418
Views
21
CrossRef citations to date
0
Altmetric
Review

Siderophores; iron scavengers: the novel & promising targets for pathogen specific antifungal therapy

, , , , , , & show all
Pages 1477-1489 | Received 27 Jan 2016, Accepted 25 Oct 2016, Published online: 11 Nov 2016

References

  • Warnock DW. Trends in the epidemiology of invasive fungal infections. Jpn J Med Mycol. 2007;48:1–12.
  • Binder U, Lass-Flörl C. Epidemiology of invasive fungal infections in the mediterranean area. Medit J Hemat Infect Dis. 2011;3(1):1–10.
  • Brown GD, Denning DW, Levitz SM. Tackling human fungal infections. Science. 2012;336:647.
  • Lai CC, Tan CK, Huang YT, et al. Current challenges in the management of invasive fungal infections. J Infect Chemother. 2008;14:77–85.
  • Low CY, Rotstein C. Emerging fungal infections in immunocompromised patients. F1000 Medicine Reports. 2011;3:14. DOI:10.3410/M3-14.
  • Giri S, Kindo AJ. A review of Candida species causing blood stream infection. Indian J Med Microbiol. 2012;30(3):270–278.
  • Quindós G. Epidemiology of candidaemia and invasive candidiasis. A changing face. RevIberoamMicol. 2014;31(1):42–48.
  • Filioti J, Spiroglou K, Panteliadis CP, et al. Invasive candidiasis in pediatric intensive care patients: epidemiology, risk factors, management, and outcome. Intensive Care Med. 2007;33:1272–1283.
  • Zaoutis T. Candidemia in children. Curr Med Res Opin. 2010;26:1761–1768.
  • Walsh TJ, Anaissie EJ, Denning DW, et al. Treatment of aspergillosis: clinical practice guidelines of the infectious diseases society of America. Clin Infect Dis. 2008;46:327–360.
  • Steinbach WJ. Epidemiology of invasive fungal infections in neonates and children. ClinMicrobiol Infect. 2010;16:1321–1327.
  • Park BJ, Wannemuehler KA, Marston BJ, et al. Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS. Aids. 2009;23:525–530.
  • Mwaba P, Mwansa J, Chintu C, et al. Clinical presentation, natural history, and cumulative death rates of 230 adults with primary cryptococcal meningitis in Zambian AIDS patients treated under local conditions. Postgrad Med J. 2001;77:769–773.
  • Luma HN, Temfack E, Halle MP, et al. Cryptococcal meningoencephalitis in human immunodeficiency virus/acquired immunodeficiency syndrome in douala, cameroon: a cross sectional study. N Am J Med Sci. 2013;5(8):486–491.
  • Lotholary O, Poizat G, Zeller V, et al. Long-term outcome of AIDS-associated cryptococcosis in the era of combination antiretroviral therapy. Aids. 2006;20:2183–2191.
  • Groll AH, Piscitelli SC, Walsh TJ. Clinical pharmacology of systemic antifungal agents: a comprehensive review of agents in clinical use, current investigational compounds, and putative targets for antifungal drug development. AdvPharmacol. 1998;44:343–500.
  • Dutcher JD. The discovery and development of amphotericin B. Dis Chest. 1968;54(suppl 1):296–298.
  • Brajtburg J, Powderly WG, Kobayashi GS, et al. Amphotericin B: current understanding of mechanisms of action. Antimicrob Agents Chemother. 1990;34(2):183–188.
  • Saliba F, Dupont B. Renal impairment and amphotericin B formulations in patients with invasive fungal infections. MedMycol. 2008;46(2):97–112.
  • Chamilos G, Kontoyiannis DP. Update on antifungal drug resistance mechanisms of aspergillus fumigatus. Drug Resist Updat. 2005;8(6):344–358.
  • Pfaller MA, Diekema DJ, Gibbs DL, et al. Candida krusei, a multidrug- resistant opportunistic fungal pathogen: geographic and temporal trends from the ARTEMIS DISK antifungal surveillance program, 2001 to 2005. J Clin Microbiol. 2008;46(2):515–521.
