421
Views
7
CrossRef citations to date
0
Altmetric
Review

Emerging drugs for the treatment of epidermolysis bullosa

, , , &
Pages 467-489 | Received 24 Jul 2020, Accepted 15 Oct 2020, Published online: 14 Dec 2020

References

  • Has C, Bauer JW, Bodemer C, et al. Consensus reclassification of inherited epidermolysis bullosa and other disorders with skin fragility. Br J Dermatol. 2020 Feb 4. DOI:10.1111/bjd.18921
  • Uitto J, Bruckner-Tuderman L, McGrath JA, et al. EB2017-progress in epidermolysis bullosa research toward treatment and cure. J Invest Dermatol. 2018 May;138(5):1010–1016.
  • Fine JD, Bruckner-Tuderman L, Eady RA, et al. Inherited epidermolysis bullosa: updated recommendations on diagnosis and classification. J Am Acad Dermatol. 2014 Jun;70(6):1103–1126.
  • Fine JD. Epidemiology of inherited epidermolysis bullosa based on incidence and prevalence estimates from the national epidermolysis bullosa registry. JAMA Dermatol. 2016 Nov 1;152(11):1231–1238.
  • Bolling MC, Lemmink HH, Jansen GH, et al. Mutations in KRT5 and KRT14 cause epidermolysis bullosa simplex in 75% of the patients. Br J Dermatol. 2011 Mar;164(3):637–644.
  • Coulombe PA, Kerns ML, Fuchs E. Epidermolysis bullosa simplex: a paradigm for disorders of tissue fragility. J Clin Invest. 2009 Jul;119(7):1784–1793.
  • Titeux M, Decha A, Pironon N, et al. A new case of keratin 14 functional knockout causes severe recessive EBS and questions the haploinsufficiency model of Naegeli-Franceschetti-Jadassohn syndrome. J Invest Dermatol. 2011 Oct;131(10):2131–2133.
  • Tryon RK, Tolar J, Preusser SM, et al. A homozygous frameshift variant in the KRT5 gene is compatible with life and results in severe recessive epidermolysis bullosa simplex. JAAD Case Rep. 2019 Jul;5(7):576–579.
  • Vahidnezhad H, Youssefian L, Daneshpazhooh M, et al. Biallelic KRT5 mutations in autosomal recessive epidermolysis bullosa simplex, including a complete human keratin 5 “knock-out”. Matrix Biol. 2019 Oct;83:48–59.
  • Almaani N, Liu L, Dopping-Hepenstal PJ, et al. Autosomal dominant junctional epidermolysis bullosa. Br J Dermatol. 2009 May;160(5):1094–1097.
  • Fine JD, Eady RA, Bauer EA, et al. The classification of inherited epidermolysis bullosa (EB): report of the third international consensus meeting on diagnosis and classification of EB. J Am Acad Dermatol. 2008 Jun;58(6):931–950.
  • Bruckner-Tuderman L, Has C. Disorders of the cutaneous basement membrane zone–the paradigm of epidermolysis bullosa. Matrix Biol. 2014 Jan;33:29–34.
  • Fine J-D, Johnson LB, Weiner M, et al. Epidermolysis bullosa and the risk of life-threatening cancers: the national EB registry experience, 1986-2006. J Am Acad Dermatol. 2009 Feb;60(2):203–211.
  • Cho RJ, Alexandrov LB, den Breems NY, et al. APOBEC mutation drives early-onset squamous cell carcinomas in recessive dystrophic epidermolysis bullosa. Sci Transl Med. 2018 Aug 22;10(455). DOI:10.1126/scitranslmed.aas9668
  • Snauwaert JJ, Yuen WY, Jonkman MF, et al. Burden of itch in epidermolysis bullosa. Br J Dermatol. 2014 Jul;171(1):73–78.
  • Fine JD, Mellerio JE. Extracutaneous manifestations and complications of inherited epidermolysis bullosa: part I. Epithelial associated tissues. J Am Acad Dermatol. 2009 Sept;61(3):367–84; quiz 85–6.
  • Fine JD, Mellerio JE. Extracutaneous manifestations and complications of inherited epidermolysis bullosa: part II. Other organs. J Am Acad Dermatol. 2009 Sept;61(3):387–402; quiz 03–4.
