526
Views
25
CrossRef citations to date
0
Altmetric
Review

Synaptic alterations associated with depression and schizophrenia: potential as a therapeutic target

, &
Pages 1195-1207 | Received 08 Feb 2016, Accepted 06 May 2016, Published online: 28 May 2016

References

  • Arendt T. Synaptic degeneration in Alzheimer’s disease. Acta Neuropathol. 2009 Jul;118(1):167–179.
  • Glantz LA, Gilmore JH, Lieberman JA, et al. Apoptotic mechanisms and the synaptic pathology of schizophrenia. Schizophr Res. 2006 Jan 1;81(1):47–63.
  • Betancur C, Sakurai T, Buxbaum JD. The emerging role of synaptic cell-adhesion pathways in the pathogenesis of autism spectrum disorders. Trends Neurosci. 2009 Jul;32(7):402–412.
  • Hall J, Romaniuk L, McIntosh AM, et al. Associative learning and the genetics of schizophrenia. Trends Neurosci. 2009 Jun;32(6):359–365.
  • Kessler RC. The costs of depression. Psychiatr Clin North Am. 2012 Mar;35(1):1–14.
  • Duman RS, Aghajanian GK. Synaptic dysfunction in depression: potential therapeutic targets. Science. 2012 Oct 5;338(6103):68–72.
  • Rajkowska G, Miguel-Hidalgo JJ, Wei J, et al. Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression. Biol Psychiatry. 1999 May 1;45(9):1085–1098.
  • Stockmeier CA, Mahajan GJ, Konick LC, et al. Cellular changes in the postmortem hippocampus in major depression. Biol Psychiatry. 2004 Nov 1;56(9):640–650.
  • Stockmeier CA, Rajkowska G. Cellular abnormalities in depression: evidence from postmortem brain tissue. Dialogues Clin Neurosci. 2004 Jun;6(2):185–197.
  • Kang HJ, Voleti B, Hajszan T, et al. Decreased expression of synapse-related genes and loss of synapses in major depressive disorder. Nat Med. 2012 Sep;18(9):1413–1417.
  • MacQueen G, Frodl T. The hippocampus in major depression: evidence for the convergence of the bench and bedside in psychiatric research? Mol Psychiatry. 2011 Mar;16(3):252–264.
  • Price JL, Drevets WC. Neurocircuitry of mood disorders. Neuropsychopharmacology. 2010 Jan;35(1):192–216.
  • Perlman SB, Almeida JR, Kronhaus DM, et al. Amygdala activity and prefrontal cortex-amygdala effective connectivity to emerging emotional faces distinguish remitted and depressed mood states in bipolar disorder. Bipolar Disord. 2012 Mar;14(2):162–174.
  • Perlman G, Simmons AN, Wu J, et al. Amygdala response and functional connectivity during emotion regulation: a study of 14 depressed adolescents. J Affect Disord. 2012 Jun;139(1):75–84.
  • Zeng L-L, Liu L, Liu Y, et al. Antidepressant treatment normalizes white matter volume in patients with major depression. PLoS One. 2012;7(8):e44248.
  • Aston C, Jiang L, Sokolov BP. Transcriptional profiling reveals evidence for signaling and oligodendroglial abnormalities in the temporal cortex from patients with major depressive disorder. Mol Psychiatry. 2005 Mar;10(3):309–322.
  • Kim S, Webster MJ. Correlation analysis between genome-wide expression profiles and cytoarchitectural abnormalities in the prefrontal cortex of psychiatric disorders. Mol Psychiatry. 2010 Mar;15(3):326–336.
  • Kim S, Webster MJ. Integrative genome-wide association analysis of cytoarchitectural abnormalities in the prefrontal cortex of psychiatric disorders. Mol Psychiatry. 2011 Apr;16(4):452–461.
  • Kendler KS, Karkowski LM, Prescott CA. Causal relationship between stressful life events and the onset of major depression. Am J Psychiatry. 1999 Jun;156(6):837–841.
  • Keller MC, Neale MC, Kendler KS. Association of different adverse life events with distinct patterns of depressive symptoms. Am J Psychiatry. 2007 Oct;164(10):1521–1529; quiz 1622.
  • Klengel T, Binder EB. Gene-environment interactions in major depressive disorder. Can J Psychiatry. 2013 Feb;58(2):76–83.
  • Hill MN, Hellemans KG, Verma P, et al. Neurobiology of chronic mild stress: parallels to major depression. Neurosci Biobehav Rev. 2012 Oct;36(9):2085–2117.