  • Pfaller MA, Messer SA, Hollis RJ, et al. Variation in susceptibility of bloodstream isolates of Candida glabrata to fluconazole according to patient age and geographic location in the United States in 2001 to 2007. J Clin Microbiol. 2009;47(10):3185–3190.
  • Lewis RE. Current concepts in antifungal pharmacology. Mayo Clinic Proceedings. 2011;86(8):805–817.
  • Walker SS, Xu Y, Triantafyllou I, et al. Discovery of a novel class of orally active antifungal β-1,3-d-glucan synthase inhibitors. Antimicrob Agents Chemother. 2011;55(11):5099–5106.
  • Perlin DS. Resistance to echinocandin class antifungal drugs. Drug Resist Updat. 2007;10(3):121–130.
  • Tandara L, Salamunic I. Iron metabolism: current facts and future directions. Biochem Med. 2012;22:311–328.
  • Ganz T. Iron in innate immunity: starve the invaders. Curr Opin Immunol. 2009;21:63–67.
  • Haas H, Eisendle M, Turgeon BG. Siderophores in fungal physiology and virulence. Annu Rev Phytopathol. 2008;46:149–187.
  • Kornitzer D. Fungal mechanisms for host iron acquisition. Curr Opin Microbiol. 2009;12(4):377–383.
  • Santos R, Buisson N, Knight S, et al. Haemin uptake and use as an iron source by Candida albicans: role of CaHMX1-encoded haem oxygenase. Microbiology. 2003;149:579–588.
  • Eisendle M, Oberegger H. Zadra I and Haas H. The siderophore system is essential for viability of Aspergillus nidulans: functional analysis of two genes encoding l-ornithine N5-monooxygenase (sidA) and a non-ribosomal peptide synthetase (sidC). Mol Microbiol. 2003;49:359–375.
  • Schrettl M, Bignell E, Kragl C, et al. Siderophore biosynthesis but not reductive iron assimilation is essential for Aspergillus fumigatus virulence. J Exp Med. 2004;200(9):1213–1219.
  • Schrettl M, Haas H. Iron homeostasis – achilles’ heel of aspergillus fumigatus?. Curr Opin Microbiol. 2011;14:400–405.
  • Haas H. Iron- A key nexus in the virulence of aspergillus fumigatus. Front Microbiol. 2012;3:28. DOI:10.3389/fmicb.2012.00028.
  • Nevitt T, Thiele DJ. Host iron withholding demands siderophore utilization for Candida glabrata to survive macrophage killing. PLoS Pathog. 2011;7(3):e1001322. DOI:10.1371/journal.ppat.1001322.
  • Haas H, Schoeser M, Lesuisse E, et al. Characterization of the aspergillus nidulans transporters for the siderophores enterobactin and triacetylfusarinine C. Biochem J. 2003;371:505–513.
  • Philpott CC, Protchenko O. Response to iron deprivation in saccharomyces cerevisiae. Eukaryotic Cell. 2008;7:20–27.
  • Van Der Helm D, Winkelmann G. Hydroxamates and polycarbonates as iron transport agents (siderophores) in fungi. In: Winkelmann G, Winge DR, editors. Metal ions in fungi. Decker: New York; 1994. p. 39–148.
  • Renshaw JC, Robson GD, Trinci APJ, et al. Fungal siderophores: structures, functions and applications. Mycol Res. 2002;106(10):1123–1142.
  • Miethke M, Marahiel MA. Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev. 2007;71:413–451.
  • Wallner A, Blatzer M, Schrettl M, et al. Ferricrocin, a siderophore involved in intra and transcellular iron distribution in aspergillus fumigatus. Appl Environ Microbiol. 2009;75:4194–4196.
  • Mootz HD, Schwarzer D, Marahiel MA. Ways of assembling complex natural products on modular nonribosomal peptide synthetases. Chembiochem. 2002;3:490–504.
  • Schafferer L, Beckmann N, Binder U, et al. AmcA—a putative mitochondrial ornithine transporter supporting fungal siderophore biosynthesis. Front Microbiol. 2015;6:252. DOI:10.3389/fmicb.2015.00252.
