691
Views
21
CrossRef citations to date
0
Altmetric
Review

Emerging antibody-drug conjugates for treating lymphoid malignancies

, , &
Pages 259-273 | Received 24 May 2017, Accepted 08 Aug 2017, Published online: 28 Aug 2017

References

  • Tolcher AW. Antibody drug conjugates: lessons from 20 years of clinical experience. Ann Oncol. 2016;27:2168–2172.
  • Beck A, Goetsch L, Dumontet C, et al. Strategies and challenges for the next generation of antibody-drug conjugates. Nat Rev Drug Discov. 2017;16:315–337.
  • Robak T, Robak E. Current Phase II antibody-drug conjugates for the treatment of lymphoid malignancies. Expert Opin Investig Drugs. 2014;23:911–924.
  • Chudasama V, Maruani A, Caddick S. Recent advances in the construction of antibody-drug conjugates. Nat Chem. 2016;8:114–119.
  • Levy R, Hurwitz E, Maron R, et al. The specific cytotoxic effects of daunomycin conjugated to antitumor antibodies. Cancer Res. 1975;35:1182–1186.
  • Hurwitz E, Levy R, Maron R, et al. The covalent binding of daunomycin and adriamycin to antibodies, with retention of both drug and antibody activities. Cancer Res. 1975;35:1175–1181.
  • Thorpe PE, Brown AN, Bremner JA Jr, et al. An immunotoxin composed of monoclonal anti-Thy 1.1 antibody and a ribosome-inactivating protein from Saponaria officinalis: potent antitumor effects in vitro and in vivo. J Natl Cancer Inst. 1985;75:151–159.
  • Davis MT, Preston JF 3rd. A conjugate of alpha-amanitin and monoclonal immunoglobulin G to Thy 1.2 antigen is selectively toxic to T lymphoma cells. Science. 1981;213:1385–1388.
  • Uckun FM, Ramakrishnan S, Houston LL. Immunotoxin-mediated elimination of clonogenic tumor cells in the presence of human bone marrow. J Immunol. 1985;134:2010–2016.
  • Bregni M, De Fabritiis P, Raso V, et al. Elimination of clonogenic tumor cells from human bone marrow using a combination of monoclonal antibody: ricinA chain conjugates. Cancer Res. 1986;46:1208–1213.
  • Peters C, Brown S. Antibody-drug conjugates as novel anti-cancer chemotherapeutics. Biosci Rep. 2015;35(4):e00225.
  • Hsi ED. 2016 WHO classification update-what’s new in lymphoid neoplasms. Int J Lab Hematol. 2017;39 Suppl 1:14–22.
  • Boffetta P. Epidemiology of adult non-Hodgkin lymphoma. Ann Oncol. 2011;22(Supplement 4):iv27–iv31.
  • Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67:7–30.
  • Maxwell SA, Mousavi-Fard S. Non-Hodgkin’s B-cell lymphoma: advances in molecular strategies targeting drug resistance. Exp Biol Med (Maywood). 2013;238:971–990.
  • Horn H, Staiger AM, Ott G. New targeted therapies for malignant lymphoma based on molecular heterogeneity. Expert Rev Hematol. 2017;10:39–51.
  • Nandagopal L, Mehta A. Treatment approaches of hard-to-treat non-Hodgkin lymphomas. Expert Rev Hematol. 2017;10:259–273.
  • Sandell RF, Boddicker RL, Feldman AL. Genetic landscape and classification of peripheral T cell lymphomas. Curr Oncol Rep. 2017;19:28.
  • Foss FM, Zinzani PL, Vose JM. Peripheral T-cell lymphoma. Blood. 2011;117:6756–6767.
  • Abouyabis AN, Shenoy PJ, Sinha R, et al. A systematic review and meta-analysis of front-line anthracycline-based chemotherapy regimens for peripheral T-cell lymphoma. ISRN Hematol. 2011;2011:1–14.
  • Ansell SM. Hodgkin lymphoma: 2016 update on diagnosis, risk-stratification, and management. Am J Hematol. 2016;91:434–442.
  • Moreau P, San Miguel J, Ludwig H, et al. Multiple myeloma: ESMO clinical practice guidelines fordiagnosis, treatment and follow-up. Ann Oncol. 2013;24(Suppl 6):vi133–7.
