2,194
Views
0
CrossRef citations to date
0
Altmetric
Mini-review

Evaluating emerging drugs in phase II & III for the treatment of amyotrophic lateral sclerosis

&
Pages 93-102 | Received 19 Nov 2023, Accepted 18 Mar 2024, Published online: 22 Mar 2024

References

  • Brown RH, Al-Chalabi A, Longo DL. Amyotrophic lateral sclerosis. N Engl J Med. 2017 Jul 13;377(2):162–172. doi: 10.1056/NEJMra1603471
  • Phukan J, Pender NP, Hardiman O Cognitive impairment in amyotrophic lateral sclerosis. Lancet Neurol. 2007 Nov;6(11):994–1003. doi: 10.1016/S1474-4422(07)70265-X
  • Phukan J, Elamin M, Bede P, et al. The syndrome of cognitive impairment in amyotrophic lateral sclerosis: a population-based study. J Neurol Neurosurg Psychiatry. 2012 Jan;83(1):102–8.
  • Montuschi A, Iazzolino B, Calvo A, et al. Cognitive correlates in amyotrophic lateral sclerosis: a population-based study in Italy. J Neurol Neurosurg Psychiatry. 2015 Feb;86(2):168–73.
  • Oh SI, Park A, Kim HJ, et al. Spectrum of cognitive impairment in Korean ALS patients without known genetic mutations. PLoS One. 2014;9(2):e87163. doi: 10.1371/journal.pone.0087163
  • Miller RG, Jackson CE, Kasarskis EJ, et al. Practice parameter update: the care of the patient with amyotrophic lateral sclerosis: multidisciplinary care, symptom management, and cognitive/behavioral impairment (an evidence-based review): report of the quality standards subcommittee of the American academy of neurology. Neurology. 2009 Oct 13;73(15):1227–33. doi: 10.1212/WNL.0b013e3181bc01a4
  • Schischlevskij P, Cordts I, Günther R, et al. Informal caregiving in amyotrophic lateral sclerosis (ALS): a high caregiver burden and drastic consequences on caregivers’ lives. Brain Sci. 2021 Jun 4;11(6):748. doi: 10.3390/brainsci11060748
  • Achtert K, Kerkemeyer L The economic burden of amyotrophic lateral sclerosis: a systematic review. Eur J Health Econ. 2021 Nov;22(8):1151–1166. doi: 10.1007/s10198-021-01328-7
  • Longinetti E, Fang F Epidemiology of amyotrophic lateral sclerosis: an update of recent literature. Curr Opin Neurol. 2019 Oct;32(5):771–776. doi: 10.1097/WCO.0000000000000730
  • Wolfson C, Gauvin DE, Ishola F, et al. Global prevalence and incidence of amyotrophic lateral sclerosis: a systematic review. Neurology. 2023 Aug 8;101(6):e613–e623. doi: 10.1212/WNL.0000000000207474
  • Global, regional, and national burden of neurological disorders, 1990-2016: a systematic analysis for the global burden of disease study 2016. Lancet Neurol. 2019 May;18(5):459–480. doi: 10.1016/S1474-4422(18)30499-X
  • Arthur KC, Calvo A, Price TR, et al. Projected increase in amyotrophic lateral sclerosis from 2015 to 2040. Nat Commun. 2016 Aug 11;7(1):12408. doi: 10.1038/ncomms12408
  • Goutman SA, Hardiman O, Al-Chalabi A, et al. Emerging insights into the complex genetics and pathophysiology of amyotrophic lateral sclerosis. Lancet Neurol. 2022 May;21(5):465–479.