  • Li N, Liu R-J, Dwyer JM, et al. Glutamate N-methyl-D-aspartate receptor antagonists rapidly reverse behavioral and synaptic deficits caused by chronic stress exposure. Biol Psychiatry. 2011 Apr 15;69(8):754–761.
  • Radley JJ, Rocher AB, Miller M, et al. Repeated stress induces dendritic spine loss in the rat medial prefrontal cortex. Cereb Cortex. 2006 Mar;16(3):313–320.
  • Radley JJ, Rocher AB, Rodriguez A, et al. Repeated stress alters dendritic spine morphology in the rat medial prefrontal cortex. J Comp Neurol. 2008 Mar 1;507(1):1141–1150.
  • Brown SM, Henning S, Wellman CL. Mild, short-term stress alters dendritic morphology in rat medial prefrontal cortex. Cereb Cortex. 2005 Nov;15(11):1714–1722.
  • Izquierdo A, Wellman CL, Holmes A. Brief uncontrollable stress causes dendritic retraction in infralimbic cortex and resistance to fear extinction in mice. J Neuroscience. 2006 May 24;26(21):5733–5738.
  • Cook SC, Wellman CL. Chronic stress alters dendritic morphology in rat medial prefrontal cortex. J Neurobiol. 2004 Aug;60(2):236–248.
  • Watanabe Y, Gould E, McEwen BS. Stress induces atrophy of apical dendrites of hippocampal CA3 pyramidal neurons. Brain Res. 1992 Aug 21;588(2):341–345.
  • Magariños AM, McEwen BS. Stress-induced atrophy of apical dendrites of hippocampal CA3c neurons: involvement of glucocorticoid secretion and excitatory amino acid receptors. Neuroscience. 1995 Nov;69(1):89–98.
  • Sousa N, Lukoyanov NV, Madeira MD, et al. Reorganization of the morphology of hippocampal neurites and synapses after stress-induced damage correlates with behavioral improvement. Neuroscience. 2000;97(2):253–266.
  • Vyas A, Mitra R, Shankaranarayana Rao BS, et al. Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. J Neuroscience. 2002 Aug 1;22(15):6810–6818.
  • Liston C, Miller MM, Goldwater DS, et al. Stress-induced alterations in prefrontal cortical dendritic morphology predict selective impairments in perceptual attentional set-shifting. J Neuroscience. 2006 Jul 26;26(30):7870–7874.
  • Radley JJ, Rocher AB, Janssen WG, et al. Reversibility of apical dendritic retraction in the rat medial prefrontal cortex following repeated stress. Exp Neurol. 2005 Nov;196(1):199–203.
  • Goldwater DS, Pavlides C, Hunter RG, et al. Structural and functional alterations to rat medial prefrontal cortex following chronic restraint stress and recovery. Neuroscience. 2009 Dec 1;164(2):798–808.
  • Li N, Lee B, Liu R-J, et al. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science. 2010 Aug 20;329(5994):959–964.
  • Sweet RA, Fish KN, Lewis DA. Mapping synaptic pathology within cerebral cortical circuits in subjects with schizophrenia. Front Hum Neurosci. 2010;4:44.
  • Glausier JR, Lewis DA. Dendritic spine pathology in schizophrenia. Neuroscience. 2013 Oct 22;251:90–107.
  • Glantz LA, Lewis DA. Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch Gen Psychiatry. 2000 Jan;57(1):65–73.
  • McGlashan TH, Hoffman RE. Schizophrenia as a disorder of developmentally reduced synaptic connectivity. Arch Gen Psychiatry. 2000 Jul;57(7):637–648.
  • Gogtay N, Vyas NS, Testa R, et al. Age of onset of schizophrenia: perspectives from structural neuroimaging studies. Schizophr Bull. 2011 May;37(3):504–513.
  • Takahashi T, Wood SJ, Yung AR, et al. Progressive gray matter reduction of the superior temporal gyrus during transition to psychosis. Arch Gen Psychiatry. 2009 Apr;66(4):366–376.
  • Carpenter WT, Koenig JI. The evolution of drug development in schizophrenia: past issues and future opportunities. Neuropsychopharmacology. 2008 Aug;33(9):2061–2079.
  • Flores G, Morales-Medina JC, Diaz A. Neuronal and brain morphological changes in animal models of schizophrenia. Behav Brain Res. 2016 Mar 15;301:190–203.
  • Brenhouse HC, Lukkes JL, Andersen SL. Early life adversity alters the developmental profiles of addiction-related prefrontal cortex circuitry. Brain Sci. 2013;3(1):143–158.