  • Rajkumar SV. Treatment of multiple myeloma. Nat Rev Clin Oncol. 2011;8:479–491.
  • Sonneveld P, De Wit E, Moreau P. How have evolutions in strategies for the treatment of relapsed/refractory multiple myeloma translated into improved outcomes for patients? Crit Rev Oncol Hematol. 2017;112:153–170.
  • Anderson KC. The 39th David A. Karnofsky Lecture: bench-to-bedside translation of targeted therapies in multiple myeloma. J Clin Oncol. 2012;30:445–452.
  • Pro B, Perini GF. Brentuximab vedotin in Hodgkin’s lymphoma. Expert Opin Biol Ther. 2012;12:1415–1421.
  • Senter PD, Sievers EL. The discovery and development of brentuximab vedotin for use in relapsed Hodgkin lymphoma and systemic anaplastic large cell lymphoma. Nat Biotechnol. 2012;30:631–637.
  • Vadakara J, Pro B. Targeting CD30 in anaplastic large cell lymphoma. Curr Hematol Malig Rep. 2012 Dec;7(4):285–291.
  • Schirrmann T, Steinwand M, Wezler X, et al. CD30 as a therapeutic target for lymphoma. Bio Drugs. 2014;28:181–209.
  • Younes A, Gopal AK, Smith SE, et al. Results of a pivotal phase II study of brentuximab vedotin for patients with relapsed or refractory Hodgkin’s lymphoma. J Clin Oncol. 2012;30:2183–2189.
  • Gopal AK, Chen R, Smith SE, et al. Three-year follow-up data and characterization of long-term remissions from an ongoing Phase 2 study of brentuximab vedotin in patients with relapsed or refractory Hodgkin lymphoma. Blood (ASH Annual Meeting Abstracts). 2013;122:4382.
  • Younes A, Connors JM, Park SI, et al. Brentuximab vedotin combined with ABVD or AVD for patients with newly diagnosed Hodgkin’s lymphoma: a phase 1, open-label, dose-escalation study. Lancet Oncol. 2013;14:1348–1356.
  • Moskowitz CH, Nademanee A, Masszi T, et al. Brentuximab vedotin as consolidation therapy after autologous stem-cell transplantation in patients with Hodgkin’s lymphoma at risk of relapse or progression (AETHERA): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2015;385:1853–1862.
  • Mak V, Hamm J, Chhanabhai M, et al. Survival of patients with peripheral T-cell lymphoma after first relapse or progression: spectrum of disease and rare long-term survivors. J Clin Oncol. 2013;31:1970–1976.
  • Pro B, Advani R, Brice P, et al. Brentuximab vedotin (SGN-35) in patients with relapsed or refractory systemic anaplastic large-cell lymphoma: results of a phase II study. J Clin Oncol. 2012;30:2190–2196.
  • Pro B, Advani RH, Brice P, et al. Three-year survival results from an ongoing phase 2 study of brentuximab vedotin in patients with relapsed or refractory systemic anaplastic large cell lymphoma. Blood. 2013;122:1809.
  • Fanale MA, Horwitz SM, Forero-Torres AJ, et al. Brentuximab vedotin in the front-line treatment of patients with CD30+ peripheral T-cell lymphomas: results of a phase I study. J Clin Oncol. 2014;32:3137–3143.
  • Jacobsen ED, Sharman JP, Oki Y, et al. Brentuximab vedotin also demonstrated objective responses in a phase 2 study of relapsed/refractory DLBCL with variable CD30 expression. Blood. 2015;125:1394–1402.
  • Kim YH, Tavallaee M, Sundram U, et al. Phase II investigator-initiated study of brentuximab vedotin in mycosis fungoides and Sézary syndrome with variable cd30 expression level: a multi-institution collaborative project. J Clin Oncol. 2015;33:3750–3758.
  • Duvic M, Tetzlaff MT, Gangar P, et al. Results of a Phase II trial of brentuximab vedotin for CD30+ cutaneous T-cell lymphoma and lymphomatoid papulosis. J Clin Oncol. 2015;33:3759–3765.