  • Pope E, Lara-Corrales I, Mellerio J, et al. A consensus approach to wound care in epidermolysis bullosa. J Am Acad Dermatol. 2012 Nov;67(5):904–917.
  • Denyer J, Pillay E, Clapham J. Best practice guidelines for skin and wound care in epidermolysis bullosa. An international consensus. Wounds Int. 2017.
  • Salera S, Tadini G, Rossetti D, et al. A nutrition-based approach to epidermolysis bullosa: causes, assessments, requirements and management. Clin Nutr. 2020 Feb;39(2):343–352.
  • Nystrom A, Bornert O, Kuhl T, et al. Impaired lymphoid extracellular matrix impedes antibacterial immunity in epidermolysis bullosa. Proc Natl Acad Sci U S A. 2018 Jan 23;115(4):E705–E14.
  • Schrader NHB, Duipmans JC, Molenbuur B, et al. Combined tetrahydrocannabinol and cannabidiol to treat pain in epidermolysis bullosa: a report of three cases. Br J Dermatol. 2019 Apr;180(4):922–924.
  • Fine JD, Hall M, Weiner M, et al. The risk of cardiomyopathy in inherited epidermolysis bullosa. Br J Dermatol. 2008 Sept;159(3):677–682.
  • Angelis A, Kanavos P, Lopez-Bastida J, et al. Social/economic costs and health-related quality of life in patients with epidermolysis bullosa in Europe. Eur J Health Econ. 2016 Apr;17(Suppl 1):31–42.
  • Flannery D, Doyle C, Hickey S, et al. Direct costs of epidermolysis bullosa by disease severity. Acta Derm Venereol. 2020 Apr 21;100(8):adv00116.
  • Fine JD, Johnson LB, Weiner M, et al. Impact of inherited epidermolysis bullosa on parental interpersonal relationships, marital status and family size. Br J Dermatol. 2005 May;152(5):1009–1014.
  • Bruckner-Tuderman L. Newer treatment modalities in epidermolysis bullosa. Indian Dermatol Online J. 2019 May–June;10(3):244–250.
  • Has C, South A, Uitto J. Molecular therapeutics in development for epidermolysis bullosa: update 2020. Mol Diagn Ther. 2020 Apr 23. DOI:10.1007/s40291-020-00466-7
  • Prodinger C, Reichelt J, Bauer JW, et al. Epidermolysis bullosa: advances in research and treatment. Exp Dermatol. 2019 Oct;28(10):1176–1189.
  • Bushman FD. Retroviral insertional mutagenesis in humans: evidence for four genetic mechanisms promoting expansion of cell clones. Mol Ther. 2020 Feb 5;28(2):352–356.
  • Goins WF, Huang S, Hall B, et al. Engineering HSV-1 Vectors for Gene Therapy. Methods Mol Biol. 2020;2060:73–90.
  • Fraefel C, Epstein AL. Preparation of herpes simplex virus type 1 (HSV-1)-based amplicon vectors. Methods Mol Biol. 2020;2060:91–109.
  • Dellambra E, Vailly J, Pellegrini G, et al. Corrective transduction of human epidermal stem cells in laminin-5-dependent junctional epidermolysis bullosa. Hum Gene Ther. 1998 Jun 10;9(9):1359–1370.
  • Vailly J, Gagnoux-Palacios L, Dell’Ambra E, et al. Corrective gene transfer of keratinocytes from patients with junctional epidermolysis bullosa restores assembly of hemidesmosomes in reconstructed epithelia. Gene Ther. 1998 Oct;5(10):1322–1332.
  • Robbins PB, Lin Q, Goodnough JB, et al. In vivo restoration of laminin 5 beta 3 expression and function in junctional epidermolysis bullosa. Proc Natl Acad Sci U S A. 2001 Apr 24;98(9):5193–5198.
  • Seitz CS, Giudice GJ, Balding SD, et al. BP180 gene delivery in junctional epidermolysis bullosa. Gene Ther. 1999 Jan;6(1):42–47.
  • Chen M, Kasahara N, Keene DR, et al. Restoration of type VII collagen expression and function in dystrophic epidermolysis bullosa. Nat Genet. 2002 Dec;32(4):670–675.
