324
Views
6
CrossRef citations to date
0
Altmetric
Review

Prospects of osteoactivin in tissue regeneration

, &
Pages 1357-1364 | Received 27 Apr 2016, Accepted 08 Jul 2016, Published online: 30 Jul 2016

References

  • Sandberg MM, Aro HT, Vuorio EI. Gene expression during bone repair. Clin Orthop Relat Res. 1993 Apr;(289):292–312.
  • Tatsuyama K, Maezawa Y, Baba H, et al. Expression of various growth factors for cell proliferation and cytodifferentiation during fracture repair of bone. Eur J Histochem. 2000;44(3):269–278.
  • Schmid GJ, Kobayashi C, Sandell LJ, et al. Fibroblast growth factor expression during skeletal fracture healing in mice. Dev Dyn. 2009 Mar;238(3):766–774.
  • Safadi FF, Xu J, Smock SL, et al. Cloning and characterization of osteoactivin, a novel cDNA expressed in osteoblasts. J Cell Biochem. 2001;84(1):12–26.
  • Abdelmagid SM, Barbe MF, Rico MC, et al. Osteoactivin, an anabolic factor that regulates osteoblast differentiation and function. Exp Cell Res. 2008 Aug 1;314(13):2334–2351.
  • Shikano S, Bonkobara M, Zukas PK, et al. Molecular cloning of a dendritic cell-associated transmembrane protein, DC-HIL, that promotes RGD-dependent adhesion of endothelial cells through recognition of heparan sulfate proteoglycans. J Biol Chem. 2001 Mar 16;276(11):8125–8134.
  • Chung JS, Sato K, Dougherty II, et al. DC-HIL is a negative regulator of T lymphocyte activation. Blood. 2007 May 15;109(10):4320–4327.
  • Bandari PS, Qian J, Yehia G, et al. Hematopoietic growth factor inducible neurokinin-1 type: a transmembrane protein that is similar to neurokinin 1 interacts with substance P. Regul Pept. 2003 Mar 28;111(1–3):169–178.
  • Okamoto I, Pirker C, Bilban M, et al. Seven novel and stable translocations associated with oncogenic gene expression in malignant melanoma. Neoplasia. 2005 Apr;7(4):303–311.
  • Kuan CT, Wakiya K, Dowell JM, et al. Glycoprotein nonmetastatic melanoma protein B, a potential molecular therapeutic target in patients with glioblastoma multiforme. Clin Cancer Res. 2006 Apr 1;12(7 Pt 1):1970–1982.
  • Tse KF, Jeffers M, Pollack VA, et al. CR011, a fully human monoclonal antibody-auristatin E conjugate, for the treatment of melanoma. Clin Cancer Res. 2006 Feb 15;12(4):1373–1382.
  • Pollack VA, Alvarez E, Tse KF, et al. Treatment parameters modulating regression of human melanoma xenografts by an antibody-drug conjugate (CR011-vcMMAE) targeting GPNMB. Cancer Chemother Pharmacol. 2007 Aug;60(3):423–435.
  • Weterman MA, Ajubi N, Van Dinter IM, et al. Nmb, a novel gene, is expressed in low-metastatic human melanoma cell lines and xenografts. Int J Cancer. 1995 Jan 3;60(1):73–81.
  • Anderson MG, Smith RS, Hawes NL, et al. Mutations in genes encoding melanosomal proteins cause pigmentary glaucoma in DBA/2J mice. Nat Genet. 2002 Jan;30(1):81–85.
  • Anderson MG, Libby RT, Mao M, et al. Genetic context determines susceptibility to intraocular pressure elevation in a mouse pigmentary glaucoma. BMC Biol. 2006;4:20.
  • Marks SC Jr HD. The structure and development of bone. In: Bilezikian JP, Raisz LG, Rodan GA, editors. Principles of bone biology. San Diego (CA): Academic Press Inc; 1996. p. p69±85.
  • Stein GSLJ, Stein JL, van Wijnen AJ, et al. Mechanisms regulating osteoblast proliferation and differentiation. In: Bilezikian JP, Raisz LG, Rodan GA, editors. Principles of bone biology. San Diego (CA): Academic Press; 1996. p. 69±85.
  • Le Borgne R, Planque N, Martin P, et al. The AP-3-dependent targeting of the melanosomal glycoprotein QNR-71 requires a di-leucine-based sorting signal. J Cell Sci. 2001 Aug;114(Pt 15):2831–2841.
