V, Tepic S, Evans C. Reverse dynamization: a novel approach to bone healing. JAAOS-Journal of the American Academy of Orthopaedic Surgeons. 2016;24(7):e60–e1.
  • Glatt V, Evans C, Tetsworth K. Reverse dynamisation: A modern perspective on stephan perren’s strain theory. Eur Cell Mater. 2021;10:41.
  • Glatt V, Samchukov M, Cherkashin A, Iobst C. Reverse dynamization accelerates bone-healing in a large-animal osteotomy model. JBJS. 2021;103(3):257–63.
  • Tufekci P, Tavakoli A, Dlaska C, Neumann M, Shanker M, Saifzadeh S, et al. Early mechanical stimulation only permits timely bone healing in sheep. Journal of Orthopaedic Research®. 2018;36(6):1790–6.
  • Glatt V, Miller M, Ivkovic A, Liu F, Parry N, Griffin D, et al. Improved healing of large segmental defects in the rat femur by reverse dynamization in the presence of bone morphogenetic protein-2. The Journal of bone and joint surgery American volume. 2012;94(22):2063.
  • Bartnikowski N, Claes LE, Koval L, et al. Modulation of fixation stiffness from flexible to stiff in a rat model of bone healing. Acta Orthop. 2017;88(2):217–222. doi: 10.1080/17453674.2016.1256940
  • Müller CW, Pfeifer R, Meier K, Decker S, Reifenrath J, Gösling T, et al. A novel shape memory plate osteosynthesis for noninvasive modulation of fixation stiffness in a rabbit tibia osteotomy model. BioMed research international. 2015; 2015.
  • Villa-Camacho JC, Iyoha-Bello O, Behrouzi S, et al. Computed tomography-based rigidity analysis: a review of the approach in preclinical and clinical studies. Bonekey Rep. 2014;3:587. 10.1038/bonekey.2014.82
  • Taylor M, Prendergast PJ. Four decades of finite element analysis of orthopaedic devices: where are we now and what are the opportunities? J Biomech. 2015;48(5):767–778. doi: 10.1016/j.jbiomech.2014.12.019
  • Zysset PK, Dall’ara E, Varga P, et al. Finite element analysis for prediction of bone strength. Bonekey Rep. 2013;2:386. 10.1038/bonekey.2013.120
  • Dragomir-Daescu D, Op Den Buijs J, McEligot S, et al. Robust QCT/FEA models of proximal femur stiffness and fracture load during a sideways fall on the hip. Ann Biomed Eng. 2011;39(2):742–755. doi: 10.1007/s10439-010-0196-y
  • Varga P, Schwiedrzik J, Zysset PK, et al. Nonlinear quasi-static finite element simulations predict in vitro strength of human proximal femora assessed in a dynamic sideways fall setup. J Mech Behav Biomed Mater. 2016;57:116–127. 10.1016/j.jmbbm.2015.11.026
  • Lewis GS, Mischler D, Wee H, et al. Finite element analysis of fracture fixation. Curr Osteoporos Rep. 2021;19(4):403–416. doi: 10.1007/s11914-021-00690-y
  • MacLeod AR, Simpson AH, Pankaj P. Reasons why dynamic compression plates are inferior to locking plates in osteoporotic bone: a finite element explanation. Comput Methods Biomech Biomed Engin. 2015;18(16):1818–1825. doi: 10.1080/10255842.2014.974580
  • Tucker SM, Wee H, Fox E, et al. Parametric finite element analysis of intramedullary nail fixation of proximal femur fractures. J Orthop Res. 2019;37(11):2358–2366. doi: 10.1002/jor.24401
  • Mischler D, Schader JF, Dauwe J, et al. Locking Plates With Computationally Enhanced Screw Trajectories Provide Superior Biomechanical Fixation Stability of Complex Proximal Humerus Fractures. Front Bioeng Biotechnol. 2022;10:919721. 10.3389/fbioe.2022.919721
  • Mischler D, Windolf M, Gueorguiev B, et al. Computational optimisation of screw orientations for improved locking plate fixation of proximal humerus fractures. J Orthop Translat. 2020;25:96–104.10.1016/j.jot.2020.02.007
  • Elkins J, Marsh JL, Lujan T, et al. Motion predicts clinical callus formation: construct-specific finite element analysis of supracondylar femoral fractures. J Bone Joint Surg Am. 2016;98(4):276–284. doi: 10.2106/JBJS.O.00684
  • Anderson DD, Thomas TP, Campos Marin A, Elkins JM, Lack WD, Lacroix D. Computational techniques for the assessment of fracture repair. Injury. 2014;45 Suppl 2:S23–31.