  • Woodley DT, Krueger GG, Jorgensen CM, et al. Normal and gene-corrected dystrophic epidermolysis bullosa fibroblasts alone can produce type VII collagen at the basement membrane zone. J Invest Dermatol. 2003 Nov;121(5):1021–1028.
  • Goto M, Sawamura D, Ito K, et al. Fibroblasts show more potential as target cells than keratinocytes in COL7A1 gene therapy of dystrophic epidermolysis bullosa. J Invest Dermatol. 2006 Apr;126(4):766–772.
  • Siprashvili Z, Nguyen NT, Bezchinsky MY, et al. Long-term type VII collagen restoration to human epidermolysis bullosa skin tissue. Hum Gene Ther. 2010 Oct;21(10):1299–1310.
  • Titeux M, Pendaries V, Zanta-Boussif MA, et al. SIN retroviral vectors expressing COL7A1 under human promoters for ex vivo gene therapy of recessive dystrophic epidermolysis bullosa. Mol Ther. 2010 Aug;18(8):1509–1518.
  • Jinek M, Jiang F, Taylor DW, et al. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science. 2014 Mar 14;343(6176):1247997.
  • Gupta RM, Musunuru K. Expanding the genetic editing tool kit: ZFNs, TALENs, and CRISPR-Cas9. J Clin Invest. 2014 Oct;124(10):4154–4161.
  • March OP, Kocher T, Koller U. Context-Dependent Strategies for Enhanced Genome Editing of Genodermatoses. Cells. 2020 Jan 2;9(1). DOI:10.3390/cells9010112
  • Hainzl S, Peking P, Kocher T, et al. COL7A1 Editing via CRISPR/Cas9 in Recessive Dystrophic Epidermolysis Bullosa. Mol Ther. 2017 Nov 1;25(11):2573–2584.
  • Izmiryan A, Ganier C, Bovolenta M, et al. Ex vivo COL7A1 correction for recessive dystrophic epidermolysis bullosa using CRISPR/Cas9 and homology-directed repair. Mol Ther Nucleic Acids. 2018 Sept 7;12:554–567.
  • Bonafont J, Mencia A, Garcia M, et al. Clinically relevant correction of recessive dystrophic epidermolysis bullosa by dual sgRNA CRISPR/Cas9-Mediated gene editing. Mol Ther. 2019 May 8;27(5):986–998.
  • Mencia A, Chamorro C, Bonafont J, et al. Deletion of a pathogenic mutation-containing exon of COL7A1 allows clonal gene editing correction of RDEB patient epidermal stem cells. Mol Ther Nucleic Acids. 2018 Jun 1;11:68–78.
  • Takashima S, Shinkuma S, Fujita Y, et al. Efficient gene reframing therapy for recessive dystrophic epidermolysis bullosa with CRISPR/Cas9. J Invest Dermatol. 2019 Aug;139(8):1711–21 e4.
  • Kocher T, Wagner RN, Klausegger A, et al. Improved double-nicking strategies for COL7A1-editing by homologous recombination. Mol Ther Nucleic Acids. 2019 Dec 6;18:496–507.
  • Komor AC, Kim YB, Packer MS, et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. 2016 May 19;533(7603):420–424.
  • Tan J, Zhang F, Karcher D, et al. Engineering of high-precision base editors for site-specific single nucleotide replacement. Nat Commun. 2019 Jan 25;10(1):439.
  • Osborn MJ, Newby GA, McElroy AN, et al. Base editor Correction of COL7A1 in recessive dystrophic epidermolysis bullosa patient-derived fibroblasts and iPSCs. J Invest Dermatol. 2020 Feb;140(2):338–47 e5.
  • Jackow J, Guo Z, Hansen C, et al. CRISPR/Cas9-based targeted genome editing for correction of recessive dystrophic epidermolysis bullosa using iPS cells. Proc Natl Acad Sci U S A. 2019 Dec 9. DOI:10.1073/pnas.1907081116
  • Sebastiano V, Zhen HH, Haddad B, et al. Human COL7A1-corrected induced pluripotent stem cells for the treatment of recessive dystrophic epidermolysis bullosa. Sci Transl Med. 2014 Nov 26;6(264):264ra163.