  • Piccirillo R, Palmisano I, Innamorati G, et al. An unconventional dileucine-based motif and a novel cytosolic motif are required for the lysosomal and melanosomal targeting of OA1. J Cell Sci. 2006 May 15;119(Pt 10):2003–2014.
  • Theos AC, Truschel ST, Tenza D, et al. A lumenal domain-dependent pathway for sorting to intralumenal vesicles of multivesicular endosomes involved in organelle morphogenesis. Dev Cell. 2006 Mar;10(3):343–354.
  • Setaluri V. Sorting and targeting of melanosomal membrane proteins: signals, pathways, and mechanisms. Pigment Cell Res. 2000 Jun;13(3):128–134.
  • Selim AA. Osteoactivin bioinformatic analysis: prediction of novel functions, structural features, and modes of action. Med Sci Monit. 2009 Feb;15(2):MT19- MT33.
  • James CG, Appleton CT, Ulici V, et al. Microarray analyses of gene expression during chondrocyte differentiation identifies novel regulators of hypertrophy. Mol Biol Cell. 2005 Nov;16(11):5316–5333.
  • Ogawa T, Nikawa T, Furochi H, et al. Osteoactivin upregulates expression of MMP-3 and MMP-9 in fibroblasts infiltrated into denervated skeletal muscle in mice. Am J Physiol Cell Physiol. 2005 Sep;289(3):C697–C707.
  • Ripoll VM, Irvine KM, Ravasi T, et al. Gpnmb is induced in macrophages by IFN-gamma and lipopolysaccharide and acts as a feedback regulator of proinflammatory responses. J Immunology. 2007 May 15;178(10):6557–6566.
  • Rose AA, Siegel PM. Osteoactivin/HGFIN: is it a tumor suppressor or mediator of metastasis in breast cancer? Breast Cancer Res. 2007;9(6):403.
  • Rose AA, Pepin F, Russo C, et al. Osteoactivin promotes breast cancer metastasis to bone. Mol Cancer Res. 2007 Oct;5(10):1001–1014.
  • Rich JN, Shi Q, Hjelmeland M, et al. Bone-related genes expressed in advanced malignancies induce invasion and metastasis in a genetically defined human cancer model. J Biol Chem. 2003 May 2;278(18):15951–15957.
  • Metz RL, Yehia G, Fernandes H, et al. Cloning and characterization of the 5ʹ flanking region of the HGFIN gene indicate a cooperative role among p53 and cytokine-mediated transcription factors: relevance to cell cycle regulation. Cell Cycle. 2005 Feb;4(2):315–322.
  • Furochi H, Tamura S, Takeshima K, et al. Overexpression of osteoactivin protects skeletal muscle from severe degeneration caused by long-term denervation in mice. J Med Invest. 2007 Aug;54(3–4):248–254.
  • Scheffers MS, Le H, Van Der Bent P, et al. Distinct subcellular expression of endogenous polycystin-2 in the plasma membrane and Golgi apparatus of MDCK cells. Hum Mol Genet. 2002 Jan 1;11(1):59–67.
  • Hoashi T, Muller J, Vieira WD, et al. The repeat domain of the melanosomal matrix protein PMEL17/GP100 is required for the formation of organellar fibers. J Biol Chem. 2006 Jul 28;281(30):21198–21208.
  • Chow KM, Csuhai E, Juliano MA, et al. Studies on the subsite specificity of rat nardilysin (N-arginine dibasic convertase). J Biol Chem. 2000 Jun 30;275(26):19545–19551.
  • Thiele EA, Marek KL, Eipper BA. Tissue-specific regulation of peptidyl-glycine alpha-amidating monooxygenase expression. Endocrinology. 1989 Nov;125(5):2279–2288.
  • Hardingham TE, Fosang AJ, Dudhia J. The structure, function and turnover of aggrecan, the large aggregating proteoglycan from cartilage. Eur J Clin Chem Clin Biochem. 1994 Apr;32(4):249–257.
  • Apweiler R, Hermjakob H, Sharon N. On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim Biophys Acta. 1999 Dec 6;1473(1):4–8.
  • Johanning K, Juliano MA, Juliano L, et al. Specificity of prohormone convertase 2 on proenkephalin and proenkephalin-related substrates. J Biol Chem. 1998 Aug 28;273(35):22672–22680.
  • Selim AA, Castaneda JL, Owen TA, et al. The role of osteoactivin-derived peptides in osteoblast differentiation. Med Sci Monit. 2007 Dec;13(12):BR259- BR270.
