743
Views
1
CrossRef citations to date
0
Altmetric
Review

Emerging reverse transcriptase inhibitors for HIV-1 infection

, &
Pages 149-157 | Received 18 Dec 2017, Accepted 04 May 2018, Published online: 10 May 2018

References

  • UNAIDS. FACT SHEET JULY 2017. [cited 2017 Dec 12]. Available from: http://www.unaids.org/sites/default/files/media_asset/UNAIDS_FactSheet_en.pdf
  • Dabis F, Bekker LG. We still need to beat HIV. Science. 2017;357:335–336.
  • Cousins S. Long term antiretroviral injection proves effective in trial. Bmj. 2017;358:j3577.
  • Deeks SG, Lewin SR, Bekker LG. The end of HIV: still a very long way to go, but progress continues. PLoS Med. 2017;14(11):e1002466.
  • Samji H, Cescon A, Hogg RS, et al. Closing the gap: increases in life expectancy among treated HIV-positive individuals in the United States and Canada. PLoS One. 2013;8(12):e81355.
  • Wada, N, Jacobson LP, Cohen M, et al. Cause-specific mortality among HIV-infected individuals, by CD4(+) cell count at HAART initiation, compared with HIV-uninfected individuals. AIDS. 2014;28(2):257–265.
  • Joint United Nations Programme on HIV/AIDS. 90–90–90 – an ambitious treatment target to help end the AIDS epidemic. http://www.unaids.org/en/resources/documents/2017/90-90-90.
  • Medley GF, Vassall A. When an emerging disease becomes endemic. Science. 2017;357(6347):156–158.
  • Palella FJ Jr., Delaney KM, Moorman AC, et al. Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. HIV outpatient study investigators. N Engl J Med. 1998;338(13):853–860.
  • Cihlar T, Ray AS. Nucleoside and nucleotide HIV reverse transcriptase inhibitors: 25 years after zidovudine. Antiviral Res. 2010;85(1):39–58.
  • Kakuda TN. Pharmacology of nucleoside and nucleotide reverse transcriptase inhibitor-induced mitochondrial toxicity. Clin Ther. 2000;22(6):685–708.
  • Grobler, JA, Dornadula G, Rice MR, et al. HIV-1 reverse transcriptase plus-strand initiation exhibits preferential sensitivity to non-nucleoside reverse transcriptase inhibitors in vitro. J Biol Chem. 2007;282(11):8005–8010.
  • Zdanowicz MM. The pharmacology of HIV drug resistance. Am J Pharm Educ. 2006;70(5):100.
  • Wilson D, Fraser N. Who pays and why? Costs, effectiveness, and feasibility of HIV treatment as prevention. Clin Infect Dis. 2014;59(Suppl 1):S28–S31.
  • Paredes R, Sagar M, Marconi VM, et al. In vivo fitness cost of the M184V mutation in multidrug-resistant human immunodeficiency virus type 1 in the absence of lamivudine. J Virol. 2011;83(4):2038–2043.
  • Este JA, Cihlar T. Current status and challenges of antiretroviral research and therapy. Antiviral Res. 2010;85(1):25–33.
  • Ortego, C, Huedo-Medina, T B, Llorca, J, et al. Adherence to highly active antiretroviral therapy (HAART): a meta-analysis. AIDS Behav. 2011;15(7):1381–1396.
  • Amico KR, Stirratt MJ. Adherence to preexposure prophylaxis: current, emerging, and anticipated bases of evidence. Clin Infect Dis. 2014;59(Suppl 1):S55–S60.
  • Gonzalez, JS, Batchelder AW, Psaros C, et al. Depression and HIV/AIDS treatment nonadherence: a review and meta-analysis. J Acquir Immune Defic Syndr. 2011;58(2):181–187.
  • Nachega JB, Parienti -J-J, Uthman OA, et al. Lower pill burden and once-daily antiretroviral treatment regimens for HIV infection: a meta-analysis of randomized controlled trials. Clin Infect Dis. 2014;58(9):1297–1307.
  • Broder S. The development of antiretroviral therapy and its impact on the HIV-1/AIDS pandemic. Antiviral Res. 2010;85(1):1–18.
  • Tang MW, Shafer RW. HIV-1 antiretroviral resistance: scientific principles and clinical applications. Drugs. 2012;72(9):e1–e25.