  • Webber BR, Osborn MJ, McElroy AN, et al. CRISPR/Cas9-based genetic correction for recessive dystrophic epidermolysis bullosa. NPJ Regen Med. 2016;1. DOI:10.1038/npjregenmed.2016.14
  • Kogut I, McCarthy SM, Pavlova M, et al. High-efficiency RNA-based reprogramming of human primary fibroblasts. Nat Commun. 2018 Feb 21;9(1):745.
  • Kocher T, Peking P, Klausegger A, et al. Cut and paste: efficient homology-directed repair of a dominant negative KRT14 mutation via CRISPR/Cas9 nickases. Mol Ther. 2017 Nov 1;25(11):2585–2598.
  • Benati D, Miselli F, Cocchiarella F, et al. CRISPR/Cas9-mediated in situ correction of LAMB3 gene in keratinocytes derived from a junctional epidermolysis bullosa patient. Mol Ther. 2018 Nov 7;26(11):2592–2603.
  • Goto M, Sawamura D, Nishie W, et al. Targeted skipping of a single exon harboring a premature termination codon mutation: implications and potential for gene correction therapy for selective dystrophic epidermolysis bullosa patients. J Invest Dermatol. 2006 Dec;126(12):2614–2620.
  • Turczynski S, Titeux M, Tonasso L, et al. Targeted exon skipping restores type VII collagen expression and anchoring fibril formation in an in vivo RDEB model. J Invest Dermatol. 2016 Dec;136(12):2387–2395.
  • Bremer J, Bornert O, Nystrom A, et al. Antisense oligonucleotide-mediated exon skipping as a systemic therapeutic approach for recessive dystrophic epidermolysis bullosa. Mol Ther Nucleic Acids. 2016 Oct 18;5(10):e379.
  • Bauer JW, Murauer EM, Wally V, et al. RNA trans-splicing for genodermatoses. Methods Mol Biol. 2013;961:441–455.
  • Peking P, Koller U, Murauer EM. Functional therapies for cutaneous wound repair in epidermolysis bullosa. Adv Drug Deliv Rev. 2018 Apr;129:330–343.
  • Pendaries V, Gasc G, Titeux M, et al. siRNA-mediated allele-specific inhibition of mutant type VII collagen in dominant dystrophic epidermolysis bullosa. J Invest Dermatol. 2012 Jun;132(6):1741–1743.
  • Woodley DT, Keene DR, Atha T, et al. Injection of recombinant human type VII collagen restores collagen function in dystrophic epidermolysis bullosa. Nat Med. 2004 Jul;10(7):693–695.
  • Chen M, Costa FK, Lindvay CR, et al. The recombinant expression of full-length type VII collagen and characterization of molecular mechanisms underlying dystrophic epidermolysis bullosa. J Biol Chem. 2002 Jan 18;277(3):2118–2124.
  • Remington J, Wang X, Hou Y, et al. Injection of recombinant human type VII collagen corrects the disease phenotype in a murine model of dystrophic epidermolysis bullosa. Mol Ther. 2009 Jan;17(1):26–33.
  • Woodley DT, Wang X, Amir M, et al. Intravenously injected recombinant human type VII collagen homes to skin wounds and restores skin integrity of dystrophic epidermolysis bullosa. J Invest Dermatol. 2013 Jul;133(7):1910–1913.
  • Aikawa E, Fujita R, Kikuchi Y, et al. Systemic high-mobility group box 1 administration suppresses skin inflammation by inducing an accumulation of PDGFRalpha(+) mesenchymal cells from bone marrow. Sci Rep. 2015 Jun 5;5:11008.
  • Tamai K, Yamazaki T, Chino T, et al. PDGFRalpha-positive cells in bone marrow are mobilized by high mobility group box 1 (HMGB1) to regenerate injured epithelia. Proc Natl Acad Sci U S A. 2011 Apr 19;108(16):6609–6614.
  • Cappellesso-Fleury S, Puissant-Lubrano B, Apoil PA, et al. Human fibroblasts share immunosuppressive properties with bone marrow mesenchymal stem cells. J Clin Immunol. 2010 Jul;30(4):607–619.