  • Chocyk A, Bobula B, Dudys D, et al. Early-life stress affects the structural and functional plasticity of the medial prefrontal cortex in adolescent rats. Eur J Neurosci. 2013 Jul;38(1):2089–2107.
  • Cooke BM, Chowanadisai W, Breedlove SM. Post-weaning social isolation of male rats reduces the volume of the medial amygdala and leads to deficits in adult sexual behavior. Behav Brain Res. 2000 Dec 20;117(1–2):107–113.
  • Schubert MI, Porkess MV, Dashdorj N, et al. Effects of social isolation rearing on the limbic brain: a combined behavioral and magnetic resonance imaging volumetry study in rats. Neuroscience. 2009 Mar 3;159(1):21–30.
  • Muhammad A, Carroll C, Kolb B. Stress during development alters dendritic morphology in the nucleus accumbens and prefrontal cortex. Neuroscience. 2012 Aug 2;216:103–109.
  • Südhof TC. Neuroligins and neurexins link synaptic function to cognitive disease. Nature. 2008 Oct 16;455(7215):903–911.
  • Craig AM, Kang Y. Neurexin-neuroligin signaling in synapse development. Curr Opin Neurobiol. 2007 Feb;17(1):43–52.
  • Varoqueaux F, Aramuni G, Rawson RL, et al. Neuroligins determine synapse maturation and function. Neuron. 2006 Sep 21;51(6):741–754.
  • Yamagata M, Sanes JR, Weiner JA. Synaptic adhesion molecules. Curr Opin Cell Biol. 2003 Oct;15(5):621–632.
  • Boucard AA, Chubykin AA, Comoletti D, et al. A splice code for trans-synaptic cell adhesion mediated by binding of neuroligin 1 to alpha- and beta-neurexins. Neuron. 2005 Oct 20;48(2):229–236.
  • Varoqueaux F, Jamain S, Brose N. Neuroligin 2 is exclusively localized to inhibitory synapses. Eur J Cell Biol. 2004 Sep;83(9):449–456.
  • Hirao K, Hata Y, Ide N, et al. A novel multiple PDZ domain-containing molecule interacting with N-methyl-D-aspartate receptors and neuronal cell adhesion proteins. J Biol Chem. 1998 Aug 14;273(33):21105–21110.
  • Irie M, Hata Y, Takeuchi M, et al. Binding of neuroligins to PSD-95. Science. 1997 Sep 5;277(5331):1511–1515.
  • Meyer G, Varoqueaux F, Neeb A, et al. The complexity of PDZ domain-mediated interactions at glutamatergic synapses: a case study on neuroligin. Neuropharmacology. 2004 Oct;47(5):724–733.
  • Song JY, Ichtchenko K, Südhof TC, et al. Neuroligin 1 is a postsynaptic cell-adhesion molecule of excitatory synapses. Proc Natl Acad Sci U S A. 1999 Feb 2;96(3):1100–1105.
  • Graf ER, Zhang X, Jin S-X, et al. Neurexins induce differentiation of GABA and glutamate postsynaptic specializations via neuroligins. Cell. 2004 Dec 29;119(7):1013–1026.
  • Chih B, Engelman H, Scheiffele P. Control of excitatory and inhibitory synapse formation by neuroligins. Science. 2005 Feb 25;307(5713):1324–1328.
  • Levinson JN, Chéry N, Huang K, et al. Neuroligins mediate excitatory and inhibitory synapse formation: involvement of PSD-95 and neurexin-1beta in neuroligin-induced synaptic specificity. J Biol Chem. 2005 Apr 29;280(17):17312–17319.
  • Chubykin AA, Atasoy D, Etherton MR, et al. Activity-dependent validation of excitatory versus inhibitory synapses by neuroligin-1 versus neuroligin-2. Neuron. 2007 Jun 21;54(6):919–931.
  • Feng J, Schroer R, Yan J, et al. High frequency of neurexin 1beta signal peptide structural variants in patients with autism. Neurosci Lett. 2006 Nov 27;409(1):10–13.
  • Kim H-G, Kishikawa S, Higgins AW, et al. Disruption of neurexin 1 associated with autism spectrum disorder. Am J Hum Genet. 2008 Jan;82(1):199–207.
  • Yan J, Feng J, Schroer R, et al. Analysis of the neuroligin 4Y gene in patients with autism. Psychiatr Genet. 2008 Aug;18(4):204–207.
  • Kirov G, Gumus D, Chen W, et al. Comparative genome hybridization suggests a role for NRXN1 and APBA2 in schizophrenia. Hum Mol Genet. 2008 Feb 1;17(3):458–465.
  • Walsh T, McClellan JM, McCarthy SE, et al. Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science. 2008 Apr 25;320(5875):539–543.