  • Hissen AH, Wan AN, Warwas ML, et al. The aspergillus fumigatus siderophore biosynthetic gene sidA, encoding L-ornithine N5-oxygenase, is required for virulence. Infect Immun. 2005;73(9):5493–5503.
  • Blatzer M, Schrettl M, Sarg B, et al. SidL, an aspergillus fumigatus transacetylase involved in biosynthesis of the siderophores ferricrocin and hydroxyferricrocin. Appl Environ Microbiol. 2011;77(14):4959–4966.
  • Schrettl M, Bignell E, Kragl C, et al. Distinct roles for intra- and extracellular siderophores during aspergillus fumigatus infection. PLoS Pathog. 2007;3(9):1195–1207.
  • Yasmin S, Alcazar-Fuoli L, Gründlinger M, et al. Mevalonate governs interdependency of ergosterol and siderophore biosyntheses in the fungal pathogen aspergillus fumigatus. Proc Natl Acad Sci U S A. 2012;109(8):E497–E504.
  • Haas H. Fungal siderophore metabolism with a focus on aspergillus fumigatus. Nat Prod Rep. 2014;31(10):1266–1276.
  • Schrettl M, Kim HS, Eisendle M, et al. SreA-mediated iron regulation in aspergillus fumigatus. Mol Microbiol. 2008;70(1):27–43.
  • Schrettl M, Beckmann N, Varga J, et al. HapX-mediated adaption to iron starvation is crucial for virulence of aspergillus fumigatus. PLoS Pathogens. 2010;6(9):e1001124.
  • Pao SS, Paulsen IT, Saier MH Jr. Major facilitator superfamily. Microbiol Mol BiolRev. 1998;62:1–34.
  • Winkelmann G. Siderophore transport in fungi. In: Winkelmann G, editor. Microbial transport systems. Weinheim, Germany: Wiley-VCH; 2001. p. 463–479.
  • Heymann P, Gerads M, Schaller M, et al. The siderophore iron transporter of Candida albicans (Sit1p/Arn1p) mediates uptake of ferrichrome-type siderophores and is required for epithelial invasion. Infect. Immun. 2002;70:5246–5255.
  • Tangen KL, Jung WH, Sham AP, et al. The iron- and cAMP- regulated gene SIT1 influences ferrioxamine B utilization, melanization and cell wall structure in cryptococcus neoformans. Microbiology. 2007;153:29–41.
  • Lesuisse E, Blaiseau PL, Dancis A, et al. Siderophore uptake and use by the yeast saccharomyces cerevisiae. Microbiology. 2001;147:289–298.
  • Hsiang T, Baillie DL. Comparison of the yeast proteome to other fungal genomes to find core fungal genes. J Mol Evol. 2005;60:475–483.
  • Shakoury-Elizeh M, Tiedeman J, Rashford J, et al. Transcriptional remodeling in response to iron deprivation in saccharomyces cerevisiae. Mol Biol Cell. 2004;15:1233–1243.
  • Lan CY, Rodarte G, Murillo LA, et al. Regulatory networks affected by iron availability in Candida albicans. Mol Microbiol. 2004;53:1451–1469.
  • Oberegger H, Schoeser M, Zadra I, et al. SreA is involved in regulation of siderophore biosynthesis, utilization and uptake in aspergillus nidulans. Mol Microbiol. 2001;41:1077–1089.
  • Jung WH, Sham A, White R, et al. Iron regulation of the major virulence factors in the aids-associated pathogen cryptococcus neoformans. PLoS Biol. 2006;4(12):e410. DOI:10.1371/journal.pbio.0040410.
  • Ueta R, Fujiwara N, Iwai K, et al. Mechanism underlying the iron dependent nuclear export of the iron-responsive transcription factor Aft1p in Saccharomyces cerevisiae. Mol Biol Cell. 2007;18:2980–2990.
  • Eisendle M, Schrettl M, Kragl C, et al. The intracellular siderophore ferricrocin is involved in iron storage, oxidative-stress resistance, germination, and sexual development in aspergillus nidulans. Eukaryot Cell. 2006;5:1596–1603.