  • Haniffa MA, Wang XN, Holtick U, et al. Adult human fibroblasts are potent immunoregulatory cells and functionally equivalent to mesenchymal stem cells. J Immunol. 2007 Aug. 1;179(3):1595–1604.
  • Fritsch A, Loeckermann S, Kern JS, et al. A hypomorphic mouse model of dystrophic epidermolysis bullosa reveals mechanisms of disease and response to fibroblast therapy. J Clin Invest. 2008 May;118(5):1669–1679.
  • Kern JS, Loeckermann S, Fritsch A, et al. Mechanisms of fibroblast cell therapy for dystrophic epidermolysis bullosa: high stability of collagen VII favors long-term skin integrity. Mol Ther. 2009 Sept;17(9):1605–1615.
  • Ortiz-Urda S, Lin Q, Green CL, et al. Injection of genetically engineered fibroblasts corrects regenerated human epidermolysis bullosa skin tissue. J Clin Invest. 2003 Jan;111(2):251–255.
  • Georgiadis C, Syed F, Petrova A, et al. Lentiviral engineered fibroblasts expressing codon-optimized COL7A1 restore anchoring fibrils in RDEB. J Invest Dermatol. 2016 Jan;136(1):284–292.
  • Jackow J, Titeux M, Portier S, et al. Gene-corrected fibroblast therapy for recessive dystrophic epidermolysis bullosa using a self-inactivating COL7A1 Retroviral vector. J Invest Dermatol. 2016 Jul;136(7):1346–1354.
  • Chino T, Tamai K, Yamazaki T, et al. Bone marrow cell transfer into fetal circulation can ameliorate genetic skin diseases by providing fibroblasts to the skin and inducing immune tolerance. Am J Pathol. 2008 Sept;173(3):803–814.
  • Tolar J, Ishida-Yamamoto A, Riddle M, et al. Amelioration of epidermolysis bullosa by transfer of wild-type bone marrow cells. Blood. 2009 Jan 29;113(5):1167–1174.
  • Kuhl T, Mezger M, Hausser I, et al. High local concentrations of intradermal MSCs restore skin integrity and facilitate wound healing in dystrophic epidermolysis bullosa. Mol Ther. 2015 Aug;23(8):1368–1379.
  • Ganier C, Titeux M, Gaucher S, et al. Intradermal injection of bone marrow mesenchymal stromal cells corrects recessive dystrophic epidermolysis bullosa in a xenograft model. J Invest Dermatol. 2018 Nov;138(11):2483–2486.
  • Petrova A, Georgiadis C, Fleck RA, et al. Human mesenchymal stromal cells engineered to express collagen VII can restore anchoring fibrils in recessive dystrophic epidermolysis bullosa skin graft chimeras. J Invest Dermatol. 2020 Jan;140(1):121–31 e6.
  • Webber BR, O’Connor KT, McElmurry RT, et al. Rapid generation of Col7a1(-/-) mouse model of recessive dystrophic epidermolysis bullosa and partial rescue via immunosuppressive dermal mesenchymal stem cells. Lab Invest. 2017 Oct;97(10):1218–1224.
  • Phinney DG, Pittenger MF. Concise review: MSC-derived exosomes for cell-free therapy. Stem Cells. 2017 Apr;35(4):851–858.
  • Fujita Y, Komatsu M, Lee SE, et al. Intravenous injection of muse cells as a potential therapeutic approach for epidermolysis bullosa. J Invest Dermatol. 2020 Jun 12. DOI:10.1016/j.jid.2020.05.092
  • Jonkman MF, Scheffer H, Stulp R, et al. Revertant mosaicism in epidermolysis bullosa caused by mitotic gene conversion. .Cell. 1997 Feb 21;88(4):543–551.
  • Kiritsi D, He Y, Pasmooij AM, et al. Revertant mosaicism in a human skin fragility disorder results from slipped mispairing and mitotic recombination. J Clin Invest. 2012 May;122(5):1742–1746.
  • Pasmooij AM, Jonkman MF, Uitto J. Revertant mosaicism in heritable skin diseases: mechanisms of natural gene therapy. Discov Med. 2012 Sept;14(76):167–179.