  • Robak T, Blonski JZ, Robak P. Antibody therapy alone and in combination with targeted drugs in chronic lymphocytic leukemia. Semin Oncol. 2016;43:280–290.
  • Mehta A, Forero-Torres A. Development and Integration of antibody-drug conjugate in non-Hodgkin lymphoma. Curr Oncol Rep. 2015;17:41.
  • Mei M, Thomas S, Chen R. Management of relapsed or refractory Hodgkin lymphoma with second-generation antibody-drug conjugates: focus on brentuximab vedotin. Bio Drugs. 2014;28:245–251.
  • Merli M, Ferrario A, Maffioli M, et al. New uses for brentuximab vedotin and novel antibody drug conjugates in lymphoma. Expert Rev Hematol. 2016;9:767–780.
  • Zinzani PL, Sasse S, Radford J, et al. Experience of brentuximab vedotin in relapsed/refractory Hodgkin lymphoma and relapsed/refractory systemic anaplastic large-cell lymphoma in the Named Patient Program: review of the literature. Crit Rev Oncol Hematol. 2015;95:359–369.
  • Lutz RJ, Zuany-Amorim C, Vrignaud P, et al. Preclinical evaluation of SAR3419 (huB4-DM4), an anti-CD19-maytansinoid immunoconjugate, for the treatment of B-cell lymphoma. Proc Am Assoc Cancer Res. 2006;47:Abstract 3731.
  • Younes A, Kim S, Romaguera J, et al. Phase I multidose-escalation study of the anti-CD19 maytansinoid immunoconjugate SAR3419 administered by intravenous infusion every 3 weeks to patients with relapsed/refractory B-cell lymphoma. J Clin Oncol. 2012;30:2776–2782.
  • Trneny M, Verhoef G, Dyer MJS, et al. Starlyte phase II study of coltuximab ravtansine (CoR, SAR3419) single agent: clinical activity and safety in patients with relapsed/refractory (R/R) diffuse large B-cell lymphoma (DLBCL; NCT01472887). J Clin Oncol. 2014;32(suppl 5s):Abstract 8506.
  • Farhadfar N, Litzow MR. New monoclonal antibodies for the treatment of acute lymphoblastic leukemia. Leuk Res. 2016;49:13–21.
  • Flynn MJ, Zammarchi F, Tyrer PC, et al. ADCT-301, a Pyrrolobenzodiazepine (PBD) Dimer-Containing Antibody-Drug Conjugate (ADC) Targeting CD25-expressing hematological malignancies. Mol Cancer Ther. 2016;15:2709–2721.
  • Wong BY, Dang NH. Inotuzumab ozogamicin as novel therapy in lymphomas. Expert Opin Biol Ther. 2010;10:1251–1258.
  • Advani A, Coiffier B, Czuczman MS, et al. Safety, pharmacokinetics, and preliminary clinical activity of inotuzumab ozogamicin, a novel immunoconjugate for the treatment of B-cell non-Hodgkin’s lymphoma: results of a phase I study. J Clin Oncol. 2010;28:2085–2093.
  • Ogura M, Tobinai K, Hatake K, et al. Phase I study of inotuzumab ozogamicin (CMC-544) in Japanese patients with follicular lymphoma pretreated with rituximab-based therapy. Cancer Sci. 2010;101:1840–1845.
  • Ogura M, Hatake K, Ando K, et al. Phase I study of anti-CD22 immunoconjugate inotuzumab ozogamicin plus rituximab in relapsed/refractory B-cell non-Hodgkin lymphoma. Cancer Sci. 2012;103:933–938.
  • Fayad L, Offner F, Smith MR, et al. Safety and clinical activity of a combination therapy comprising two antibody-based targeting agents for the treatment of non-Hodgkin lymphoma: results of a phase I/II study evaluating the immunoconjugate inotuzumab ozogamicin with rituximab. J Clin Oncol. 2013;31:573–583.
  • Wagner-Johnston ND, Goy A, Rodriguez MA, et al. A phase 2 study of inotuzumab ozogamicin and rituximab, followed by autologous stem cell transplant in patients with relapsed/refractory diffuse large B-cell lymphoma. Leuk Lymphoma. 2015;56:2863–2869.