  • Gupta, RK, Gregson, J, Parkin, N, et al. HIV-1 drug resistance before initiation or re-initiation of first-line antiretroviral therapy in low-income and middle-income countries: a systematic review and meta-regression analysis. Lancet Infect Dis. 2018; 18(3):346-355.
  • Zimmermann, AE, Pizzoferrato, T, Bedford, J.et al. Tenofovir-associated acute and chronic kidney disease: a case of multiple drug interactions. Clin Infect Dis. 2006;42(2):283–290.
  • Lucas GM, Ross MJ, Stock PG, et al. Clinical practice guideline for the management of chronic kidney disease in patients infected with HIV: 2014 update by the HIV Medicine Association of the Infectious Diseases Society of America. Clin Infect Dis. 2014;59(9):e96–e138.
  • Yin MT, Overton ET. Increasing clarity on bone loss associated with antiretroviral initiation. J Infect Dis. 2011;203(12):1705–1707.
  • Huang, JS, Hughes MD, Riddler SA, et al. Bone mineral density effects of randomized regimen and nucleoside reverse transcriptase inhibitor selection from ACTG A5142. HIV Clin Trials. 2013;14(5):224–234.
  • Ruane PJ, DeJesus E, Berger D, et al. Antiviral activity, safety, and pharmacokinetics/pharmacodynamics of tenofovir alafenamide as 10-day monotherapy in HIV-1-positive adults. J Acquir Immune Defic Syndr. 2013;63(4):449–455.
  • Sax PE, Wohl D, Yin MT, et al. Tenofovir alafenamide versus tenofovir disoproxil fumarate, coformulated with elvitegravir, cobicistat, and emtricitabine, for initial treatment of HIV-1 infection: two randomised, double-blind, phase 3, non-inferiority trials. Lancet. 2015;385(9987):2606–2615.
  • Manfredi R, Calza L. HIV infection and the pancreas: risk factors and potential management guidelines. Int J STD AIDS. 2008;19(2):99–105.
  • Nelson M, Schiavone M. Emtricitabine (FTC) for the treatment of HIV infection. Int J Clin Pract. 2004;58(5):504–510.
  • Strategies for Management of Anti-Retroviral Therapy, I. and D.A.D.S. Groups. Use of nucleoside reverse transcriptase inhibitors and risk of myocardial infarction in HIV-infected patients. Aids. 2008;22(14):F17–F24.
  • Group, D.A.D.S., Sabin, CA, Worm, SW, et al. Use of nucleoside reverse transcriptase inhibitors and risk of myocardial infarction in HIV-infected patients enrolled in the D:A:D study: a multi-cohort collaboration. Lancet. 2008;371(9622):1417–1426.
  • Hachiya A, Kodama EN, Schuckmann MM, et al. K70Q adds high-level tenofovir resistance to “Q151M complex” HIV reverse transcriptase through the enhanced discrimination mechanism. PLoS One. 2011;6(1):e16242.
  • Sarafianos, SG, Das, K, Clark, A D, et al. Lamivudine (3TC) resistance in HIV-1 reverse transcriptase involves steric hindrance with beta-branched amino acids. Proc Natl Acad Sci U S A. 1999;96(18):10027–10032.
  • Marcelin AG. Resistance to nucleoside reverse transcriptase inhibitors. In: Geretti AM, editor. Antiretroviral resistance in clinical practice. Mediscript, London; 2006.
  • Asahchop, EL, Wainberg, MA, Sloan, RD, et al. Antiviral drug resistance and the need for development of new HIV-1 reverse transcriptase inhibitors. Antimicrob Agents Chemother. 2012;56(10):5000–5008.
  • Meyer, PR, Matsuura, SE, Mian, AM, et al. A mechanism of AZT resistance: an increase in nucleotide-dependent primer unblocking by mutant HIV-1 reverse transcriptase. Mol Cell. 1999;4(1):35–43.
  • Rihs TA, Begley K, Smith DE, et al. Efavirenz and chronic neuropsychiatric symptoms: a cross-sectional case control study. HIV Med. 2006;7(8):544–548.
  • Mollan KR, Smurzynski M, Eron JJ, et al. Association between efavirenz as initial therapy for HIV-1 infection and increased risk for suicidal ideation or attempted or completed suicide: an analysis of trial data. Ann Intern Med. 2014;161(1):1–10.