  • Gsaller F, Eisendle M, Lechner BE, et al. The interplay between vacuolar and siderophore-mediated iron storage in aspergillus fumigatus. Metallomics. 2012;4(12):1262–1270.
  • Nairz M, Haschka D, Demetz E, et al. Iron at the interface of immunity and infection. Front Pharmacol. 2014;5:152. DOI:10.3389/fphar.2014.00152.
  • Ganz T, Nemeth E. Iron homeostasis in host defence and inflammation. Nat Rev Immunol. 2015;15(8):500–510.
  • Farnaud S, Evans RW. Lactoferrin-a multifunctional protein with antimicrobial properties. Mol Immunol. 2003;40:395–405.
  • Gupta AK, Skinner AR. Ciclopirox for the treatment of superficial fungal infections: a review. Int J Dermatol. 2003;42(1):3–9.
  • Okamoto T, Tanida T, Wei B, et al. Regulation of fungal infection by a combination of amphotericin B and Peptide 2, a lactoferrin peptide that activates neutrophils. Clin Diagn Lab Immunol. 2004;11(6):1111–1119.
  • Zarember KA, Cruz AR, Huang C-Y, et al. Antifungal activities of natural and synthetic iron chelators alone and in combination with azole and polyene antibiotics against aspergillusfumigatus. Antimicrob Agents Chemother. 2009;53(6):2654–2656.
  • Ibrahim AS, Gebremariam T, French SW, et al. The iron chelator deferasirox enhances liposomalamphotericin B efficacy in treating murine invasive pulmonary aspergillosis. J Antimicrob Chemother. 2010;65(2):289–292.
  • Kobayashi T, Kakeya H, Miyazaki T, et al. Synergistic antifungal effect of lactoferrin with azoleAntifungals against Candida albicans and a proposal for a new treatment method for invasive candidiasis. Jpn J Infect Dis. 2011;64:292–296.
  • Lin L, Pantapalangkoor P, Tan B, et al. transferrin iron starvation therapy for lethal bacterial and fungal infections. J Infect Dis. 2014;210(2):254–264.
  • Kondori N, Baltzer L, Dolphin GT, et al. Fungicidal activity of human lactoferrin-derived peptides based on the antimicrobial αβ region. Int J Antimicrob Agents. 2011;37(1):51–57.
  • Lai YW, Carter D, Campbell L, et al. Iron chelating agents as synergents in combination antifungal therapy. 18th International Society for Human and Animal Mycology. 2012. p. 17907.
  • Mayadas TN, Cullere X, Lowell CA. The multifaceted functions of neutrophils. Annu Rev Pathol. 2014;9:181–218.
  • Correnti C, Strong RK. Mammalian siderophores, siderophore-binding lipocalins, and the labile iron pool. J Biol Chem. 2012;287(17):13524–13531.
  • Fluckinger M, Haas H, Merschak P, et al. Human tear lipocalin exhibits antimicrobial activity by scavenging microbial siderophores. Antimicrob Agents Chemother. 2004;48:3367–3372.
  • Leal SM, Roy S, Vareechon C, et al. targeting iron acquisition blocks infection with the fungal pathogens aspergillusfumigatus and fusarium oxysporum. PLoS Pathogens. 2013;9(7):e1003436.
  • Zhang D-L, Senecal T, Ghosh MC, et al. Hepcidin regulates ferroportin expression and intracellular iron homeostasis of erythroblasts. Blood. 2011;118(10):2868–2877.
  • Smith CL, Arvedson TL, Cooke KS, et al. IL-22 regulates iron availability in vivo through the induction of hepcidin. J Immunol. 2013;191(4):1845–1855.
  • Pinto LJ, Moore MM. Screening method to identify inhibitors of siderophore bio- synthesis in the opportunistic fungal pathogen, aspergillusfumigatus. Lett Appl Microbiol. 2009;49(1):8–13.
  • Balhara M, Ruhil S, Kumar M, et al. An anti-aspergillus protein from escherichia coli DH5α: Putative inhibitor of siderophore biosynthesis in aspergillusfumigatus. Mycoses. 2014;57:153–162.