  • Hines RM, Wu L, Hines DJ, et al. Synaptic imbalance, stereotypies, and impaired social interactions in mice with altered neuroligin 2 expression. J Neuroscience. 2008 Jun 11;28(24):6055–6067.
  • Kohl C, Riccio O, Grosse J, et al. Hippocampal neuroligin-2 overexpression leads to reduced aggression and inhibited novelty reactivity in rats. PLoS One. 2013;8(2):e56871.
  • Wöhr M, Silverman JL, Scattoni ML, et al. Developmental delays and reduced pup ultrasonic vocalizations but normal sociability in mice lacking the postsynaptic cell adhesion protein neuroligin2. Behav Brain Res. 2013 Aug 15;251:50–64.
  • Lupien SJ, McEwen BS, Gunnar MR, et al. Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat Rev Neurosci. 2009 Jun;10(6):434–445.
  • Van Der Kooij MA, Fantin M, Kraev I, et al. Impaired hippocampal neuroligin-2 function by chronic stress or synthetic peptide treatment is linked to social deficits and increased aggression. Neuropsychopharmacology. 2014 Apr;39(5):1148–1158.
  • Tzanoulinou S, García-Mompó C, Riccio O, et al. Neuroligin-2 expression in the prefrontal cortex is involved in attention deficits induced by peripubertal stress. Neuropsychopharmacology. 2016 Feb;41(3):751–761.
  • Millan MJ, Agid Y, Brüne M, et al. Cognitive dysfunction in psychiatric disorders: characteristics, causes and the quest for improved therapy. Nat Rev Drug Discov. 2012 Feb;11(2):141–168.
  • Kohl C, Wang X-D, Grosse J, et al. Hippocampal neuroligin-2 links early-life stress with impaired social recognition and increased aggression in adult mice. Psychoneuroendocrinology. 2015 May;55:128–143.
  • Dodge KA, Bates JE, Pettit GS. Mechanisms in the cycle of violence. Science. 1990 Dec 21;250(4988):1678–1683.
  • Fonagy P. Early-life trauma and the psychogenesis and prevention of violence. Ann N Y Acad Sci. 2004 Dec;1036:181–200.
  • Veenema AH. Early life stress, the development of aggression and neuroendocrine and neurobiological correlates: what can we learn from animal models? Front Neuroendocrinol. 2009 Oct;30(4):497–518.
  • Sandi C. Stress, cognitive impairment and cell adhesion molecules. Nat Rev Neurosci. 2004 Dec;5(12):917–930.
  • Bisaz R, Schachner M, Sandi C. Causal evidence for the involvement of the neural cell adhesion molecule, NCAM, in chronic stress-induced cognitive impairments. Hippocampus. 2011 Jan;21(1):56–71.
  • Gilabert-Juan J, Castillo-Gomez E, Pérez-Rando M, et al. Chronic stress induces changes in the structure of interneurons and in the expression of molecules related to neuronal structural plasticity and inhibitory neurotransmission in the amygdala of adult mice. Exp Neurol. 2011 Nov;232(1):33–40.
  • Aisa B, Elizalde N, Tordera R, et al. Effects of neonatal stress on markers of synaptic plasticity in the hippocampus: implications for spatial memory. Hippocampus. 2009 Dec;19(12):1222–1231.
  • Chocyk A, Dudys D, Przyborowska A, et al. Impact of maternal separation on neural cell adhesion molecules expression in dopaminergic brain regions of juvenile, adolescent and adult rats. Pharmacol Rep. 2010 Nov-Dec;62(6):1218–1224.
  • Marco EM, Valero M, De La Serna O, et al. Maternal deprivation effects on brain plasticity and recognition memory in adolescent male and female rats. Neuropharmacology. 2013;68:223–231.
  • Karst H, Joëls M. Effect of chronic stress on synaptic currents in rat hippocampal dentate gyrus neurons. J Neurophysiol. 2003 Jan;89(1):625–633.
  • Reagan LP, Rosell DR, Wood GE, et al. Chronic restraint stress up-regulates GLT-1 mRNA and protein expression in the rat hippocampus: reversal by tianeptine. Proc Natl Acad Sci U S A. 2004 Feb 17;101(7):2179–2184.
  • Hu W, Zhang M, Czéh B, et al. Stress impairs GABAergic network function in the hippocampus by activating nongenomic glucocorticoid receptors and affecting the integrity of the parvalbumin-expressing neuronal network. Neuropsychopharmacology. 2010 Jul;35(8):1693–1707.