  • Lowe ED, Tews I, Cheng KY, et al. Specificity determinants of recruitment peptides bound to phospho-CDK2/cyclin A. Biochemistry. 2002 Dec 31;41(52):15625–15634.
  • Biondi RM, Nebreda AR. Signalling specificity of Ser/Thr protein kinases through docking-site-mediated interactions. Biochem J. 2003 May 15;372(Pt 1):1–13.
  • Hung AY, Sheng M. PDZ domains: structural modules for protein complex assembly. J Biol Chem. 2002 Feb 22;277(8):5699–5702.
  • Brushia RJ, Walsh DA. Phosphorylase kinase: the complexity of its regulation is reflected in the complexity of its structure. Front Biosci. 1999 Sep;15(4):D618- D641.
  • Dorsey FC, Muthusamy T, Whitt MA, et al. A novel role for a YXXPhi motif in directing the caveolin-dependent sorting of membrane-spanning proteins. J Cell Sci. 2007 Aug 1;120(Pt 15):2544–2554.
  • Komori T. Requisite roles of Runx2 and Cbfb in skeletal development. J Bone Miner Metab. 2003;21(4):193–197.
  • Komori T, Yagi H, Nomura S, et al. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell. 1997 May 30;89(5):755–764.
  • Mishina Y, Starbuck MW, Gentile MA, et al. Bone morphogenetic protein type IA receptor signaling regulates postnatal osteoblast function and bone remodeling. J Biol Chem. 2004 Jun 25;279(26):27560–27566.
  • Lian JB, Stein GS, Javed A, et al. Networks and hubs for the transcriptional control of osteoblastogenesis. Rev Endocr Metab Disord. 2006 Jun;7(1–2):1–16.
  • Abdelmagid SM, Barbe MF, Arango-Hisijara I, et al. Osteoactivin acts as downstream mediator of BMP-2 effects on osteoblast function. J Cell Physiol. 2007 Jan;210(1):26–37.
  • Sheng MH, Wergedal JE, Mohan S, et al. Osteoactivin is a novel osteoclastic protein and plays a key role in osteoclast differentiation and activity. FEBS Lett. 2008 Apr 30;582(10):1451–1458.
  • Abdelmagid SM, Sondag GR, Moussa FM, et al. Mutation in osteoactivin promotes receptor activator of NFkappaB ligand (RANKL)-mediated osteoclast differentiation and survival but inhibits osteoclast function. J Biol Chem. 2015 Aug 14;290(33):20128–20146.
  • Moussa FM, Hisijara IA, Sondag GR, et al. Osteoactivin promotes osteoblast adhesion through HSPG and alphavbeta1 integrin. J Cell Biochem. 2014 Jul;115(7):1243–1253.
  • Raynaud CM, Maleki M, Lis R, et al. Comprehensive characterization of mesenchymal stem cells from human placenta and fetal membrane and their response to osteoactivin stimulation. Stem Cells Int. 2012;2012:658356.
  • Arosarena OA, Del Carpio-Cano FE, Dela Cadena RA, et al. Comparison of bone morphogenetic protein-2 and osteoactivin for mesenchymal cell differentiation: effects of bolus and continuous administration. J Cell Physiol. 2011 Nov;226(11):2943–2952.
  • Du X, Xie Y, Xian CJ, et al. Role of FGFs/FGFRs in skeletal development and bone regeneration. J Cell Physiol. 2012 Dec;227(12):3731–3743.
  • Cui Q, Dighe AS, Irvine JN Jr. Combined angiogenic and osteogenic factor delivery for bone regenerative engineering. Curr Pharm Des. 2013;19(19):3374–3383.
  • Hu X, Zhang P, Xu Z, et al. GPNMB enhances bone regeneration by promoting angiogenesis and osteogenesis: potential role for tissue engineering bone. J Cell Biochem. 2013 Dec;114(12):2729–2737.
  • Sondag GR, Salihoglu S, Lababidi SL, et al. Osteoactivin induces transdifferentiation of C2C12 myoblasts into osteoblasts. J Cell Physiol. 2014 Jul;229(7):955–966.
  • Kuhn NZ, Tuan RS. Regulation of stemness and stem cell niche of mesenchymal stem cells: implications in tumorigenesis and metastasis. J Cell Physiol. 2010 Feb;222(2):268–277.
  • Mountziaris PM, Mikos AG. Modulation of the inflammatory response for enhanced bone tissue regeneration. Tissue Eng Part B Rev. 2008 Jun;14(2):179–186.