  • Leutscher, PD, Stecher, C, Storgaard, M, et al. Discontinuation of efavirenz therapy in HIV patients due to neuropsychiatric adverse effects. Scand J Infect Dis. 2013;45(8):645–651.
  • Gunthard HF, Saag MS, Benson CA, et al. Antiretroviral drugs for treatment and prevention of HIV infection in adults: 2016 recommendations of the International Antiviral Society-USA Panel. JAMA. 2016;316(2):191–210.
  • Dodi, F, Alessandrini, A, Camera, M, et al. Stevens-Johnson syndrome in HIV patients treated with nevirapine: two case reports. AIDS. 2002;16(8):1197–1198.
  • Sanne I, Mommeja-Marin H, Hinkle J, et al. Severe hepatotoxicity associated with nevirapine use in HIV-infected subjects. J Infect Dis. 2005;191(6):825–829.
  • Cohen C, Wohl D, Arribas JR, et al. Week 48 results from a randomized clinical trial of rilpivirine/emtricitabine/tenofovir disoproxil fumarate vs. efavirenz/emtricitabine/tenofovir disoproxil fumarate in treatment-naive HIV-1-infected adults. Aids. 2014;28(7):989–997.
  • Das, K, Sarafianos, SG, Clark, AD, et al. Crystal structures of clinically relevant Lys103Asn/Tyr181Cys double mutant HIV-1 reverse transcriptase in complexes with ATP and non-nucleoside inhibitor HBY 097. J Mol Biol. 2007;365(1):77–89.
  • Hsiou Y, Ding J, Das K, et al. The Lys103Asn mutation of HIV-1 RT: a novel mechanism of drug resistance. J Mol Biol. 2001;309(2):437–445.
  • Ren J, Nichols C, Bird L, et al. Structural mechanisms of drug resistance for mutations at codons 181 and 188 in HIV-1 reverse transcriptase and the improved resilience of second generation non-nucleoside inhibitors. J Mol Biol. 2001;312(4):795–805.
  • Das K, Ding J, Hsiou Y, et al. Crystal structures of 8-Cl and 9-Cl TIBO complexed with wild-type HIV-1 RT and 8-Cl TIBO complexed with the Tyr181Cys HIV-1 RT drug-resistant mutant. J Mol Biol. 1996;264(5):1085–1100.
  • Rusconi S, Marcotullio S, Cingolani A. Long-acting agents for HIV infection: biological aspects, role in treatment and prevention, and patient’s perspective. New Microbiol. 2017;40(2):75–79.
  • Nyaku AN, Kelly SG, Taiwo BO. Long-acting antiretrovirals: where are we now? Curr HIV/AIDS Rep. 2017;14(2):63–71.
  • Whitfield T, Torkington A, van Halsema C. Profile of cabotegravir and its potential in the treatment and prevention of HIV-1 infection: evidence to date. HIV AIDS (Auckl). 2016;8:157–164.
  • Williams PE, Crauwels HM, Basstanie ED. Formulation and pharmacology of long-acting rilpivirine. Curr Opin HIV AIDS. 2015;10(4):233–238.
  • Nel, A, Haazen W, Nuttall J, et al. A safety and pharmacokinetic trial assessing delivery of dapivirine from a vaginal ring in healthy women. AIDS. 2014;28(10):1479–1487.
  • Gunawardana, M, Remedios-Chan M, Miller CS, et al. Pharmacokinetics of long-acting tenofovir alafenamide (GS-7340) subdermal implant for HIV prophylaxis. Antimicrob Agents Chemother. 2015;59(7):3913–3919.
  • Cortez, JM, Jr., Quintero R, Moss JA, et al. Pharmacokinetics of injectable, long-acting nevirapine for HIV prophylaxis in breastfeeding infants. Antimicrob Agents Chemother. 2015;59(1):59–66.
  • Puligujja P, Balkundi SS, Kendrick LM, et al. Pharmacodynamics of long-acting folic acid-receptor targeted ritonavir-boosted atazanavir nanoformulations. Biomaterials. 2015;41:141–150.