  • Park SW, Lee JG, Seo MK, et al. Effects of mood-stabilizing drugs on dendritic outgrowth and synaptic protein levels in primary hippocampal neurons. Bipolar Disord. 2015 May;17(3):278–290.
  • Schuman EM, Dynes JL, Steward O. Synaptic regulation of translation of dendritic mRNAs. J Neuroscience. 2006 Jul 5;26(27):7143–7146.
  • Kang H, Schuman EM. A requirement for local protein synthesis in neurotrophin-induced hippocampal synaptic plasticity. Science. 1996 Sep 6;273(5280):1402–1406.
  • Huber KM, Kayser MS, Bear MF. Role for rapid dendritic protein synthesis in hippocampal mGluR-dependent long-term depression. Science. 2000 May 19;288(5469):1254–1257.
  • Cracco JB, Serrano P, Moskowitz SI, et al. Protein synthesis-dependent LTP in isolated dendrites of CA1 pyramidal cells. Hippocampus. 2005;15(5):551–556.
  • Jernigan CS, Goswami DB, Austin MC, et al. The mTOR signaling pathway in the prefrontal cortex is compromised in major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2011 Aug 15;35(7):1774–1779.
  • Ota KT, Liu R-J, Voleti B, et al. REDD1 is essential for stress-induced synaptic loss and depressive behavior. Nat Med. 2014 May;20(5):531–535.
  • Tang J, Xue W, Xia B, et al. Involvement of normalized NMDA receptor and mTOR-related signaling in rapid antidepressant effects of Yueju and ketamine on chronically stressed mice. Sci Rep. 2015;5:13573.
  • Chandran A, Iyo AH, Jernigan CS, et al. Reduced phosphorylation of the mTOR signaling pathway components in the amygdala of rats exposed to chronic stress. Prog Neuropsychopharmacol Biol Psychiatry. 2013 Jan 10;40:240–245.
  • Denk MC, Rewerts C, Holsboer F, et al. Monitoring ketamine treatment response in a depressed patient via peripheral mammalian target of rapamycin activation. Am J Psychiatry. 2011 Jul;168(7):751–752.
  • Yang C, Zhou Z-Q, Gao Z-Q, et al. Acute increases in plasma mammalian target of rapamycin, glycogen synthase kinase-3beta, and eukaryotic elongation factor 2 phosphorylation after ketamine treatment in three depressed patients. Biol Psychiatry. 2013 Jun 15;73(12):e35–e36.
  • Berman RM, Cappiello A, Anand A, et al. Antidepressant effects of ketamine in depressed patients. Biol Psychiatry. 2000 Feb 15;47(4):351–354.
  • Zarate CA Jr., Singh JB, Carlson PJ, et al. A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry. 2006 Aug;63(8):856–864.
  • Murrough JW, Perez AM, Pillemer S, et al. Rapid and longer-term antidepressant effects of repeated ketamine infusions in treatment-resistant major depression. Biol Psychiatry. 2013 Aug 15;74(4):250–256.
  • Abdallah CG, Sanacora G, Duman RS, et al. Ketamine and rapid-acting antidepressants: a window into a new neurobiology for mood disorder therapeutics. Annu Rev Med. 2015;66:509–523.
  • Sanacora G, Schatzberg AF. Ketamine: promising path or false prophecy in the development of novel therapeutics for mood disorders? Neuropsychopharmacology. 2015 Apr;40(5):1307.
  • Burgdorf J, Zhang X-L, Nicholson KL, et al. GLYX-13, a NMDA receptor glycine-site functional partial agonist, induces antidepressant-like effects without ketamine-like side effects. Neuropsychopharmacology. 2013 Apr;38(5):729–742.
  • Moskal JR, Burch R, Burgdorf JS, et al. GLYX-13, an NMDA receptor glycine site functional partial agonist enhances cognition and produces antidepressant effects without the psychotomimetic side effects of NMDA receptor antagonists. Expert Opin Investig Drugs. 2014 Feb;23(2):243–254.
  • Lu Y, Wang C, Xue Z, et al. PI3K/AKT/mTOR signaling-mediated neuropeptide VGF in the hippocampus of mice is involved in the rapid onset antidepressant-like effects of GLYX-13. Int J Neuropsychopharmacol. 2015 Mar;18(5):pyu110.
  • Elfving B, Christensen T, Ratner C, et al. Transient activation of mTOR following forced treadmill exercise in rats. Synapse. 2013 Sep;67(9):620–625.
  • Opal MD, Klenotich SC, Morais M, et al. Serotonin 2C receptor antagonists induce fast-onset antidepressant effects. Mol Psychiatry. 2014 Oct;19(10):1106–1114.
