235
Views
0
CrossRef citations to date
0
Altmetric
Review

Treatment of idiopathic pulmonary fibrosis: an update on emerging drugs in phase II & III clinical trials

, , ORCID Icon & ORCID Icon
Pages 177-186 | Received 23 Jan 2024, Accepted 04 Apr 2024, Published online: 11 Apr 2024

References

  • Raghu G, Remy-Jardin M, Richeldi L, et al. Idiopathic pulmonary fibrosis (an update) and progressive pulmonary fibrosis in adults: an official ATS/ERS/JRS/ALAT clinical practice guideline. Am J Respir Crit Care Med. 2022 May 1;205(9):e18–e47. doi: 10.1164/rccm.202202-0399ST
  • Raghu G, Remy-Jardin M, Myers JL, et al. Diagnosis of idiopathic pulmonary fibrosis. An official ATS/ERS/JRS/ALAT clinical practice guideline. Am J Respir Crit Care Med. 2018 Sep 1;198(5):e44–e68. doi: 10.1164/rccm.201807-1255ST
  • Richeldi L, Collard HR, Jones MG. Idiopathic pulmonary fibrosis. Lancet. 2017 May 13;389(10082):1941–1952. doi: 10.1016/S0140-6736(17)30866-8
  • Salonen J, Purokivi M, Bloigu R, et al. Prognosis and causes of death of patients with acute exacerbation of fibrosing interstitial lung diseases. BMJ Open Respir Res. 2020;7(1):e000563. doi: 10.1136/bmjresp-2020-000563
  • OZAWA Y, SUDA T, NAITO T, et al. Cumulative incidence of and predictive factors for lung cancer in IPF. Respirology. 2009;14(5):723–728. doi: 10.1111/j.1440-1843.2009.01547.x
  • Nathan SD, Noble PW, Tuder RM. Idiopathic pulmonary fibrosis and pulmonary hypertension. Am J Respir Crit Care Med. 2007;175(9):875–880. doi: 10.1164/rccm.200608-1153CC
  • Caminati A, Lonati C, Cassandro R, et al. Comorbidities in idiopathic pulmonary fibrosis: an underestimated issue. Eur Respir Rev. 2019;28(153):190044. doi: 10.1183/16000617.0044-2019
  • Pergolizzi JV Jr., LeQuang JA, Varrassi M, et al. What do we need to know about rising rates of idiopathic pulmonary fibrosis? A narrative review and update. Adv Ther. 2023 Apr;40(4):1334–1346.
  • Diamantopoulos A, Wright E, Vlahopoulou K, et al. The Burden of illness of idiopathic pulmonary fibrosis: a comprehensive evidence review. Pharmaco Economics. 2018 Sep 01;36(7):779–807. doi: 10.1007/s40273-018-0631-8
  • Balestro E, Cocconcelli E, Tinè M, et al. Idiopathic pulmonary fibrosis and lung transplantation: when it is feasible. Medicina (Kaunas). 2019 Oct 19;55(10):702. doi: 10.3390/medicina55100702
  • Spagnolo P, Kropski JA, Jones MG, et al. Idiopathic pulmonary fibrosis: disease mechanisms and drug development. Pharmacol Ther. 2021 Jun;222:107798. doi: 10.1016/j.pharmthera.2020.107798
  • Podolanczuk AJ, Thomson CC, Remy-Jardin M, et al. Idiopathic pulmonary fibrosis: state of the art for 2023. Eur Respir J. 2023 Apr;61(4):2200957.
  • Spagnolo P, Maher TM. Clinical trial research in focus: why do so many clinical trials fail in IPF? Lancet Respir Med. 2017 May;5(5):372–374. doi: 10.1016/S2213-2600(17)30122-4
  • Ruwanpura SM, Thomas BJ, Bardin PG. Pirfenidone: molecular mechanisms and potential clinical applications in lung disease. Am J Respir Cell Mol Biol. 2020 Apr 01;62(4):413–422.