  • Renton AE, Chiò A, Traynor BJ State of play in amyotrophic lateral sclerosis genetics. Nat Neurosci. 2014 Jan;17(1):17–23. doi: 10.1038/nn.3584
  • Paré B, Lehmann M, Beaudin M, et al. Misfolded SOD1 pathology in sporadic amyotrophic lateral sclerosis. Sci Rep. 2018 Sep 21;8(1):14223. doi: 10.1038/s41598-018-31773-z
  • Ash PE, Bieniek KF, Gendron TF, et al. Unconventional translation of C9ORF72 GGGGCC expansion generates insoluble polypeptides specific to c9FTD/ALS. Neuron. 2013 Feb 20;77(4):639–646. doi: 10.1016/j.neuron.2013.02.004
  • Elden AC, Kim HJ, Hart MP, et al. Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature. 2010 Aug 26;466(7310):1069–75. doi: 10.1038/nature09320
  • Lee T, Li YR, Ingre C, et al. Ataxin-2 intermediate-length polyglutamine expansions in European ALS patients. Hum Mol Genet. 2011 May 1;20(9):1697–700. doi: 10.1093/hmg/ddr045
  • Neumann M, Sampathu DM, Kwong LK, et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science. 2006 Oct 6;314(5796):130–3. doi: 10.1126/science.1134108
  • Kwong LK, Neumann M, Sampathu DM, et al. TDP-43 proteinopathy: the neuropathology underlying major forms of sporadic and familial frontotemporal lobar degeneration and motor neuron disease. Acta Neuropathol. 2007 Jul;114(1):63–70.
  • Brenner D, Freischmidt A. Update on genetics of amyotrophic lateral sclerosis. Curr Opin Neurol. 2022 Oct 1;35(5):672–677. doi: 10.1097/WCO.0000000000001093
  • Taylor JP, Brown RH Jr., Cleveland DW. Decoding ALS: from genes to mechanism. Nature. 2016 Nov 10;539(7628):197–206. doi: 10.1038/nature20413
  • Hardiman O, Al-Chalabi A, Chio A, et al. Amyotrophic lateral sclerosis. Nat Rev Dis Primers. 2017 Oct 5;3(1):17071. doi: 10.1038/nrdp.2017.71
  • Feldman EL, Goutman SA, Petri S, et al. Amyotrophic lateral sclerosis. Lancet. 2022 Oct 15;400(10360):1363–1380. doi: 10.1016/S0140-6736(22)01272-7
  • Rothstein JD, Martin LJ, Kuncl RW. Decreased glutamate transport by the brain and spinal cord in amyotrophic lateral sclerosis. N Engl J Med. 1992 May 28;326(22):1464–8. doi: 10.1056/NEJM199205283262204
  • Grad LI, Rouleau GA, Ravits J, et al. Clinical spectrum of amyotrophic lateral sclerosis (ALS). Cold Spring Harb Perspect Med. 2017 Aug 1;7(8):a024117. doi: 10.1101/cshperspect.a024117
  • Bedlack RS, Vaughan T, Wicks P, et al. How common are ALS plateaus and reversals? Neurology. 2016 Mar 1;86(9):808–12. doi: 10.1212/WNL.0000000000002251
  • Gomeni R, Fava M Amyotrophic lateral sclerosis disease progression model. Amyotroph Lateral Scler Frontotemporal Degener. 2014 Mar;15(1–2):119–29. doi: 10.3109/21678421.2013.838970
  • Magnus T, Beck M, Giess R, et al. Disease progression in amyotrophic lateral sclerosis: predictors of survival. Muscle Nerve. 2002 May;25(5):709–714.
  • Al-Chalabi A, Hardiman O, Kiernan MC, et al. Amyotrophic lateral sclerosis: moving towards a new classification system. Lancet Neurol. 2016 Oct;15(11):1182–94.
  • Vucic S, Ferguson TA, Cummings C, et al. Gold Coast diagnostic criteria: Implications for ALS diagnosis and clinical trial enrollment. Muscle Nerve. 2021 Nov;64(5):532–537.
  • Westeneng HJ, Debray TPA, Visser AE, et al. Prognosis for patients with amyotrophic lateral sclerosis: development and validation of a personalised prediction model. Lancet Neurol. 2018 May;17(5):423–433.
  • Doble A The pharmacology and mechanism of action of riluzole. Neurology. 1996 Dec;47(6 Suppl 4):S233–41. doi: 10.1212/WNL.47.6_Suppl_4.233S
  • Bensimon G, Lacomblez L, Meininger V. A controlled trial of riluzole in amyotrophic lateral sclerosis. ALS/Riluzole Study Group. N Engl J Med. 1994 Mar 3;330(9):585–91. doi: 10.1056/NEJM199403033300901
  • Lacomblez L, Bensimon G, Leigh PN, et al. A confirmatory dose-ranging study of riluzole in ALS. ALS/Riluzole Study Group-II. Neurology. 1996 Dec;47(6 Suppl 4):S242–50.