  • Jaworski J, Spangler S, Seeburg DP, et al. Control of dendritic arborization by the phosphoinositide-3ʹ-kinase-Akt-mammalian target of rapamycin pathway. J Neuroscience. 2005 Dec 7;25(49):11300–11312.
  • Kumar V, Zhang M-X, Swank MW, et al. Regulation of dendritic morphogenesis by Ras-PI3K-Akt-mTOR and Ras-MAPK signaling pathways. J Neuroscience. 2005 Dec 7;25(49):11288–11299.
  • Grider MH, Park D, Spencer DM, et al. Lipid raft-targeted Akt promotes axonal branching and growth cone expansion via mTOR and Rac1, respectively. J Neurosci Res. 2009 Nov 1;87(14):3033–3042.
  • Tavazoie SF, Alvarez VA, Ridenour DA, et al. Regulation of neuronal morphology and function by the tumor suppressors Tsc1 and Tsc2. Nat Neurosci. 2005 Dec;8(12):1727–1734.
  • Urbanska M, Gozdz A, Swiech LJ, et al. Mammalian target of rapamycin complex 1 (mTORC1) and 2 (mTORC2) control the dendritic arbor morphology of hippocampal neurons. J Biol Chem. 2012 Aug 31;287(36):30240–30256.
  • Luoni A, Macchi F, Papp M, et al. Lurasidone exerts antidepressant properties in the chronic mild stress model through the regulation of synaptic and neuroplastic mechanisms in the rat prefrontal cortex. Int J Neuropsychopharmacol. 2015 Feb;18(4):pyu061.
  • Molteni R, Calabrese F, Racagni G, et al. Antipsychotic drug actions on gene modulation and signaling mechanisms. Pharmacol Ther. 2009 Oct;124(1):74–85.
  • Calabrese F, Molteni R, Riva MA. Antistress properties of antidepressant drugs and their clinical implications. Pharmacol Ther. 2011 Oct;132(1):39–56.
  • Björkholm C, Monteggia LM. BDNF – a key transducer of antidepressant effects. Neuropharmacology. 2016 Mar;102:72–79.
  • Karege F, Perret G, Bondolfi G, et al. Decreased serum brain-derived neurotrophic factor levels in major depressed patients. Psychiatry Res. 2002 Mar 15;109(2):143–148.
  • Molendijk ML, Bus BA, Spinhoven P, et al. Serum levels of brain-derived neurotrophic factor in major depressive disorder: state-trait issues, clinical features and pharmacological treatment. Mol Psychiatry. 2011 Nov;16(11):1088–1095.
  • Kreinin A, Lisson S, Nesher E, et al. Blood BDNF level is gender specific in severe depression. PLoS One. 2015;10(5):e0127643.
  • Wolkowitz OM, Wolf J, Shelly W, et al. Serum BDNF levels before treatment predict SSRI response in depression. Prog Neuropsychopharmacol Biol Psychiatry. 2011 Aug 15;35(7):1623–1630.
  • Sen S, Duman R, Sanacora G. Serum brain-derived neurotrophic factor, depression, and antidepressant medications: meta-analyses and implications. Biol Psychiatry. 2008 Sep 15;64(6):527–532.
  • Chen B, Dowlatshahi D, MacQueen GM, et al. Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication. Biol Psychiatry. 2001 Aug 15;50(4):260–265.
  • Green MJ, Matheson SL, Shepherd A, et al. Brain-derived neurotrophic factor levels in schizophrenia: a systematic review with meta-analysis. Mol Psychiatry. 2011 Sep;16(9):960–972.
  • Weickert CS, Ligons DL, Romanczyk T, et al. Reductions in neurotrophin receptor mRNAs in the prefrontal cortex of patients with schizophrenia. Mol Psychiatry. 2005 Jul;10(7):637–650.
  • Reinhart V, Bove SE, Volfson D, et al. Evaluation of TrkB and BDNF transcripts in prefrontal cortex, hippocampus, and striatum from subjects with schizophrenia, bipolar disorder, and major depressive disorder. Neurobiol Dis. 2015 May;77:220–227.
  • Niitsu T, Ishima T, Yoshida T, et al. A positive correlation between serum levels of mature brain-derived neurotrophic factor and negative symptoms in schizophrenia. Psychiatry Res. 2014 Feb 28;215(2):268–273.
  • Zugman A, Pedrini M, Gadelha A, et al. Serum brain-derived neurotrophic factor and cortical thickness are differently related in patients with schizophrenia and controls. Psychiatry Res. 2015 Oct 30;234(1):84–89.