  • Conte E, Gili E, Fagone E, et al. Effect of pirfenidone on proliferation, TGF-β-induced myofibroblast differentiation and fibrogenic activity of primary human lung fibroblasts. Eur J Pharm Sci. 2014 Jul 16;58:13–19. doi: 10.1016/j.ejps.2014.02.014
  • Lehmann M, Kolb M. Another piece in the pirfenidone puzzle. Eur Respir J. 2023;61(4):2300240. doi: 10.1183/13993003.00240-2023
  • Ma H-Y, Heiden JAV, Uttarwar S, et al. Inhibition of MRTF activation as a clinically achievable anti-fibrotic mechanism for pirfenidone. Eur Respir J. 2023;61(4):2200604. doi: 10.1183/13993003.00604-2022
  • Noble PW, Albera C, Bradford WZ, et al. Pirfenidone in patients with idiopathic pulmonary fibrosis (CAPACITY): two randomised trials [comparative study multicenter study randomized controlled trial research support, Non-U.S. Gov’t]. Lancet. 2011 May 21;377(9779):1760–1769. doi: 10.1016/S0140-6736(11)60405-4
  • King TE, Bradford WZ, Castro-Bernardini S, et al. A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N Engl J Med. 2014;370(22):2083–2092. doi: 10.1056/NEJMoa1402582
  • Noble PW, Albera C, Bradford WZ, et al. Pirfenidone for idiopathic pulmonary fibrosis: analysis of pooled data from three multinational phase 3 trials. Eur Respir J. 2016 Jan;47(1):243–253.
  • Krauss E, Tello S, Wilhelm J, et al. Assessing the effectiveness of pirfenidone in idiopathic pulmonary fibrosis: long-term, real-world data from European IPF Registry (eurIpfreg). J Clin Med. 2020 Nov 22;9(11):3763. doi: 10.3390/jcm9113763
  • Fisher M, Nathan SD, Hill C, et al. Predicting life expectancy for pirfenidone in idiopathic pulmonary Fibrosis. J Manag Care Spec Pharm. 2017 Mar;23(3–b Suppl):S17–s24.
  • Cottin V, Maher T. Long-term clinical and real-world experience with pirfenidone in the treatment of idiopathic pulmonary fibrosis. Eur Respir Rev. 2015;24(135):58–64. doi: 10.1183/09059180.00011514
  • West A, Chaudhuri N, Barczyk A, et al. Inhaled pirfenidone solution (AP01) for IPF: a randomised, open-label, dose-response trial. Thorax. 2023 Sep;78(9):882–889.
  • Ford P, Cottin V, Flaherty K, et al. A phase 2b randomized trial to evaluate LYT-100 in patients with idiopathic pulmonary fibrosis (IPF). Eur Respir J. 2022;60(suppl 66):3653.
  • Richeldi L, du Bois RM, Raghu G, et al. Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N Engl J Med. 2014 May 29;370(22):2071–2082. doi: 10.1056/NEJMoa1402584
  • Vasakova MK, Sterclova M, Bishop NM, et al. Long-term effect of nintedanib treatment in 11 countries of Europe and Asia. Eur Respir J. 2022;60(suppl 66):3391.
  • Vasakova M, Sterclova M, Mogulkoc N, et al. Long-term overall survival and progression-free survival in idiopathic pulmonary fibrosis treated by pirfenidone or nintedanib or their switch. Real world data from the EMPIRE registry. Eur Respir J. 2019;54(suppl 63):A4720.
  • Crestani B, Huggins JT, Kaye M, et al. Long-term safety and tolerability of nintedanib in patients with idiopathic pulmonary fibrosis: results from the open-label extension study, INPULSIS-ON. Lancet Respir Med. 2019 Jan;7(1):60–68.
  • Frangogiannis NG. Transforming growth factor–β in tissue fibrosis. J Exp Med. 2020;217(3). doi: 10.1084/jem.20190103
  • Aschner Y, Downey GP. Transforming growth factor-β: master regulator of the respiratory system in health and disease. Am J Respir Cell Mol Biol. 2016 May;54(5):647–655. doi: 10.1165/rcmb.2015-0391TR
  • Borthwick LA, Wynn TA, Fisher AJ. Cytokine mediated tissue fibrosis. Biochim Biophys Acta. 2013 Jul;1832(7):1049–1060. doi: 10.1016/j.bbadis.2012.09.014
  • Lipson KE, Wong C, Teng Y, et al. CTGF is a central mediator of tissue remodeling and fibrosis and its inhibition can reverse the process of fibrosis. Fibrogenesis & Tissue Repair. 2012 Jun 06;5(1):S24. doi: 10.1186/1755-1536-5-S1-S24
  • Leask A, Parapuram SK, Shi-Wen X, et al. Connective tissue growth factor (CTGF, CCN2) gene regulation: a potent clinical bio-marker of fibroproliferative disease? J Cell Commun Signal. 2009;3(2):19. doi: 10.1007/s12079-009-0037-7
  • Yanagihara T, Chong SG, Gholiof M, et al. Connective-Tissue Growth Factor (CTGF/CCN2) Contributes to TGF-β1-Induced Lung Fibrosis. Am J Respir Cell Mol Biology. 2020;66(3):260–270.