  • Abe K, Itoyama Y, Sobue G, et al. Confirmatory double-blind, parallel-group, placebo-controlled study of efficacy and safety of edaravone (MCI-186) in amyotrophic lateral sclerosis patients. Amyotroph Lateral Scler Frontotemporal Degener. 2014 Dec;15(7–8):610–7.
  • Abe K, Aoki M, Tsuji S Safety and efficacy of edaravone in well defined patients with amyotrophic lateral sclerosis: a randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2017 Jul;16(7):505–512. doi: 10.1016/S1474-4422(17)30115-1
  • Witzel S, Maier A, Steinbach R, et al. Safety and effectiveness of long-term intravenous administration of edaravone for treatment of patients with amyotrophic lateral sclerosis. JAMA Neurol. 2022 Feb 1;79(2):121–130. doi: 10.1001/jamaneurol.2021.4893
  • Shimizu H, Nishimura Y, Shiide Y, et al. Bioequivalence study of oral suspension and intravenous formulation of edaravone in healthy adult subjects. Clin Pharmacol Drug Dev. 2021 Oct;10(10):1188–1197.
  • Paganoni S, Macklin EA, Hendrix S, et al. Trial of sodium phenylbutyrate-taurursodiol for amyotrophic lateral sclerosis. N Engl J Med. 2020 Sep 3;383(10):919–930. doi: 10.1056/NEJMoa1916945
  • Paganoni S, Hendrix S, Dickson SP, et al. Long-term survival of participants in the CENTAUR trial of sodium phenylbutyrate-taurursodiol in amyotrophic lateral sclerosis. Muscle Nerve. 2021 Jan;63(1):31–39.
  • Kim G, Gautier O, Tassoni-Tsuchida E, et al. ALS genetics: gains, losses, and implications for future therapies. Neuron. 2020 Dec 9;108(5):822–842. doi: 10.1016/j.neuron.2020.08.022
  • Miller TM, Cudkowicz ME, Genge A, et al. Trial of antisense oligonucleotide tofersen for SOD1 ALS. N Engl J Med. 2022 Sep 22;387(12):1099–1110. doi: 10.1056/NEJMoa2204705
  • Oki R, Izumi Y, Fujita K, et al. Efficacy and safety of ultrahigh-dose methylcobalamin in Early-Stage amyotrophic lateral sclerosis: a randomized clinical trial. JAMA Neurol. 2022 Jun 1;79(6):575–583. doi: 10.1001/jamaneurol.2022.0901
  • Kaji R, Imai T, Iwasaki Y, et al. Ultra-high-dose methylcobalamin in amyotrophic lateral sclerosis: a long-term phase II/III randomised controlled study. J Neurol Neurosurg Psychiatry. 2019 Apr;90(4):451–457.
  • Paganoni S, Berry JD, Quintana M, et al. Adaptive platform trials to transform amyotrophic lateral sclerosis therapy development. Ann Neurol. 2022 Feb;91(2):165–175.
  • Beswick E, Johnson M, Newton J, et al. Factors impacting trial participation in people with motor neuron disease. J Neurol. 2024 Jan;271(1):543–552.
  • Bedlack R, Pogemiller A, Shefner J, et al. ALS clinical research learning institutes (ALS-CRLI): empowering people with ALS to be research ambassadors. Amyotroph Lateral Scler Frontotemporal Degener. 2020 May;21(3–4):216–221.
  • Barber SC, Shaw PJ. Oxidative stress in ALS: key role in motor neuron injury and therapeutic target. Free Radic Biol Med. 2010 Mar 1;48(5):629–41. doi: 10.1016/j.freeradbiomed.2009.11.018
  • Couratier P, Hugon J, Sindou P, et al. Cell culture evidence for neuronal degeneration in amyotrophic lateral sclerosis being linked to glutamate AMPA/kainate receptors. Lancet. 1993 Jan 30;341(8840):265–268. doi: 10.1016/0140-6736(93)92615-Z
  • Cook CN, Wu Y, Odeh HM, et al. C9orf72 poly(GR) aggregation induces TDP-43 proteinopathy. Sci Transl Med. 2020 Sep 2;12(559). doi: 10.1126/scitranslmed.abb3774
  • Kwiatkowski TJ Jr., Bosco DA, Leclerc AL, et al. Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science. 2009 Feb 27;323(5918):1205–8. doi: 10.1126/science.1166066
  • Vance C, Rogelj B, Hortobágyi T, et al. Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science. 2009 Feb 27;323(5918):1208–1211. doi: 10.1126/science.1165942
  • DeJesus-Hernandez M, Mackenzie IR, Boeve BF, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron. 2011 Oct 20;72(2):245–56. doi: 10.1016/j.neuron.2011.09.011
  • Polymenidou M, Lagier-Tourenne C, Hutt KR, et al. Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nat Neurosci. 2011 Apr;14(4):459–68.