  • Egan MF, Kojima M, Callicott JH, et al. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell. 2003 Jan 24;112(2):257–269.
  • Chen Z-Y, Patel PD, Sant G, et al. Variant brain-derived neurotrophic factor (BDNF) (Met66) alters the intracellular trafficking and activity-dependent secretion of wild-type BDNF in neurosecretory cells and cortical neurons. J Neuroscience. 2004 May 5;24(18):4401–4411.
  • Yu H, Wang D-D, Wang Y, et al. Variant brain-derived neurotrophic factor Val66Met polymorphism alters vulnerability to stress and response to antidepressants. J Neuroscience. 2012 Mar 21;32(12):4092–4101.
  • Taylor WD, Züchner S, McQuoid DR, et al. Allelic differences in the brain-derived neurotrophic factor Val66Met polymorphism in late-life depression. Am J Geriatr Psychiatry. 2007 Oct;15(10):850–857.
  • Schumacher J, Jamra RA, Becker T, et al. Evidence for a relationship between genetic variants at the brain-derived neurotrophic factor (BDNF) locus and major depression. Biol Psychiatry. 2005 Aug 15;58(4):307–314.
  • Verhagen M, Van Der Meij A, Van Deurzen PA, et al. Meta-analysis of the BDNF Val66Met polymorphism in major depressive disorder: effects of gender and ethnicity. Mol Psychiatry. 2010 Mar;15(3):260–271.
  • Eisenberg DP, Ianni AM, Wei S-M, et al. Brain-derived neurotrophic factor (BDNF) Val(66)Met polymorphism differentially predicts hippocampal function in medication-free patients with schizophrenia. Mol Psychiatry. 2013 Jun;18(6):713–720.
  • Barde YA, Edgar D, Thoenen H. Purification of a new neurotrophic factor from mammalian brain. Embo J. 1982;1(5):549–553.
  • Park H, Poo M-M. Neurotrophin regulation of neural circuit development and function. Nat Rev Neurosci. 2013 Jan;14(1):7–23.
  • Aid T, Kazantseva A, Piirsoo M, et al. Mouse and rat BDNF gene structure and expression revisited. J Neurosci Res. 2007 Feb 15;85(3):525–535.
  • Pruunsild P, Kazantseva A, Aid T, et al. Dissecting the human BDNF locus: bidirectional transcription, complex splicing, and multiple promoters. Genomics. 2007 Sep;90(3):397–406.
  • Baj G, Leone E, Chao MV, et al. Spatial segregation of BDNF transcripts enables BDNF to differentially shape distinct dendritic compartments. Proc Natl Acad Sci U S A. 2011 Oct 4;108(40):16813–16818.
  • Baj G, Del Turco D, Schlaudraff J, et al. Regulation of the spatial code for BDNF mRNA isoforms in the rat hippocampus following pilocarpine-treatment: a systematic analysis using laser microdissection and quantitative real-time PCR. Hippocampus. 2013 May;23(5):413–423.
  • An JJ, Gharami K, Liao G-Y, et al. Distinct role of long 3ʹ UTR BDNF mRNA in spine morphology and synaptic plasticity in hippocampal neurons. Cell. 2008 Jul 11;134(1):175–187.
  • Luoni A, Berry A, Calabrese F, et al. Delayed BDNF alterations in the prefrontal cortex of rats exposed to prenatal stress: preventive effect of lurasidone treatment during adolescence. Eur Neuropsychopharmacol. 2014 Jun;24(6):986–995.
  • Luoni A, Berry A, Raggi C, et al. Sex-specific effects of prenatal stress on Bdnf expression in response to an acute challenge in rats: a role for Gadd45beta. Mol Neurobiol. 2015 Dec 16. [Epub ahead of print]
  • Berry A, Panetta P, Luoni A, et al. Decreased Bdnf expression and reduced social behavior in periadolescent rats following prenatal stress. Dev Psychobiol. 2015 Apr;57(3):365–373.
  • Molteni R, Rossetti AC, Savino E, et al. Chronic mild stress modulates activity-dependent transcription of BDNF in rat hippocampal slices. Neural Plast. 2016;2016:2592319.
  • Caspi A, Hariri AR, Holmes A, et al. Genetic sensitivity to the environment: the case of the serotonin transporter gene and its implications for studying complex diseases and traits. Am J Psychiatry. 2010 May;167(5):509–527.
  • Molteni R, Cattaneo A, Calabrese F, et al. Reduced function of the serotonin transporter is associated with decreased expression of BDNF in rodents as well as in humans. Neurobiol Dis. 2010 Mar;37(3):747–755.