  • Degryse AL, Tanjore H, Xu XC, et al. TGFβ signaling in lung epithelium regulates bleomycin-induced alveolar injury and fibroblast recruitment. Am J Physiol Lung Cell Mol Physiol. 2011 Jun;300(6):L887–97.
  • Horan GS, Wood S, Ona V, et al. Partial inhibition of integrin alpha(v)beta6 prevents pulmonary fibrosis without exacerbating inflammation. Am J Respir Crit Care Med. 2008 Jan 1;177(1):56–65. doi: 10.1164/rccm.200706-805OC
  • Liang H, Xu C, Pan Z, et al. The antifibrotic effects and mechanisms of microRNA-26a action in idiopathic pulmonary fibrosis. Mol Ther. 2014 Jun;22(6):1122–1133.
  • Matsuhira T, Nishiyama O, Tabata Y, et al. A novel phosphodiesterase 4 inhibitor, AA6216, reduces macrophage activity and fibrosis in the lung. Eur J Pharmacol. 2020 Oct 15;885:173508.
  • Cortijo J, Iranzo A, Milara X, et al. Roflumilast, a phosphodiesterase 4 inhibitor, alleviates bleomycin-induced lung injury. Br J Pharmacol. 2009;156(3):534–544. doi: 10.1111/j.1476-5381.2008.00041.x
  • Tager AM, LaCamera P, Shea BS, et al. The lysophosphatidic acid receptor LPA1 links pulmonary fibrosis to lung injury by mediating fibroblast recruitment and vascular leak. Nat Med. 2008 Jan;14(1):45–54.
  • Swaney JS, Chapman C, Correa LD, et al. A novel, orally active LPA(1) receptor antagonist inhibits lung fibrosis in the mouse bleomycin model. Br J Pharmacol. 2010 Aug;160(7):1699–1713.
  • Shea BS, Tager AM. Role of the lysophospholipid mediators lysophosphatidic acid and sphingosine 1-phosphate in lung fibrosis. Proc Am Thorac Soc. 2012 Jul;9(3):102–110. doi: 10.1513/pats.201201-005AW
  • Tager AM. Autotaxin emerges as a therapeutic target for idiopathic pulmonary fibrosis: limiting fibrosis by limiting lysophosphatidic acid synthesis. Am J Respir Cell Mol Biol. 2012 Nov;47(5):563–565. doi: 10.1165/rcmb.2012-0235ED
  • Ninou I, Magkrioti C, Aidinis V. Autotaxin in pathophysiology and pulmonary fibrosis [Review]. Front Med (Lausanne). 2018 Jun 13;5. doi: 10.3389/fmed.2018.00180
  • Oikonomou N, Mouratis MA, Tzouvelekis A, et al. Pulmonary autotaxin expression contributes to the pathogenesis of pulmonary fibrosis. Am J Respir Cell Mol Biol. 2012 Nov;47(5):566–574.
  • Fotopoulou S, Oikonomou N, Grigorieva E, et al. ATX expression and LPA signalling are vital for the development of the nervous system. Dev Biol. 2010 Mar 15;339(2):451–464. doi: 10.1016/j.ydbio.2010.01.007
  • Kolb M, Orfanos SE, Lambers C, et al. The antifibrotic effects of inhaled treprostinil: an emerging option for ILD. Adv Ther. 2022 Sep;39(9):3881–3895.
  • van den Brule S, Wallemme L, Uwambayinema F, et al. The D prostanoid receptor agonist BW245C [(4S)-(3-[(3R,S)-3-cyclohexyl-3-hydroxypropyl]-2,5-dioxo)-4-imidazolidineheptanoic acid] inhibits fibroblast proliferation and bleomycin-induced lung fibrosis in mice. J Pharmacol Exp Ther. 2010 Nov;335(2):472–479.