  • Kreitman RJ, Pastan I. Antibody fusion proteins: anti-CD22 recombinant immunotoxin moxetumomab pasudotox. Clin Cancer Res. 2011;17:6398–6405.
  • Advani RH, Lebovic D, Chen A, et al. Phase I study of the anti-CD22 antibody-drug conjugate pinatuzumab vedotin with/without rituximab in patients with relapsed/refractory B-cell non-Hodgkin lymphoma. Clin Cancer Res. 2017;23:1167–1176.
  • FitzGerald DJ, Wayne AS, Kreitman RJ, et al. Treatment of hematologic malignancies with immunotoxins and antibody-drug conjugates. Cancer Res. 2011;71:6300–6309.
  • Ghetie MA, Tucker K, Richardson J, et al. The antitumor activity of an anti-CD22 immunotoxin in SCID mice with disseminated Daudi lymphoma is enhanced by either an anti-CD19 antibody or an anti-CD19 immunotoxin. Blood. 1992;80:2315–2320.
  • Schindler J, Gajavelli S, Ravandi F, et al. A phase I study of a combination of anti-CD19 and anti-CD22 immunotoxins (Combotox) in adult patients with refractory B-lineage acute lymphoblastic leukaemia. Br J Haematol. 2011;154:471–476.
  • Messmann RA, Vitetta ES, Headlee D, et al. A phase I study of combination therapy with immunotoxins IgG-HD37-deglycosylatedricin A chain (dgA) and IgG-RFB4-dgA (Combotox) in patients with refractory CD19(+), CD22(+) B cell lymphoma. Clin Cancer Res. 2000;6:1302–1313.
  • Pfeifer M, Zheng B, Erdmann T, et al. Anti-CD22 and anti-CD79B antibody drug conjugates are active in different molecular diffuse large B-cell lymphoma subtypes. Leukemia. 2015;29:1578–1586.
  • Palanca-Wessels MC, Czuczman M, Salles G, et al. Safety and activity of the anti-CD79B antibody-drug conjugate polatuzumab vedotin in relapsed or refractory B-cell non-Hodgkin lymphoma and chronic lymphocytic leukaemia: a phase 1 study. Lancet Oncol. 2015;16:704–715.
  • Pereira DS, Guevara CI, Jin L, et al. AGS67E, an anti-CD37 monomethyl auristatin E antibody-drug conjugate as a potential therapeutic for B/T-cell malignancies and AML: a new role for CD37 in AML. Mol Cancer Ther. 2015;14:1650–1660.
  • Scheuermann RH, Racila E. CD19 antigen in leukemia and lymphoma diagnosis and immunotherapy. Leuk Lymphoma. 1995;18:385–397.
  • Lambert JM, Goldmacher VS, Collinson AR, et al. An immunotoxin prepared with blocked ricin: a natural plant toxin adapted for therapeutic use. Cancer Res. 1991;51(23 Pt 1):6236–6242.
  • Conry RM, Khazaeli MB, Saleh MN, et al. Phase I trial of an anti-CD19 deglycosylated ricin A chain immunotoxin in non-Hodgkin’s lymphoma: effect of an intensive schedule of administration. J Immunother Emphasis Tumor Immunol. 1995;18:231–241.
  • Blanc V, Bousseau A, Caron A, et al. SAR3419: an anti-CD19-maytansinoid immunoconjugate for the treatment of B-cell malignancies. Clin Cancer Res. 2011;17:6448–6458.
  • Remillard S, Rebhun LI, Howie GA, et al. Antimitotic activity of the potent tumor inhibitor maytansine. Science. 1975;189:1002–1005.
  • Ribrag V, Dupuis J, Tilly H, et al. A dose-escalation study of SAR3419, an anti-CD19 antibody maytansinoid conjugate, administered by intravenous infusion once weekly in patients with relapsed/refractory B-cell non-Hodgkin lymphoma. Clin Cancer Res. 2014;20:213–220.
  • Coiffier B, Thieblemont C, de Guibert S, et al. A phase II, single-arm, multicentre study of coltuximab ravtansine (SAR3419) and rituximab in patients with relapsed or refractory diffuse large B-cell lymphoma. Br J Haematol. 2016;173:722–730.