  • Calabrese F, Guidotti G, Middelman A, et al. Lack of serotonin transporter alters BDNF expression in the rat brain during early postnatal development. Mol Neurobiol. 2013 Aug;48(1):244–256.
  • Calabrese F, Van Der Doelen RH, Guidotti G, et al. Exposure to early life stress regulates Bdnf expression in SERT mutant rats in an anatomically selective fashion. J Neurochem. 2015 Jan;132(1):146–154.
  • Calabrese F, Molteni R, Cattaneo A, et al. Long-term duloxetine treatment normalizes altered brain-derived neurotrophic factor expression in serotonin transporter knockout rats through the modulation of specific neurotrophin isoforms. Mol Pharmacol. 2010 May;77(5):846–853.
  • Luoni A, Hulsken S, Cazzaniga G, et al. Behavioural and neuroplastic properties of chronic lurasidone treatment in serotonin transporter knockout rats. Int J Neuropsychopharmacol. 2013 Jul;16(6):1319–1330.
  • Calabrese F, Luoni A, Guidotti G, et al. Modulation of neuronal plasticity following chronic concomitant administration of the novel antipsychotic lurasidone with the mood stabilizer valproic acid. Psychopharmacol (Berl). 2013 Mar;226(1):101–112.
  • Dias BG, Banerjee SB, Duman RS, et al. Differential regulation of brain derived neurotrophic factor transcripts by antidepressant treatments in the adult rat brain. Neuropharmacology. 2003 Sep;45(4):553–563.
  • Calabrese F, Guidotti G, Racagni G, et al. Reduced neuroplasticity in aged rats: a role for the neurotrophin brain-derived neurotrophic factor. Neurobiol Aging. 2013 Dec;34(12):2768–2776.
  • Lu B, Pang PT, Woo NH. The yin and yang of neurotrophin action. Nat Rev Neurosci. 2005 Aug;6(8):603–614.
  • Yeh C-M, Huang C-C, Hsu K-S. Prenatal stress alters hippocampal synaptic plasticity in young rat offspring through preventing the proteolytic conversion of pro-brain-derived neurotrophic factor (BDNF) to mature BDNF. J Physiol. 2012 Feb 15;590(4):991–1010.
  • Calabrese F, Molteni R, Maj PF, et al. Chronic duloxetine treatment induces specific changes in the expression of BDNF transcripts and in the subcellular localization of the neurotrophin protein. Neuropsychopharmacology. 2007 Nov;32(11):2351–2359.
  • Calabrese F, Molteni R, Gabriel C, et al. Modulation of neuroplastic molecules in selected brain regions after chronic administration of the novel antidepressant agomelatine. Psychopharmacol (Berl). 2011 May;215(2):267–275.
  • Chiaruttini C, Sonego M, Baj G, et al. BDNF mRNA splice variants display activity-dependent targeting to distinct hippocampal laminae. Mol Cell Neurosci. 2008 Jan;37(1):11–19.
  • Molteni R, Calabrese F, Chourbaji S, et al. Depression-prone mice with reduced glucocorticoid receptor expression display an altered stress-dependent regulation of brain-derived neurotrophic factor and activity-regulated cytoskeleton-associated protein. J Psychopharmacol. 2010 Apr;24(4):595–603.
  • Molteni R, Calabrese F, Cattaneo A, et al. Acute stress responsiveness of the neurotrophin BDNF in the rat hippocampus is modulated by chronic treatment with the antidepressant duloxetine. Neuropsychopharmacology. 2009 May;34(6):1523–1532.
  • Fumagalli F, Calabrese F, Luoni A, et al. The AMPA receptor potentiator Org 26576 modulates stress-induced transcription of BDNF isoforms in rat hippocampus. Pharmacol Res. 2012 Feb;65(2):176–181.
  • Fumagalli F, Calabrese F, Luoni A, et al. Modulation of BDNF expression by repeated treatment with the novel antipsychotic lurasidone under basal condition and in response to acute stress. Int J Neuropsychopharmacol. 2012 Mar;15(2):235–246.
  • Whiteford HA, Ferrari AJ, Degenhardt L, et al. The global burden of mental, neurological and substance use disorders: an analysis from the Global Burden of Disease Study 2010. PLoS One. 2015;10(2):e0116820.
  • Gottmann K, Mittmann T, Lessmann V. BDNF signaling in the formation, maturation and plasticity of glutamatergic and GABAergic synapses. Exp Brain Res. 2009 Dec;199(3–4):203–234.
  • Leal G, Comprido D, Duarte CB. BDNF-induced local protein synthesis and synaptic plasticity. Neuropharmacology. 2014 Jan;76(Pt C):639–656.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.