  • Nikitopoulou I, Manitsopoulos N, Kotanidou A, et al. Orotracheal treprostinil administration attenuates bleomycin-induced lung injury, vascular remodeling, and fibrosis in mice. Pulm Circ. 2019 Oct;9(4):2045894019881954.
  • Raghu G, Mouded M, Chambers DC, et al. A phase IIb randomized clinical study of an anti-α(v)β(6) monoclonal antibody in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2022 Nov 1;206(9):1128–1139. doi: 10.1164/rccm.202112-2824OC
  • Raghu G, Mouded M, Prasse A, et al. Randomized phase IIa clinical study of an anti-αvβ6 monoclonal antibody in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2022 Nov 01;206(9):1166–1168. doi: 10.1164/rccm.202205-0868LE
  • Wuyts WA, Valenzuela C, Jenkins G, et al. Late breaking abstract - Safety, tolerability and antifibrotic activity of bexotegrast: phase 2a INTEGRIS-IPF study (NCT04396756). Eur Respir J. 2023;62(suppl 67):OA1423.
  • Richeldi L, Fernandez Perez ER, Costabel U, et al. Pamrevlumab, an anti-connective tissue growth factor therapy, for idiopathic pulmonary fibrosis (PRAISE): a phase 2, randomised, double-blind, placebo-controlled trial. Lancet Respir Med. 2020 Jan;8(1):25–33.
  • FibroGen. Zephyrus I: evaluation of efficacy and safety of pamrevlumab in participants with idiopathic pulmonary fibrosis (IPF). https://classic.clinicaltrials.gov/show/NCT03955146; 2019.
  • FibroGen announces topline results from phase 3 ZEPHYRUS-1 study of pamrevlumab for the treatment of idiopathic pulmonary fibrosis [Internet]. San Francisco: Globe Newswire; 2023; Jun 26. Available from: https://fibrogen.gcs-web.com/news-releases/news-release-details/fibrogen-announces-topline-results-phase-3-zephyrus-1-study
  • Welk V, Pavlidou M, Wurzenberger C, et al. Development of PRS-220, a potential best-in-class, inhaled CTGF/CCN2 inhibitor for the treatment of IPF. Eur Respir J. 2021;58(suppl 65):A732.
  • Ingelheim B A study to find out whether BI 1015550 improves lung function in people with idiopathic pulmonary fibrosis (IPF). 2022. https://classic.clinicaltrials.gov/show/NCT05321069
  • Sgalla G, Simonetti J, Cortese S, et al. BI 1015550: an investigational phosphodiesterase 4B (PDE4B) inhibitor for lung function decline in idiopathic pulmonary fibrosis (IPF). Expert Opin Investig Drugs. 2023 Jan;32(1):17–23.
  • Richeldi L, Azuma A, Cottin V, et al. Trial of a preferential phosphodiesterase 4B inhibitor for idiopathic pulmonary fibrosis. N Engl J Med. 2022 Jun 9;386(23):2178–2187. doi: 10.1056/NEJMoa2201737
  • Squibb B-M A study to evaluate the efficacy, safety, and tolerability of BMS-986278 in participants with idiopathic pulmonary fibrosis. 2023. https://classic.clinicaltrials.gov/show/NCT06003426
  • Palmer SM, Snyder L, Todd JL, et al. Randomized, double-blind, placebo-controlled, phase 2 Trial of BMS-986020, a lysophosphatidic acid receptor antagonist for the treatment of idiopathic pulmonary fibrosis. Chest. 2018 Nov;154(5):1061–1069.
  • Corte TJ, Lancaster L, Swigris JJ, et al. Phase 2 trial design of BMS-986278, a lysophosphatidic acid receptor 1 (LPA 1) antagonist, in patients with idiopathic pulmonary fibrosis (IPF) or progressive fibrotic interstitial lung disease (PF-ILD). BMJ Open Respir Res. 2021 Dec;8(1):e001026.