  • Takayanagi H. Osteoimmunology and the effects of the immune system on bone. Nat Rev Rheumatol. 2009 Dec;5(12):667–676.
  • Chung J-S, Bonkobara M, Tomihari M, et al. The DC-HIL/syndecan-4 pathway inhibits human allogeneic T-cell responses. Eur J Immunol. 2009 Apr;39(4):965–974.
  • Yang X, Ricciardi BF, Hernandez-Soria A, et al. Callus mineralization and maturation are delayed during fracture healing in interleukin-6 knockout mice. Bone. 2007 Dec;41(6):928–936.
  • Abdelmagid SM, Barbe MF, Hadjiargyrou M, et al. Temporal and spatial expression of osteoactivin during fracture repair. J Cell Biochem. 2010 Oct 1;111(2):295–309.
  • Bateman JP, Safadi FF, Susin C, et al. Exploratory study on the effect of osteoactivin on bone formation in the rat critical-size calvarial defect model. J Periodontal Res. 2012 Apr;47(2):243–247.
  • Frara N, Abdelmagid SM, Sondag GR, et al. Transgenic expression of osteoactivin/gpnmb enhances bone formation in vivo and osteoprogenitor differentiation ex vivo. J Cell Physiol. 2016 Jan;231(1):72–83.
  • Abdelmagid SM, Belcher JY, Moussa FM, et al. Mutation in osteoactivin decreases bone formation in vivo and osteoblast differentiation in vitro. Am J Pathol. 2014 Mar;184(3):697–713.
  • Wang Y-L, Hu Y-J, Zhang F-H. Effects of GPNMB on proliferation and odontoblastic differentiation of human dental pulp cells. Int J Clin Exp Pathol. 2015;8(6):6498–6504.
  • Li B, Castano AP, Hudson TE, et al. The melanoma-associated transmembrane glycoprotein Gpnmb controls trafficking of cellular debris for degradation and is essential for tissue repair. Faseb J. 2010 Dec;24(12):4767–4781.
  • Haralanova-Ilieva B, Ramadori G, Armbrust T. Expression of osteoactivin in rat and human liver and isolated rat liver cells. J Hepatol. 2005 Apr;42(4):565–572.
  • Kumagai K, Tabu K, Sasaki F, et al. Glycoprotein nonmetastatic melanoma B (Gpnmb)-positive macrophages contribute to the balance between fibrosis and fibrolysis during the repair of acute liver injury in mice. PLoS One. 2015;10(11):e0143413.
  • Fowlkes JL, Serra DM, Bunn RC, et al. Regulation of insulin-like growth factor (IGF)-I action by matrix metalloproteinase-3 involves selective disruption of IGF-I/IGF-binding protein-3 complexes. Endocrinology. 2004 Feb;145(2):620–626.
  • Lewis MP, Tippett HL, Sinanan AC, et al. Gelatinase-B (matrix metalloproteinase-9; MMP-9) secretion is involved in the migratory phase of human and murine muscle cell cultures. J Muscle Res Cell Motil. 2000 Apr;21(3):223–233.
  • Bullard KM, Mudgett J, Scheuenstuhl H, et al. Stromelysin-1-deficient fibroblasts display impaired contraction in vitro. J Surg Res. 1999 Jun 1;84(1):31–34.
  • Bullard KM, Lund L, Mudgett JS, et al. Impaired wound contraction in stromelysin-1-deficient mice. Ann Surg. 1999 Aug;230(2):260–265.
  • Frara N, Abdelmagid SM, Tytell M, et al. Growth and repair factors, osteoactivin, matrix metalloproteinase and heat shock protein 72, increase with resolution of inflammation in musculotendinous tissues in a rat model of repetitive grasping. BMC Musculoskelet Disord. 2016;17(1):34.
  • Vaz CM, Reis RL, Cunha AM. Use of coupling agents to enhance the interfacial interactions in starch-EVOH/hydroxylapatite composites. Biomaterials. 2002 Jan;23(2):629–635.
  • Bellucci D, Sola A, Cannillo V. Hydroxyapatite and tricalcium phosphate composites with bioactive glass as second phase: state of the art and current applications. J Biomed Mater Res A. 2016 Apr;104(4):1030–1056.
  • Hirota M, Shima T, Sato I, et al. Development of a biointegrated mandibular reconstruction device consisting of bone compatible titanium fiber mesh scaffold. Biomaterials. 2016;75:223–236.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.