  • Olucha J, Lamb AL. Mechanistic and structural studies of the N-hydroxylating flavoprotein monooxygenases. Bioorg Chem. 2011;39(5–6):171–177.
  • Franceschini S, Fedkenheuer M, Vogelaar NJ, et al. Structural Insight into the mechanism of oxygen activation and substrate selectivity of flavin-depndent hydroxylating monooxygenases. Biochemistry. 2012;51(36):7043–7045.
  • Badieyan S, Bach RD, Sobrado P. Mechanism of N-hydroxylation catalyzed by flavin-dependent monooxygenases. J Org Chem. 2015;80(4):2139–2147.
  • Qi J, Kizjakina K, Robinson R, et al. A fluorescence polarization binding assay to identify inhibitors of flavin-dependent monooxygenases. Anal Biochem. 2012;425(1):80–87.
  • Robinson R, Qureshi IA, Klancher CA, et al. Contribution to catalysis of ornithine binding residues in N5-monooxygenase. Arch Biochem Biophys. 2015;585:25–31.
  • Rodgers J, Stone TW, Barrett MP, et al. Kynurenine pathway inhibition reduces central nervous system inflammation in a model of human African trypanosomiasis. Brain. 2009;132:1259–1267.
  • Zwilling D, Huang SY, Sathyasaikumar KV, et al. Kynurenine3-monooxygenase inhibition in blood ameliorates neuro-degeneration. Cell. 2011;145:863–874.
  • Felnagle EA, Jackson EE, Chan YA, et al. Nonribosomal peptide synthetases involved in the production of medically relevant natural products. Mol Pharm. 2008;5(2):191–211.
  • Horbach R, Graf A, Weihmann F, et al. Sfp-type 4′-phosphopantetheinyl transferase is indispensable for fungal pathogenicity. Plant Cell. 2009;21:3379–3396.
  • Allen G, Bromley M, Kaye SJ, et al. Functional analysis of a mitochondrial phosphopantetheinyl transferase (PPTase) gene pptB in aspergillusfumigatus. Fungal Genet Biol. 2011;48:456–464.
  • Kosa NM, Foley TL, Burkart MD. Fluorescent techniques for discovery and characterization of phosphopantetheinyl transferase inhibitors. J Antibiot (Tokyo). 2014;67:113–120.
  • Koglin A, Walsh CT. Highlight: structural insights into nonribosomal peptide enzymatic assembly lines. Nat Prod Rep. 2009;26(8):987–1000.
  • Finking R, Neumüller A, Solsbacher J, et al. Aminoacyl adenylate substrate analogues for the inhibition of adenylation domains of nonribosomal peptide synthetases. Chembiochem. 2003;4(9):903–906.
  • Ferreras JA, Ryu JS, Di Lello F, et al. Small-molecule inhibition of siderophore biosynthesis in mycobacterium tuberculosis and yersiniapestis. Nat Chem Biol. 2005;1(1):29–32.
  • Somu RV, Boshoff H, Qiao C, et al. Rationally designed nucleoside antibiotics that inhibit siderophore biosynthesis of mycobacterium tuberculosis. J Med Chem. 2006;49(1):31–34.
  • Cisar JS, Tan DS. Small molecule inhibition of microbial natural product biosynthesis – an emerging antibiotic strategy. Chem Soc Rev. 2008;37(7):1320–1329.
  • Ueda H, Shoku Y, Hayashi N, et al. X-ray crystallographic conformational study of 5ʹ-O-[N-(L-alanyl)-sulfamoyl]adenosine, a substrate analogue for alanyl-tRNAsynthetase. BiochimBiophysActa. 1991;1080(2):126–134.
  • Cisar JS, Ferreras JA, Soni RK, et al. Exploiting ligand conformation in selective inhibition of non-ribosomal peptide synthetase amino acid adenylation with designed macrocyclic small molecules. J Am Chem Soc. 2007;129(25):7752–7753.
  • Stack D, Neville C, Doyle S. Nonribosomal peptide synthesis in aspergillusfumigatus and other fungi. Microbiology. 2007;153(5):1297–1306.