  • Pezzutto A, Rabinovitch PS, Dorken B, et al. Role of the CD22 human B cell antigen in B cell triggering by anti-immunoglobulin. J Immunol. 1988;140:1791–1795.
  • Law CL, Aruffo A, Chandran KA, et al. Ig domains 1 and 2 of murine CD22 constitute the ligand-binding domain and bind multiple sialylated ligands expressed on B and T cells. J Immunol. 1995;155:3368–3376.
  • Goy A, Forero A, Wagner-Johnston N, et al. A phase 2 study of inotuzumab ozogamicin in patients with indolent B-cell non-Hodgkin lymphoma refractory to rituximab alone, rituximab and chemotherapy, or radioimmunotherapy. Br J Haematol. 2016;174:571–581.
  • Ogura M, Tobinai K, Hatake K, et al. Phase I study of inotuzumab ozogamicin combined with R-CVP for relapsed/refractory CD22+ B-cell non-Hodgkin lymphoma. Clin Cancer Res. 2016;22:4807–4816.
  • Robak T, Wolska A, Robak P. Potential breakthroughs with investigational drugs for hairy cell leukemia. Expert Opin Investig Drugs. 2015;24:1419–1431.
  • Kreitman RJ, Tallman MS, Robak T, et al. Phase I trial of anti-CD22 recombinant immunotoxin moxetumomab pasudotox (CAT-8015 or HA22) in patients with hairy cell leukemia. J Clin Oncol. 2012;30:1822–1828.
  • Li D, Poon KA, Yu SF, et al. DCDT2980S, an anti-CD22-monomethyl auristatin E antibody-drug conjugate, is a potential treatment for non-Hodgkin lymphoma. Mol Cancer Ther. 2013;12:1255–1265.
  • Yu SF, Zheng B, Go M, et al. A novel anti-CD22 Anthracycline-based antibody-drug conjugate (ADC) that overcomes resistance to auristatin-based ADCs. Clin Cancer Res. 2015;21:3298–3306.
  • Herrera L, Farah RA, Pellegrini VA, et al. Immunotoxins against CD19 and CD22 are eff ective in killing precursor-B acute lymphoblastic leukemia cells in vitro. Leukemia. 2000;14:853–858.
  • Sausville EA, Headlee D, Stetler-Stevenson M, et al. Continuous infusion of the anti-CD22 immunotoxin IgG-RFB4-SMPT-dgA in patients with B-cell lymphoma: a phase I study. Blood. 1995;85:3457–3465.
  • Kuhn DJ, Dou QP. The role of interleukin-2 receptor alpha in cancer. Front Biosci. 2005;10:1462–1474.
  • Robbins DH, Margulies I, Stetler-Stevenson M, et al. Hairy cell leukemia, a B-cell neoplasm that is particularly sensitive to the cytotoxic effect of anti-Tac(Fv)-PE38 (LMB-2). Clin Cancer Res. 2000;6:693–700.
  • Kreitman RJ, Wilson WH, White JD, et al. Phase I trial of recombinant immunotoxin anti-Tac(Fv)-PE38 (LMB-2) in patients with hematologic malignancies. J Clin Oncol. 2000;18:1622–1636.
  • Decker T, Hipp S, Kreitman RJ, et al. Sensitization of B-cell chronic lymphocytic leukemia cells to recombinant immunotoxin by immunostimulatory phosphorothioate oligodeoxynucleotides. Blood. 2002;99:1320–1326.
  • Attia P, Powell DJ Jr, Maker AV, et al. Selective elimination of human regulatory T lymphocytes in vitro with the recombinant immunotoxin LMB-2. J Immunother. 2006;29:208–214.
  • Powell DJ Jr, Felipe-Silva A, Merino MJ, et al. Administration of a CD25-directed immunotoxin, LMB-2, to patients with metastatic melanoma induces a selective partial reduction in regulatory T cells in vivo. J Immunol. 2007;179:4919–4928.
  • Kreitman RJ, Stetler-Stevenson M, Jaffe ES, et al. Complete remissions of adult T-cell leukemia with anti-CD25 recombinant immunotoxin LMB-2 and chemotherapy to block immunogenicity. Clin Cancer Res. 2016;22:310–318.