  • Donde A, Sun M, Ling JP, et al. Splicing repression is a major function of TDP-43 in motor neurons. Acta Neuropathol. 2019 Nov;138(5):813–826.
  • Klim JR, Williams LA, Limone F, et al. ALS-implicated protein TDP-43 sustains levels of STMN2, a mediator of motor neuron growth and repair. Nat Neurosci. 2019 Feb;22(2):167–179.
  • Beers DR, Appel SH Immune dysregulation in amyotrophic lateral sclerosis: mechanisms and emerging therapies. Lancet Neurol. 2019 Feb;18(2):211–220. doi: 10.1016/S1474-4422(18)30394-6
  • Brettschneider J, Toledo JB, Van Deerlin VM, et al. Microglial activation correlates with disease progression and upper motor neuron clinical symptoms in amyotrophic lateral sclerosis. PLoS One. 2012;7(6):e39216. doi: 10.1371/journal.pone.0039216
  • Lee JC, Seong J, Kim SH, et al. Replacement of microglial cells using clodronate liposome and bone marrow transplantation in the central nervous system of SOD1(G93A) transgenic mice as an in vivo model of amyotrophic lateral sclerosis. Biochem Biophys Res Commun. 2012 Feb 10;418(2):359–365. doi: 10.1016/j.bbrc.2012.01.026
  • Jin M, Günther R, Akgün K, et al. Peripheral proinflammatory Th1/Th17 immune cell shift is linked to disease severity in amyotrophic lateral sclerosis. Sci Rep. 2020 Apr 3;10(1):5941. doi: 10.1038/s41598-020-62756-8
  • Lall D, Baloh RH. Microglia and C9orf72 in neuroinflammation and ALS and frontotemporal dementia. J Clin Invest. 2017 Sep 1;127(9):3250–3258. doi: 10.1172/JCI90607
  • Fournier CN, Schoenfeld D, Berry JD, et al. An open label study of a novel immunosuppression intervention for the treatment of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener. 2018 May;19(3–4):242–249.
  • Miller RG, Block G, Katz JS, et al. Randomized phase 2 trial of NP001-a novel immune regulator: safety and early efficacy in ALS. Neurol(r) Neuroimmunol Neuroinflammation. 2015 Jun;2(3):e100.
  • Wosiski-Kuhn M, Lyon MS, Caress J, et al. Inflammation, immunity, and amyotrophic lateral sclerosis: II. immune-modulating therapies. Muscle Nerve. 2019 Jan;59(1):23–33.
  • Costa-Mattioli M, Walter P. The integrated stress response: from mechanism to disease. Science. 2020 Apr 24;368(6489). doi: 10.1126/science.aat5314
  • Saxena S, Cabuy E, Caroni P A role for motoneuron subtype-selective ER stress in disease manifestations of FALS mice. Nat Neurosci. 2009 May;12(5):627–636. doi: 10.1038/nn.2297
  • Marlin E, Viu-Idocin C, Arrasate M, et al. The role and therapeutic potential of the integrated stress response in amyotrophic lateral sclerosis. Int J Mol Sci. 2022 Jul 15;23(14):7823. doi: 10.3390/ijms23147823
  • Zorn E, Nelson EA, Mohseni M, et al. IL-2 regulates FOXP3 expression in human CD4+CD25+ regulatory T cells through a STAT-dependent mechanism and induces the expansion of these cells in vivo. Blood. 2006 Sep 1;108(5):1571–9. doi: 10.1182/blood-2006-02-004747
  • Camu W, Mickunas M, Veyrune JL, et al. Repeated 5-day cycles of low dose aldesleukin in amyotrophic lateral sclerosis (IMODALS): a phase 2a randomised, double-blind, placebo-controlled trial. EBioMedicine. 2020 Sep;59:102844. doi: 10.1016/j.ebiom.2020.102844
  • Giovannelli I, Bayatti N, Brown A, et al. Amyotrophic lateral sclerosis transcriptomics reveals immunological effects of low-dose interleukin-2. Brain Commun. 2021;3(3):fcab141. doi: 10.1093/braincomms/fcab141
  • Becker LA, Huang B, Bieri G, et al. Therapeutic reduction of ataxin-2 extends lifespan and reduces pathology in TDP-43 mice. Nature. 2017 Apr 20;544(7650):367–371. doi: 10.1038/nature22038
  • Korobeynikov VA, Lyashchenko AK, Blanco-Redondo B, et al. Antisense oligonucleotide silencing of FUS expression as a therapeutic approach in amyotrophic lateral sclerosis. Nat Med. 2022 Jan;28(1):104–116.