  • Twaroski K, Eide C, Riddle MJ, et al. Revertant mosaic fibroblasts in recessive dystrophic epidermolysis bullosa. Br J Dermatol. 2019 Dec;181(6):1247–1253.
  • Wally V, Kitzmueller S, Lagler F, et al. Topical diacerein for epidermolysis bullosa: a randomized controlled pilot study. Orphanet J Rare Dis. 2013 May;7(8):69.
  • Kuttner V, Mack C, Rigbolt KT, et al. Global remodelling of cellular microenvironment due to loss of collagen VII. Mol Syst Biol. 2013 Apr;16(9):657.
  • Ng YH, Zhu H, Leung PC. Twist modulates human trophoblastic cell invasion via regulation of N-cadherin. Endocrinology. 2012 Feb;153(2):925–936.
  • Nystrom A, Velati D, Mittapalli VR, et al. Collagen VII plays a dual role in wound healing. J Clin Invest. 2013 Aug;123(8):3498–3509.
  • Odorisio T, Di Salvio M, Orecchia A, et al. Monozygotic twins discordant for recessive dystrophic epidermolysis bullosa phenotype highlight the role of TGF-beta signalling in modifying disease severity. Hum Mol Genet. 2014 Aug 1;23(15):3907–3922.
  • Nystrom A, Thriene K, Mittapalli V, et al. Losartan ameliorates dystrophic epidermolysis bullosa and uncovers new disease mechanisms. EMBO Mol Med. 2015 Sept;7(9):1211–1228.
  • Cogan J, Weinstein J, Wang X, et al. Aminoglycosides restore full-length type VII collagen by overcoming premature termination codons: therapeutic implications for dystrophic epidermolysis bullosa. Mol Ther. 2014 Oct;22(10):1741–1752.
  • Lincoln V, Cogan J, Hou Y, et al. Gentamicin induces LAMB3 nonsense mutation readthrough and restores functional laminin 332 in junctional epidermolysis bullosa. Proc Natl Acad Sci U S A. 2018 Jul 10;115(28):E6536–E45.
  • Atanasova VS, Jiang Q, Prisco M, et al. Amlexanox enhances premature termination codon read-through in COL7A1 and expression of full length type VII collagen: potential therapy for recessive dystrophic epidermolysis bullosa. J Invest Dermatol. 2017 Sept;137(9):1842–1849.
  • Gonzalez-Hilarion S, Beghyn T, Jia J, et al. Rescue of nonsense mutations by amlexanox in human cells. Orphanet J Rare Dis. 2012 Aug;31(7):58.
  • Chamcheu JC, Navsaria H, Pihl-Lundin I, et al. Chemical chaperones protect epidermolysis bullosa simplex keratinocytes from heat stress-induced keratin aggregation: involvement of heat shock proteins and MAP kinases. J Invest Dermatol. 2011 Aug;131(8):1684–1691.
  • Sporrer M, Prochnicki A, Tolle RC, et al. Treatment of keratinocytes with 4-phenylbutyrate in epidermolysis bullosa: lessons for therapies in keratin disorders. EBioMedicine. 2019 Jun;44:502–515.
  • Mellerio JE, Robertson SJ, Bernardis C, et al. Management of cutaneous squamous cell carcinoma in patients with epidermolysis bullosa: best clinical practice guidelines. Br J Dermatol. 2016 Jan;174(1):56–67.
  • Mittapalli VR, Kuhl T, Kuzet SE, et al. STAT3 targeting in dystrophic epidermolysis bullosa. Br J Dermatol. 2020 May;182(5):1279–1281.
  • Atanasova VS, Pourreyron C, Farshchian M, et al. Identification of rigosertib for the treatment of recessive dystrophic epidermolysis bullosa-associated squamous cell carcinoma. Clin Cancer Res. 2019 Jun 1;25(11):3384–3391.
  • Mavilio F, Pellegrini G, Ferrari S, et al. Correction of junctional epidermolysis bullosa by transplantation of genetically modified epidermal stem cells. Nat Med. 2006 Dec;12(12):1397–1402.
  • De Rosa L, Carulli S, Cocchiarella F, et al. Long-term stability and safety of transgenic cultured epidermal stem cells in gene therapy of junctional epidermolysis bullosa. Stem Cell Reports. 2014 Jan 14;2(1):1–8.