  • Morschhauser F, Flinn I, Advani RH, et al. Updated results of a phase II randomized study (ROMULUS) of polatuzumab vedotin or pinatuzumab vedotin plus rituximab in patients with relapsed/refractory non-Hodgkin lymphoma. Blood. 2014;124:4457.
  • Robak T, Robak P. Anti-CD37 antibodies for chronic lymphocytic leukemia. Expert Opin Biol Ther. 2014;14:651–661.
  • Heider KH, Kiefer K, Zenz T, et al. A novel Fc-engineered monoclonal antibody to CD37 with enhanced ADCC and high proapoptotic activity for treatment of B-cell malignancies. Blood. 2011;118:4159–4168.
  • Pitcher LA, van Oers NSC. T-cell receptor signal transmission: who gives an ITAM. Trends Immunol. 2003;24:554–560.
  • Martin PJ, Hansen JA, Torok-Storb B, et al. Effects of treating marrow with a CD3-specific immunotoxin for prevention of acute graft-versus-host disease. Bone Marrow Transplant. 1988;3:437–444.
  • Marchi E, Raufi AG, O’Connor OA. Novel agents in the treatment of relapsed or refractory peripheral T-cell lymphoma. Hematol Oncol Clin North Am. 2017;31:359–375.
  • Woo JH, Lee YJ, Neville DM, et al. Pharmacology of anti-CD3 diphtheria immunotoxin in CD3 positive T-cell lymphoma trials. Methods Mol Biol. 2010;651:157–175.
  • Frankel AE, Zuckero SL, Mankin AA, et al. Anti-CD3 recombinant diphtheria immunotoxin therapy of cutaneous T cell lymphoma. Curr Drug Targets. 2009;10:104–109.
  • Frankel AE, Woo JH, Ahn C, et al. Resimmune, an anti-CD3ε recombinant immunotoxin, induces durable remissions in patients with cutaneous T-cell lymphoma. Haematologica. 2015;100:794–800.
  • Robak P, Robak T. Management of multiple myeloma with second-generation antibody-drug conjugates. Bio Drugs. 2016;30:87–93.
  • Sherbenou DW, Behrens CR, Su Y, et al. The development of potential antibody-based therapies for myeloma. Blood Rev. 2015;29:81–91.
  • Lutz RJ, Whiteman KR. Antibody-maytansinoid conjugates for the treatment of myeloma. MAbs. 2009;1:548–551.
  • Chanan-Khan A, Wolf J, Garcia J, et al. Efficacy analysis from a phase I study of lorvotuzumab mertansine (IMGN901) used as monotherapy in patients with heavily pre-treated CD56-positive multiple myeloma. Blood (ASH Annual Meeting Abstracts). 2010;116:Abstract 1962.
  • Schönfeld K, Zuber C, Pinkas J, et al. Indatuximab ravtansine (BT062) combination treatment in multiple myeloma: pre-clinical studies. J Hematol Oncol. 2017;10:13.
  • Berdeja JG. Lorvotuzumab mertansine: antibody-drug-conjugate for CD56⁺ multiple myeloma. Front Biosci (Landmark Ed). 2014;19:163–170.
  • Ishitsuka K, Jimi S, Goldmacher VS, et al. Targeting CD56 by the maytansinoid immunoconjugate IMGN901 (huN901-DM1): a potential therapeutic modality implication against natural killer/T cell malignancy. Br J Haematol. 2008;141:129–131.
  • Tassone P, Gozzini A, Goldmacher V, et al. In vitro and in vivo activity of the maytansinoid immunoconjugate huN901-N2′-deacetyl-N2′-(3-mercapto-1-oxopropyl)-maytansine against CD56+multiple myeloma cells. Cancer Res. 2004;64:4629–4636.
  • Berdeja JG, Hernandez-Ilizaliturri F, Chanan-Khan A, et al. Phase I study of lorvotuzumabmertansine (LM, IMGN901) in combination with lenalidomide (Len) and dexamethasone (Dex) in patients with CD56-positive relapsed or relapsed/refractory multiple myeloma (MM). Blood (ASH Annual Meeting Abstracts). 2012;120:Abstract 728.