  • Group, M.K.D.W.Y.S.J.D.Z.L.T.M.S.Z.M.S.M.C.f.t.C.W. HIV-1 combinectin BMS-986197: a long-acting inhibitor with multiple modes of action. Boston: in CROI 2016; 2016
  • Margolis DA, Gonzalez-Garcia J, Stellbrink H-J, et al. Long-acting intramuscular cabotegravir and rilpivirine in adults with HIV-1 infection (LATTE-2): 96-week results of a randomised, open-label, phase 2b, non-inferiority trial. Lancet. 2017;390(10101):1499–1510.
  • Mackman RL, Ray AS, Hui HC, et al. Discovery of GS-9131: design, synthesis and optimization of amidate prodrugs of the novel nucleoside phosphonate HIV reverse transcriptase (RT) inhibitor GS-9148. Bioorg Med Chem. 2010;18(10):3606–3617.
  • Cihlar T, Ray AS, Boojamra CG, et al. Design and profiling of GS-9148, a novel nucleotide analog active against nucleoside-resistant variants of human immunodeficiency virus type 1, and its orally bioavailable phosphonoamidate prodrug, GS-9131. Antimicrob Agents Chemother. 2008;52(2):655–665.
  • Ray AS, Vela JE, Boojamra CG, et al. Intracellular metabolism of the nucleotide prodrug GS-9131, a potent anti-human immunodeficiency virus agent. Antimicrob Agents Chemother. 2008;52(2):648–654.
  • Boojamra CG, Mackman RL, Markevitch DY, et al. Synthesis and anti-HIV activity of GS-9148 (2ʹ-Fd4AP), a novel nucleoside phosphonate HIV reverse transcriptase inhibitor. Bioorg Med Chem Lett. 2008;18(3):1120–1123.
  • White KL, Kirsten Stray NM, Helen Y, et al. GS-9131 IS a novel NRTI with activity against NRTI-resistant HIV-1. Seattle, Washington: in CROI; 2017
  • Cihlar, T, Laflamme G, Fisher R, et al. Novel nucleotide human immunodeficiency virus reverse transcriptase inhibitor GS-9148 with a low nephrotoxic potential: characterization of renal transport and accumulation. Antimicrob Agents Chemother. 2009;53(1):150–156.
  • Scarth BJ, White KL, Chen JM, et al. Mechanism of resistance to GS-9148 conferred by the Q151L mutation in HIV-1 reverse transcriptase. Antimicrob Agents Chemother. 2011;55(6):2662–2669.
  • Wu VH, Smith RA, Masoum S, et al. MK-8591 (4ʹ-Ethynyl-2-Fluoro-2ʹ-Deoxyadenosine) exhibits potent activity against HIV-2 isolates and drug-resistant HIV-2 mutants in culture. Antimicrob Agents Chemother. 2017;61(8).
  • Ohrui H. 2ʹ-deoxy-4ʹ-C-ethynyl-2-fluoroadenosine, a nucleoside reverse transcriptase inhibitor, is highly potent against all human immunodeficiency viruses type 1 and has low toxicity. Chem Rec. 2006;6(3):133–143.
  • Ohrui, H, Kohgo S, Hayakawa H, et al. 2ʹ-Deoxy-4ʹ-C-ethynyl-2-fluoroadenosine: a nucleoside reverse transcriptase inhibitor with highly potent activity against all HIV-1 strains, favorable toxic profiles and stability in plasma. Nucleic Acids Symp Ser (Oxf). 2006;(50):1–2.
  • Kawamoto A, Kodama E, Sarafianos SG, et al. 2ʹ-deoxy-4ʹ-C-ethynyl-2-halo-adenosines active against drug-resistant human immunodeficiency virus type 1 variants. Int J Biochem Cell Biol. 2008;40(11):2410–2420.
  • Michailidis E, Berry N, Ferguson D, et al. Hypersusceptibility mechanism of tenofovir-resistant HIV to EFdA. Retrovirology. 2013;10:65.
  • Stoddart CA, Galkina SA, Joshi P, et al. Oral administration of the nucleoside EFdA (4ʹ-ethynyl-2-fluoro-2ʹ-deoxyadenosine) provides rapid suppression of HIV viremia in humanized mice and favorable pharmacokinetic properties in mice and the rhesus macaque. Antimicrob Agents Chemother. 2015;59(7):4190–4198.