  • Hung ST, Linares GR, Chang WH, et al. PIKFYVE inhibition mitigates disease in models of diverse forms of ALS. Cell. 2023 Feb 16;186(4):786–802.e28. doi: 10.1016/j.cell.2023.01.005
  • Wang L, Popko B, Roos RP. An enhanced integrated stress response ameliorates mutant SOD1-induced ALS. Hum Mol Genet. 2014 May 15;23(10):2629–38. doi: 10.1093/hmg/ddt658
  • Marlin E, Valencia M, Peregrín N, et al. Pharmacological inhibition of the integrated stress response accelerates disease progression in an amyotrophic lateral sclerosis mouse model. Br J Pharmacol. 2023 Oct 12;181(3):495–508. doi: 10.1111/bph.16260
  • Trias E, Ibarburu S, Barreto-Núñez R, et al. Evidence for mast cells contributing to neuromuscular pathology in an inherited model of ALS. JCI Insight. 2017 Oct 19;2(20). doi: 10.1172/jci.insight.95934
  • Mora JS, Genge A, Chio A, et al. Masitinib as an add-on therapy to riluzole in patients with amyotrophic lateral sclerosis: a randomized clinical trial. Amyotroph Lateral Scler Frontotemporal Degener. 2020 Feb;21(1–2):5–14.
  • Bilsland LG, Sahai E, Kelly G, et al. Deficits in axonal transport precede ALS symptoms in vivo. Proc Natl Acad Sci U S A. 2010 Nov 23;107(47):20523–8. doi: 10.1073/pnas.1006869107
  • Kennel PF, Finiels F, Revah F, et al. Neuromuscular function impairment is not caused by motor neurone loss in FALS mice: an electromyographic study. Neuroreport. 1996 May 31;7(8):1427–31. doi: 10.1097/00001756-199605310-00021
  • Parmar DV, Kansagra KA, Momin T, et al. Safety, tolerability, pharmacokinetics, and pharmacodynamics of the Oral NLRP3 Inflammasome Inhibitor ZYIL1: first-in-human phase 1 studies (single ascending dose and multiple ascending dose). Clin Pharmacol Drug Dev. 2023 Feb;12(2):202–211.
  • Gao L, Giannousis P, Thoolen M, et al. First-in-human studies of pharmacokinetics and safety of utreloxastat (PTC857), a Novel 15-Lipooxygenase Inhibitor for the treatment of amyotrophic lateral sclerosis. Clin Pharmacol Drug Dev. 2023 Feb;12(2):141–151.
  • Shan G, Li Y, Zhang J, et al. A small molecule enhances RNA interference and promotes microRNA processing. Nat Biotechnol. 2008 Aug;26(8):933–40.
  • Kmetzsch V, Anquetil V, Saracino D, et al. Plasma microRNA signature in presymptomatic and symptomatic subjects with C9orf72-associated frontotemporal dementia and amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 2021 May;92(5):485–493.
  • Magen I, Yacovzada NS, Yanowski E, et al. Circulating miR-181 is a prognostic biomarker for amyotrophic lateral sclerosis. Nat Neurosci. 2021 Nov;24(11):1534–1541.
  • Cudkowicz ME, Shefner JM, Schoenfeld DA, et al. Trial of celecoxib in amyotrophic lateral sclerosis. Ann Neurol. 2006 Jul;60(1):22–31.
  • Goldshtein H, Muhire A, Petel Légaré V, et al. Efficacy of Ciprofloxacin/Celecoxib combination in zebrafish models of amyotrophic lateral sclerosis. Ann Clin Transl Neurol. 2020 Oct;7(10):1883–1897.