  • Lopus M, Oroudjev E, Wilson L, et al. Maytansine and cellular metabolites of antibody-maytansinoid conjugates strongly suppress microtubule dynamics by binding to microtubules. Mol Cancer Ther. 2010;9:2689–2699.
  • Issell BF, Crooke ST. Maytansine. Cancer Treat Rev. 1978;5:199–207.
  • Jagannath S, Chanan-Khan A, Heffner LT, et al. BT062, an antibody-drug conjugate directed against CD138, shows clinical activity in patients with relapsed or relapsed/refractory multiple myeloma. Blood. 2011;118:Abstract 305.
  • Heffner LT, Jagannath S, Zimmerman TM, et al. BT062, an antibody-drug conjugate directed against CD138, given weekly for 3 weeks in each 4 week cycle: sfety and further evidence of clinical activity. Blood(ASH Annual Meeting Abstracts). 2012;120:Abstract 4042.
  • Kelly KR, Chanan-Khan A, Somlo G, et al. Indatuximab ravtansine (BT062) in combination with lenalidomide and low-dose dexamethasone in patients with relapsed and/or refractory multiple myeloma: clinical activity in len/dex-refractory patients. Blood (ASH Annual Meeting Abstracts). 2013;122:Abstract 758.
  • Kelly KR, Chanan-Khan A, Heffner LT, et al. Indatuximab ravtansine (BT062) in combination with lenalidomide and low-dose dexamethasone in patients with relapsed and/or refractory multiple myeloma: clinical activity in patients already exposed to lenalidomide and bortezomib [abstract]. Blood (ASH Annual Meeting Abstracts). 2014;124:Abstract 4736.
  • Sapra P, Stein R, Pickett JQ, et al. Anti-CD74 antibody-doxorubicin conjugate, IMMU-110, in a human multiple myeloma xenograft and in monkeys. Clin Cancer Res. 2005;11:5257–5264.
  • Stein R, Mattes MJ, Cardillo T, et al. CD74: a new candidate target for the immunotherapy of B-cell neoplasms. Clin Cancer Res. 2007;13:5556s–63s.
  • Kaufman JL, Niesvizky R, Stadtmauer EA, et al. Phase I, multicentre, dose-escalation trial of monotherapy with milatuzumab (humanized anti-CD74 monoclonal antibody) in relapsed or refractory multiple myeloma. Br J Haematol. 2013;163:478–486.
  • Davis RS. Fc receptor-like molecules. Annu Rev Immunol. 2007;25:525–560.
  • Elkins K, Zheng B, Go M, et al. FcRL5 as a target of antibody–drug conjugates for the treatment of multiplemyeloma. Mol Cancer Ther. 2012;11:2222–2232.
  • Tai Y-T, Mayes PA, Acharya C, et al. Novel afucosylated anti-B cell maturation antigen-monomethyl auristatin F antibody–drug conjugate (GSK2857916) induces potent and selective anti-multiple myeloma activity. Blood. 2014;123:3128–3138.
  • Lee L, Bounds D, Paterson J, et al. Evaluation of B cell maturation antigen as a target for antibody drug conjugate mediated cytotoxicity in multiple myeloma. Br J Haematol. 2016;174:911–922.
  • Sherbenou DW, Aftab BT, Su Y, et al. Antibody-drug conjugate targeting CD46 eliminates multiple myeloma cells. J Clin Invest. 2016;126:4640–4653.
  • Rodrigues T, Bernardes GJ. Antibody-drug conjugates: the missing link. Nat Chem. 2016;8:1088–1090.
  • Robak T. Emerging monoclonal antibodies and related agents for the treatment of chronic lymphocytic leukemia. Future Oncol. 2013;9:69–91.
  • Verma S, Miles D, Gianni L, et al. Trastuzumab emtansine for HER2‐positive advanced breast cancer. N Engl J Med. 2012;367:1783–1791.
  • Diamantis N, Banerji U. Antibody-drug conjugates - an emerging class of cancer treatment. Br J Cancer. 2016;114:362–367.
  • Lambert JM. Antibody-drug conjugates: targeted delivery and future prospects. Ther Deliv. 2016;7:279–282.
  • Thomas A, Teicher BA, Hassan R. Antibody-drug conjugates for cancer therapy. Lancet Oncol. 2016;17:e254–262.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.