  • HIV Early Development Team, E.F.D.S.D.J.R.S.F.-B.S.Z.M.R.A.H.D.J.H.M.I.J.G.f.t., A single monotherapy dose of MK-8591, a novel NRTI, Suppresses HIV for 10 days. Boston: in CROI 2016; 2016
  • Matthews RP, S D, Rudd DJ, et al. Grobler on behalf of the HIV Early Development Team. Single doses as low as 0.5 mg of the novel NRTTI MK-8591 suppress HIV for at least seven days. Paris: in IAS 2017; 2017.
  • Mathews RP, Rudd DJ, Levine V et al. Multiple daily doses of MK-8591 as low as 0.25 mg are expected to suppress HIV. 25th Conference on Retroviruses and Opportunistic Infections; Boston MA; 2018. Abstract 26.
  • Hazuda; for the MK-8591 Early Development Team, J.G.E.F.S.E.B.S.L.W.W.A.K.L.F.M.-T.L.M.G.M.I.D.J. Long-acting oral and parenteral dosing of MK-8591 for HIV treatment or prophylaxis. Boston: in CROI 2016; 2016.
  • Markowitz M, G A, St. Bernard L, et al. Weekly oral MK-8591 protects male rhesus macaques against repeated low dose intrarectal challenge with SHIV109CP3. Paris: in IAS 2017; 2017.
  • Ratanasuwan W, W P, Koryakova A, et al. Pharmacokinetics of VM-1500 20 mg and 40 mg in healthy and HIV-infected patients. Melbourne, Australia: in International AIDS Conference (AIDS); 2014.
  • Ratanasuwan W, W P, Murphy RL, et al. A randomized, placebo-controlled, double-blind study of VM-1500 in HIV-naive patients. in Conference on Retroviruses and Opportunistic Infections (CROI); Boston; 2014.
  • Robert Murphy AVK, Orlova-Morozova E, Nagimova F, et al. Elsulfavirine as compared to efavirenz in combination with tdf/ftc: 48-week study. Seattle: in CROI 2017.; 2017.
  • Al-Salama ZT. Elsulfavirine: first global approval. Drugs. 2017;77(16):1811-1816.
  • Lai MT, Feng M, Falgueyret J-P, et al. In vitro characterization of MK-1439, a novel HIV-1 nonnucleoside reverse transcriptase inhibitor. Antimicrob Agents Chemother. 2014;58(3):1652–1663.
  • Cote, B, Burch Jd, Asante-Appiah E, et al. Discovery of MK-1439, an orally bioavailable non-nucleoside reverse transcriptase inhibitor potent against a wide range of resistant mutant HIV viruses. Bioorg Med Chem Lett. 2014;24(3):917–922.
  • Gatell JM, Morales-Ramirez JO, Hagins DP, et al. Forty-eight-week efficacy and safety and early CNS tolerability of doravirine (MK-1439), a novel NNRTI, with TDF/FTC in ART-naive HIV-positive patients. J Int AIDS Soc. 2014;17(4 Suppl 3):19532.
  • Schurmann D, Sobotha C, Gilmartin J, et al. A randomized, double-blind, placebo-controlled, short-term monotherapy study of doravirine in treatment-naive HIV-infected individuals. AIDS. 2016;30(1):57–63.
  • Khalilieh, S, et al. Results of a doravirine-atorvastatin drug-drug interaction study. Antimicrob Agents Chemother. 2017;61(2):pii: e01364-16. doi: 10.1128/AAC.01364-16.
  • Khalilieh S, Yee KL, Liu R, et al. Moderate hepatic impairment does not affect doravirine pharmacokinetics. J Clin Pharmacol. 2017;57(6):777–783.
  • Behm, MO, Yee KL, Liu R, et al. The effect of food on doravirine bioavailability: results from two pharmacokinetic studies in healthy subjects. Clin Drug Investig. 2017;37(6):571–579.
  • Squires KE, J MM, Sax PE, et al., for the DRIVE-AHEAD Study Group. Fixed dose combination of doravirine/lamivudine/TDF is non-inferior to efavirenz/emtricitabine/TDF in treatment-naïve adults with HIV-1 infection: week 48 results of the Phase 3 DRIVE-AHEAD study. Paris: in IAS 2017; 2017.
  • Ross EL, Weinstein MC, Schackman BR, et al. The clinical role and cost-effectiveness of long-acting antiretroviral therapy. Clin Infect Dis. 2015;60(7):1102–1110.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.