  • Pankaj P. Patient-specific modelling of bone and bone-implant systems: the challenges. Int J Numer Method Biomed Eng. 2013;29(2):233–249. doi: 10.1002/cnm.2536
  • Inglis B, Schwarzenberg P, Klein K, et al. Biomechanical duality of fracture healing captured using virtual mechanical testing and validated in ovine bones. Sci Rep. 2022;12(1):2492. doi: 10.1038/s41598-022-06267-8
  • Schwarzenberg P, Darwiche S, Yoon RS, et al. Imaging modalities to assess fracture healing. Curr Osteoporos Rep. 2020;18(3):169–179. doi: 10.1007/s11914-020-00584-5
  • Dailey HL, Schwarzenberg P, Daly CJ, et al. Virtual mechanical testing based on Low-dose computed tomography scans for tibial fracture: a Pilot study of prediction of time to union and comparison with subjective outcomes scoring. J Bone Joint Surg Am. 2019;101(13):1193–1202. doi: 10.2106/JBJS.18.01139
  • Schwarzenberg P, Maher MM, Harty JA, et al. Virtual structural analysis of tibial fracture healing from low-dose clinical CT scans. J Biomech. 2019;83:49–56. 10.1016/j.jbiomech.2018.11.020
  • Simon U, Augat P, Utz M, et al. A numerical model of the fracture healing process that describes tissue development and revascularisation. Comput Methods Biomech Biomed Engin. 2011;14(1):79–93. doi: 10.1080/10255842.2010.499865
  • Lacroix D, Prendergast PJ, Li G, et al. Biomechanical model to simulate tissue differentiation and bone regeneration: application to fracture healing. Med Biol Eng Comput. 2002;40(1):14–21. doi: 10.1007/BF02347690
  • Isaksson H, van Donkelaar CC, Huiskes R, Ito K. Corroboration of mechanoregulatory algorithms for tissue differentiation during fracture healing: Comparison with in vivo results. J Orthop Res. 2006;24(5):898–907.
  • Isaksson H. Recent advances in mechanobiological modeling of bone regeneration. Mechanics Research Communications. 2012;42:22–31.10.1016/j.mechrescom.2011.11.006
  • Schwarzenberg P, Ren T, Klein K, et al. Domain-independent simulation of physiologically relevant callus shape in mechanoregulated models of fracture healing. J Biomech. 2021;118:110300. 10.1016/j.jbiomech.2021.110300
  • Ament C, Hofer EP. A fuzzy logic model of fracture healing. J Biomech. 2000;33(8):961–968. doi: 10.1016/S0021-9290(00)00049-X
  • Wehner T, Claes L, Niemeyer F, Nolte D, Simon U. Influence of the fixation stability on the healing time–a numerical study of a patient-specific fracture healing process. Clin Biomech (Bristol, Avon). 2010;25(6):606–12.
  • Ganadhiepan G, Miramini S, Patel M, et al. Optimal time-dependent levels of weight-bearing for bone fracture healing under Ilizarov circular fixators. J Mech Behav Biomed Mater. 2021;121:104611. 10.1016/j.jmbbm.2021.104611
  • Fu R, Feng Y, Liu Y, et al. The combined effects of dynamization time and degree on bone healing. J Orthop Res. 2022;40(3):634–643. doi: 10.1002/jor.25060
  • Cunningham JL, Kenwright J, Kershaw CJ. Biomechanical measurement of fracture healing. JMedEng Technol. 1990;14(3):92–101.
  • Augat P, Faschingbauer M, Seide K, Tobita K, Callary SA, Solomon LB, Holstein JH. Biomechanical methods for the assessment of fracture repair. Injury. 2014;45 Suppl 2:S32–8.
  • Claes LE, Cunningham JL. Monitoring the mechanical properties of healing bone. ClinOrthopRelat Res. 2009;467(8):1964–71.
  • Burny F, Donkerwolcke M, Bourgois R, et al. Twenty years experience in fracture healing measurement with strain gauges. Orthopedics. 1984;7(12):1823–1826. doi: 10.3928/0147-7447-19841201-08
  • Lin MC, Hu D, Marmor M, et al. Smart bone plates can monitor fracture healing. Sci Rep. 2019;9(1):2122. doi: 10.1038/s41598-018-37784-0
  • Fukase N, Duke VR, Lin MC, et al. Wireless measurements using electrical impedance spectroscopy to monitor fracture healing. Sensors (Basel). 2022;22(16):6233. doi: 10.3390/s22166233
  • Windolf M, Varjas V, Gehweiler D, Schwyn R, Arens D, Constant C, et al. Continuous Implant Load Monitoring to Assess Bone Healing Status-Evidence from Animal Testing. Medicina (Kaunas). 2022;58(7).
  • Ernst M, Baumgartner H, Döbele S, et al. Clinical feasibility of fracture healing assessment through continuous monitoring of implant load. J Biomech. 2021;116:110188. 10.1016/j.jbiomech.2020.110188
  • Kienast B, Kowald B, Seide K, et al. An electronically instrumented internal fixator for the assessment of bone healing. Bone Joint Res. 2016;5(5):191–197. doi: 10.1302/2046-3758.55.2000611
  • Mattei L, Di Fonzo M, Marchetti S, Di Puccio F. A quantitative and non-invasive vibrational method to assess bone fracture healing: a clinical case study. Int Biomech. 2021;8(1):1–13. Graphical abstract. Created with Biorender.com.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.