  • Wolozin B, Ivanov P Stress granules and neurodegeneration. Nat Rev Neurosci. 2019 Nov;20(11):649–666. doi: 10.1038/s41583-019-0222-5
  • Caccamo A, Majumder S, Deng JJ, et al. Rapamycin rescues TDP-43 mislocalization and the associated low molecular mass neurofilament instability. J Biol Chem. 2009 Oct 2;284(40):27416–24. doi: 10.1074/jbc.M109.031278
  • Wang IF, Guo BS, Liu YC, et al. Autophagy activators rescue and alleviate pathogenesis of a mouse model with proteinopathies of the TAR DNA-binding protein 43. Proc Natl Acad Sci U S A. 2012 Sep 11;109(37):15024–9. doi: 10.1073/pnas.1206362109
  • Zhang X, Li L, Chen S, et al. Rapamycin treatment augments motor neuron degeneration in SOD1(G93A) mouse model of amyotrophic lateral sclerosis. Autophagy. 2011 Apr;7(4):412–425.
  • Mandrioli J, D’Amico R, Zucchi E, et al. Randomized, double-blind, placebo-controlled trial of rapamycin in amyotrophic lateral sclerosis. Nat Commun. 2023 Aug 17;14(1):4970. doi: 10.1038/s41467-023-40734-8
  • Bahrami F, Pourgholami MH, Mekkawy AH, et al. Monepantel induces autophagy in human ovarian cancer cells through disruption of the mTor/p70s6k signalling pathway. Am J Cancer Res. 2014;4(5):558–71.
  • Gibson LC, Hastings SF, McPhee I, et al. The inhibitory profile of ibudilast against the human phosphodiesterase enzyme family. Eur J Pharmacol. 2006 May 24;538(1–3):39–42. doi: 10.1016/j.ejphar.2006.02.053
  • Angelopoulou E, Pyrgelis ES, Piperi C. Emerging potential of the phosphodiesterase (PDE) inhibitor ibudilast for neurodegenerative diseases: an update on preclinical and clinical evidence. Molecules. 2022 Dec 2;27(23):8448. doi: 10.3390/molecules27238448
  • Babu S, Hightower BG, Chan J, et al. Ibudilast (MN-166) in amyotrophic lateral sclerosis- an open label, safety and pharmacodynamic trial. NeuroImage Clin. 2021;30:102672. doi: 10.1016/j.nicl.2021.102672
  • Khalaf K, Tornese P, Cocco A, et al. Tauroursodeoxycholic acid: a potential therapeutic tool in neurodegenerative diseases. Transl Neurodegener. 2022 Jun 4;11(1):33. doi: 10.1186/s40035-022-00307-z
  • Elia AE, Lalli S, Monsurrò MR, et al. Tauroursodeoxycholic acid in the treatment of patients with amyotrophic lateral sclerosis. Eur J Neurol. 2016 Jan;23(1):45–52.
  • McCormick AL, Brown RH Jr., Cudkowicz ME, et al. Quantification of reverse transcriptase in ALS and elimination of a novel retroviral candidate. Neurology. 2008 Jan 22;70(4):278–83. doi: 10.1212/01.wnl.0000297552.13219.b4
  • Li W, Lee MH, Henderson L, et al. Human endogenous retrovirus-K contributes to motor neuron disease. Sci Transl Med. 2015 Sep 30;7(307):307ra153. doi: 10.1126/scitranslmed.aac8201
  • Garson JA, Usher L, Al-Chalabi A, et al. Quantitative analysis of human endogenous retrovirus-K transcripts in postmortem premotor cortex fails to confirm elevated expression of HERV-K RNA in amyotrophic lateral sclerosis. Acta Neuropathol Commun. 2019 Mar 18;7(1):45. doi: 10.1186/s40478-019-0698-2
  • Gold J, Rowe DB, Kiernan MC, et al. Safety and tolerability of triumeq in amyotrophic lateral sclerosis: the lighthouse trial. Amyotroph Lateral Scler Frontotemporal Degener. 2019 Nov;20(7–8):595–604.
  • Benatar M, Zhang L, Wang L, et al. Validation of serum neurofilaments as prognostic and potential pharmacodynamic biomarkers for ALS. Neurology. 2020 Jul 7;95(1):e59–e69. doi: 10.1212/WNL.0000000000009559