  • Squibb BM. Bristol myers squibb’s investigational lpa1 antagonist reduces the rate of lung function decline in patients with idiopathic pulmonary fibrosis. Press Release; 2023. https://news.bms.com/news/details/2023/Bristol-Myers-Squibbs-Investigational-LPA1-Antagonist-Reduces-the-Rate-of-Lung-Function-Decline-in-Patients-with-Idiopathic-Pulmonary-Fibrosis/default.aspx
  • Amgen. A multicenter trial to evaluate the efficacy, safety and tolerability of HZN-825 in subjects with idiopathic pulmonary fibrosis. 2021. https://classic.clinicaltrials.gov/ct2/show/study/NCT05032066
  • Horizon Pharma Ireland, Ltd. An open-label extension trial of hznp-hzn-825-301 in adult participants with diffuse cutaneous systemic sclerosis (Diffuse Cutaneous SSc). Dublin Ireland; 2022. https://classic.clinicaltrials.gov/ct2/show/NCT05626751
  • Elmankabadi B, Ibrahim P, Wong C, et al. Cudetaxestat, a differentiated phase 2-ready investigational treatment for idiopathic pulmonary fibrosis. Eur Respir J. 2022;60(suppl 66):1144.
  • Lee G, Kang SU, Ryou J-H, et al. Late breaking abstract - BBT-877, a potent autotaxin inhibitor in clinical development to treat idiopathic pulmonary Fibrosis. Eur Respir J. 2019;54(suppl 63):A1293.
  • Maher TM, Ford P, Brown KK, et al. Ziritaxestat, a novel autotaxin Inhibitor, and lung function in idiopathic pulmonary fibrosis: the ISABELA 1 and 2 randomized clinical trials. JAMA. 2023;329(18):1567–1578. doi: 10.1001/jama.2023.5355
  • Waxman A, Restrepo-Jaramillo R, Thenappan T, et al. Inhaled treprostinil in pulmonary hypertension due to interstitial lung disease. N Engl J Med. 2021 Jan 28;384(4):325–334. doi: 10.1056/NEJMoa2008470
  • Waxman A, Restrepo-Jaramillo R, Thenappan T, et al. Long-term inhaled treprostinil for PH-ILD: INCREASE open-label extension study. Eur Respir J. 2023;61(6):2202414. doi: 10.1183/13993003.02414-2022
  • Therapeutics U Study of Efficacy and Safety of Inhaled Treprostinil in Subjects with Idiopathic Pulmonary Fibrosis. 2021. Available from: https://classic.clinicaltrials.gov/show/NCT04708782
  • Therapeutics U Multinational Study of Efficacy and Safety of Inhaled Treprostinil in Subjects with Idiopathic Pulmonary Fibrosis. 2022. Available from: https://classic.clinicaltrials.gov/show/NCT05255991
  • Burnham EL, Janssen WJ, Riches DWH, et al. The fibroproliferative response in acute respiratory distress syndrome: mechanisms and clinical significance. Eur Respir J. 2014;43(1):276–285. doi: 10.1183/09031936.00196412
  • Podolanczuk AJ, Richeldi L, Martinez FJ. The future of clinical trials in idiopathic pulmonary fibrosis. JAMA. 2023;329(18):1554–1555. doi: 10.1001/jama.2022.23955
  • Nureki S-I, Tomer Y, Venosa A, et al. Expression of mutant Sftpc in murine alveolar epithelia drives spontaneous lung fibrosis. J Clin Investig. 2018 Aug 31;128(9):4008–4024. doi: 10.1172/JCI99287
  • Ren F, Aliper A, Chen J, et al. A small-molecule TNIK inhibitor targets fibrosis in preclinical and clinical models. Nat Biotechnol. 2024 Mar 08. doi: 10.1038/s41587-024-02143-0
  • Yanagihara T, Chong SG, Vierhout M, et al. Current models of pulmonary fibrosis for future drug discovery efforts. Expert Opin Drug Discov. 2020 Aug;15(8):931–941.
  • Podolanczuk AJ, Kim JS, Cooper CB, et al. Design and rationale for the prospective treatment efficacy in IPF using genotype for NAC selection (PRECISIONS) clinical trial. BMC Pulm Med. 2022 Dec 13;22(1):475. doi: 10.1186/s12890-022-02281-8
  • Handa T, Tanizawa K, Oguma T, et al. Novel artificial intelligence-based technology for chest computed tomography analysis of idiopathic pulmonary fibrosis. Ann Am Thorac Soc. 2022 Mar;19(3):399–406.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.