  • Bauer JW, Koller J, Murauer EM, et al. Closure of a large chronic wound through transplantation of gene-corrected epidermal stem cells. J Invest Dermatol. 2017 Mar;137(3):778–781.
  • Hirsch T, Rothoeft T, Teig N, et al. Regeneration of the entire human epidermis using transgenic stem cells. Nature. 2017 Nov 16;551(7680):327–332.
  • Siprashvili Z, Nguyen NT, Gorell ES, et al. Safety and wound outcomes following genetically corrected autologous epidermal grafts in patients with recessive dystrophic epidermolysis bullosa. Jama. 2016 Nov 1;316(17):1808–1817.
  • Eichstadt S, Barriga M, Ponakala A, et al. Phase 1/2a clinical trial of gene-corrected autologous cell therapy for recessive dystrophic epidermolysis bullosa. JCI Insight. 2019 Oct 3;4:19.
  • Gaucher S, Lwin SM, Titeux M, et al. EBGene trial: patient preselection outcomes for the European GENEGRAFT ex vivo phase I/II gene therapy trial for recessive dystrophic epidermolysis bullosa. Br J Dermatol. 2020 Mar;182(3):794–797.
  • Wong T, Gammon L, Liu L, et al. Potential of fibroblast cell therapy for recessive dystrophic epidermolysis bullosa. J Invest Dermatol. 2008 Sept;128(9):2179–2189.
  • Nagy N, Almaani N, Tanaka A, et al. HB-EGF induces COL7A1 expression in keratinocytes and fibroblasts: possible mechanism underlying allogeneic fibroblast therapy in recessive dystrophic epidermolysis Bullosa. J Invest Dermatol. 2011 Aug;131(8):1771–1774.
  • Petrof G, Martinez-Queipo M, Mellerio JE, et al. Fibroblast cell therapy enhances initial healing in recessive dystrophic epidermolysis bullosa wounds: results of a randomized, vehicle-controlled trial. Br J Dermatol. 2013 Nov;169(5):1025–1033.
  • Venugopal SS, Yan W, Frew JW, et al. A phase II randomized vehicle-controlled trial of intradermal allogeneic fibroblasts for recessive dystrophic epidermolysis bullosa. J Am Acad Dermatol. 2013 Dec;69(6):898–908 e7.
  • Lwin SM, Syed F, Di WL, et al. Safety and early efficacy outcomes for lentiviral fibroblast gene therapy in recessive dystrophic epidermolysis bullosa. JCI Insight. 2019 Jun 6;4(11). DOI:10.1172/jci.insight.126243
  • Wagner JE, Ishida-Yamamoto A, McGrath JA, et al. Bone marrow transplantation for recessive dystrophic epidermolysis bullosa. N Engl J Med. 2010 Aug 12;363(7):629–639.
  • Ebens CL, McGrath JA, Tamai K, et al. Bone marrow transplant with post-transplant cyclophosphamide for recessive dystrophic epidermolysis bullosa expands the related donor pool and permits tolerance of nonhaematopoietic cellular grafts. Br J Dermatol. 2019 Dec;181(6):1238–1246.
  • Tolar J, Wagner JE. Allogeneic blood and bone marrow cells for the treatment of severe epidermolysis bullosa: repair of the extracellular matrix. Lancet. 2013 Oct 5;382(9899):1214–1223.
  • Uitto J. The conundrum of allogeneic bone marrow transplantation for epidermolysis bullosa. J Invest Dermatol. 2018 May;138(5):1029–1031.
  • Hammersen J, Has C, Naumann-Bartsch N, et al. Genotype, clinical course, and therapeutic decision making in 76 infants with severe generalized junctional epidermolysis bullosa. J Invest Dermatol. 2016 Nov;136(11):2150–2157.
  • Conget P, Rodriguez F, Kramer S, et al. Replenishment of type VII collagen and re-epithelialization of chronically ulcerated skin after intradermal administration of allogeneic mesenchymal stromal cells in two patients with recessive dystrophic epidermolysis bullosa. Cytotherapy. 2010 May;12(3):429–431.