  • Lee TV, Johnson LJ, Johnson RD, et al. Structure of a eukaryotic nonribosomal peptide synthetaseadenylation domain that activates a large hydroxamate amino acid in siderophore biosynthesis. J Biol Chem. 2010;285(4):2415–2427.
  • Lee TV, Lott JS, Johnson RD, et al. Expression and purification of an adenylation domain from a eukaryotic non-ribosomal peptide synthetase: using structural genomics tools for a challenging target. Protein ExprPurif. 2010;74(2):162–168.
  • Sorensen JL, Knudsen M, Hansen FT, et al. Fungal NRPS-Dependent Siderophores: From Function to Prediction. Biosynthesis and Molecular Genetics of Fungal Secondary Metabolites Fungal Biology. 2014;317–339. doi: 10.1007/978-1-4939-1191-2_15.
  • Bushley KE, Turgeon BG. Phylogenomics reveals subfamilies of fungal nonribosomal peptide synthetases and their evolutionary relationships. BMC Evol Biol. 2010;10:26. DOI:10.1186/1471-2148-10-26.
  • Galgóczy L, Nyilasi I, Papp T, et al. Are statins applicable for the prevention and treatment of zygomycosis? Clin Infect Dis. 2009;49(3):483–484.
  • Macreadie IG, Johnson G, Schlosser T, et al. Growth inhibition of Candida species and Aspergillus fumigatus by statins. FEMS Microbiol Lett. 2006;262:9–13.
  • Chamilos G, Lewis RE, Kontoyiannis DP. Lovastatin has significant activity against zygomycetes and interacts synergistically with voriconazole. Antimicrob Agents Chemother. 2006;50(1):96–103.
  • Nyilasi I, Kocsubé S, Krizsán K, et al. In vitro synergistic interactions of the effects of various statins and azoles against some clinically important fungi. FEMS Microbiol Lett. 2010;307:175–184.
  • Brüggemann RJ, Alffenaar JW, Blijlevens NM, et al. Clinical relevance of the pharmacokinetic interactions of azole antifungal drugs with other co-administered agents. Clin Infect Dis. 2009;48(10):1441–1458.
  • Miller MJ, Malouin F. Microbial iron chelators as drug delivery agents: the rational design and synthesis of siderophore-drug conjugates. Acc Chem Res. 1993;26:241–249.
  • Stearman R, Yuan DS, Yamaguchi-Iwai Y, et al. A permease-oxidase complex involved in high-affinity iron uptake in yeast. Science. 1996;271:1552–1557.
  • Wencewicz TA, Möllmann U, Long TE, et al. Is drug release necessary for antimicrobial activity of siderophore-drug conjugates? syntheses and biological studies of the naturally occurring salmycin “Trojan Horse” antibiotics and synthetic desferridanoxamine-antibiotic conjugates. Biometals. 2009;22(4):633–648.
  • Bernier G, Girijavallabhan V, Murray A, et al. Desketoneoenactin-siderophore conjugates for Candida: evidence of iron transport-dependent species selectivity. Antimicrob Agents Chemother. 2005;49(1):241–248.
  • Lupetti A, Welling MM, Pauwels EK, et al. Detection of fungal infections using radiolabeled antifungal agents. Curr Drug Targets. 2005;6:945–954.
  • Emery T, Hoffer PB. Siderophore-mediated mechanism of gallium uptake demonstrated in the microorganism ustilago sphaerogena. J Nucl Med. 1980;21:935–939.
  • Yokoyama A, Ohmomo Y, Horiuchi K, et al. Deferoxamine, a promising bifunctional chelating agent for labeling proteins with gallium: ga-67 DF-HAS—concise communication. J Nucl Med. 1982;23:909–914.
  • Petrik M, Haas H, Dobrozemsky G, et al. 68Ga-Siderophores for PET imaging of invasive pulmonary aspergillosis: proof of principle. J Nucl Med. 2010;51(4):639–645.
  • Haas H, Petrik M, Decristoforo C. An iron-mimicking, trojan horse-entering fungi—has the time come for molecular imaging of fungal infections? PLoS Pathog. 2015;11(1):e1004568. DOI:10.1371/journal.ppat.1004568

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.