  • Petrof G, Lwin SM, Martinez-Queipo M, et al. Potential of systemic allogeneic mesenchymal stromal cell therapy for children with recessive dystrophic epidermolysis bullosa. J Invest Dermatol. 2015 Sept;135(9):2319–2321.
  • Rashidghamat E, Kadiyirire T, Ayis S, et al. Phase I/II open-label trial of intravenous allogeneic mesenchymal stromal cell therapy in adults with recessive dystrophic epidermolysis bullosa. J Am Acad Dermatol. 2019 Nov;28.
  • Gostynski A, Deviaene FC, Pasmooij AM, et al. Adhesive stripping to remove epidermis in junctional epidermolysis bullosa for revertant cell therapy. Br J Dermatol. 2009 Aug;161(2):444–447.
  • Gostynski A, Pasmooij AM, Jonkman MF. Successful therapeutic transplantation of revertant skin in epidermolysis bullosa. J Am Acad Dermatol. 2014 Jan;70(1):98–101.
  • Umegaki-Arao N, Pasmooij AM, Itoh M, et al. Induced pluripotent stem cells from human revertant keratinocytes for the treatment of epidermolysis bullosa. Sci Transl Med. 2014 Nov 26;6(264):264ra164.
  • Matsumura W, Fujita Y, Shinkuma S, et al. Cultured epidermal autografts from clinically revertant skin as a potential wound treatment for recessive dystrophic epidermolysis bullosa. J Invest Dermatol. 2019 Oct;139(10):2115–24 e11.
  • Keith AR, Twaroski K, Ebens CL, et al. Leading edge: emerging drug, cell, and gene therapies for junctional epidermolysis bullosa. Expert Opin Biol Ther. 2020 Mar;20:1–13.
  • Wally V, Hovnanian A, Ly J, et al. Diacerein orphan drug development for epidermolysis bullosa simplex: a phase 2/3 randomized, placebo-controlled, double-blind clinical trial. J Am Acad Dermatol. 2018 May;78(5):892–901 e7.
  • Castela E, Tulic MK, Rozieres A, et al. Epidermolysis bullosa simplex generalized severe induces a T helper 17 response and is improved by apremilast treatment. Br J Dermatol. 2019 Feb;180(2):357–364.
  • Booken N, Heck M, Nicolay JP, et al. Oral aprepitant in the therapy of refractory pruritus in erythrodermic cutaneous T-cell lymphoma. Br J Dermatol. 2011 Mar;164(3):665–667.
  • Zic JA, Straka BT, McGirt LY, et al. Aprepitant for the treatment of pruritus in sezary syndrome: a randomized crossover clinical trial. JAMA Dermatol. 2018 Oct 1;154(10):1221–1222.
  • Yosipovitch G, Stander S, Kerby MB, et al. Serlopitant for the treatment of chronic pruritus: results of a randomized, multicenter, placebo-controlled phase 2 clinical trial. J Am Acad Dermatol. 2018 May;78(5):882–91 e10.
  • Chiou AS, Choi S, Barriga M, et al. Phase 2 trial of a neurokinin-1 receptor antagonist for the treatment of chronic itch in patients with epidermolysis bullosa: a randomized clinical trial. J Am Acad Dermatol. 2020 Jun;82(6):1415–1421.
  • Schwieger-Briel A, Kiritsi D, Schempp C, et al. Betulin-based oleogel to improve wound healing in dystrophic epidermolysis bullosa: a prospective controlled proof-of-concept study. Dermatol Res Pract. 2017;2017:5068969.
  • Woodley DT, Cogan J, Hou Y, et al. Gentamicin induces functional type VII collagen in recessive dystrophic epidermolysis bullosa patients. J Clin Invest. 2017 Aug 1;127(8):3028–3038.
  • Kwong A, Cogan J, Hou Y, et al. Gentamicin induces laminin 332 and improves wound healing in junctional epidermolysis bullosa patients with nonsense mutations. Mol Ther. 2020 May 6;28(5):1327–1338.
  • Diociaiuti A, Steinke H, Nystrom A, et al. EGFR inhibition for metastasized cutaneous squamous cell carcinoma in dystrophic epidermolysis bullosa. Orphanet J Rare Dis. 2019 Dec 3;14(1):278.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.