712
Views
3
CrossRef citations to date
0
Altmetric
Review

Trace amine-associated receptor 1: a multimodal therapeutic target for neuropsychiatric diseases

ORCID Icon, , , , & ORCID Icon
Pages 513-526 | Received 09 Feb 2018, Accepted 21 May 2018, Published online: 05 Jun 2018

References

  • Grandy DK. Trace amine-associated receptor 1—family archetype or iconoclast? Pharmacology & Therapeutics. 2007;116(3):355–390.
  • Berry MD, Gainetdinov RR, Hoener MC, et al. Pharmacology of human trace amine-associated receptors: therapeutic opportunities and challenges. Pharmacol Ther. 2017 Jul 16;180:161–180.
  • Borowsky B, Adham N, Jones KA, et al. Trace amines: identification of a family of mammalian G protein-coupled receptors. Proc Natl Acad Sci U S A. 2001 Jul 31;98(16):8966–8971. PubMed PMID: 11459929; PubMed Central PMCID: PMCPMC55357.
  • Bunzow JR, Sonders MS, Arttamangkul S, et al. Amphetamine, 3,4-methylenedioxymethamphetamine, lysergic acid diethylamide, and metabolites of the catecholamine neurotransmitters are agonists of a rat trace amine receptor. Mol Pharmacol. 2001 Dec;60(6):1181–1188. PubMed PMID: 11723224.
  • Lindemann L, Hoener MC. A renaissance in trace amines inspired by a novel GPCR family. Trends Pharmacol Sci. 2005 May;26(5):274–281. PubMed PMID: 15860375
  • Liberles SD, Buck LB. A second class of chemosensory receptors in the olfactory epithelium. Nature. 2006 Aug 10;442(7103):645–650. PubMed PMID: 16878137.
  • Asif-Malik A, Hoener MC, Canales JJ. Interaction between the trace amine-associated receptor 1 and the dopamine D2 receptor controls cocaine’s neurochemical actions. Sci Rep. 2017 Oct 24;7(1):13901. 10.1038/s41598-017-14472-z. PubMed PMID: 29066851; PubMed Central PMCID: PMCPMC5655641.
  • Espinoza S, Salahpour A, Masri B, et al. Functional interaction between trace amine-associated receptor 1 and dopamine D2 receptor. Mol Pharmacol. 2011 Sep;80(3):416–425. PubMed PMID: 21670104; PubMed Central PMCID: PMCPMC3164335.
  • Leo D, Mus L, Espinoza S, et al. Taar1-mediated modulation of presynaptic dopaminergic neurotransmission: role of D2 dopamine autoreceptors. Neuropharmacology. 2014 Jun;81:283–291. PubMed PMID: 24565640.
  • Bradaia A, Trube G, Stalder H, et al. The selective antagonist EPPTB reveals TAAR1-mediated regulatory mechanisms in dopaminergic neurons of the mesolimbic system. Proc Natl Acad Sci U S A. 2009 Nov 24;106(47):20081–20086. PubMed PMID: 19892733; PubMed Central PMCID: PMCPMC2785295.
  • Revel FG, Moreau JL, Gainetdinov RR, et al. TAAR1 activation modulates monoaminergic neurotransmission, preventing hyperdopaminergic and hypoglutamatergic activity. Proc Natl Acad Sci U S A. 2011 May 17;108(20):8485–8490. PubMed PMID: 21525407; PubMed Central PMCID: PMCPMC3101002.
  • Revel F, Bradaia A, Trube G, et al. Modulation of dopaminergic activity in the mesolimbic system by trace amine-associated receptor 1 (TAAR1) modification. Eur Neuropsychopharmacol. 2009;19:S273.
  • Revel FG, Moreau JL, Gainetdinov RR, et al. Trace amine-associated receptor 1 partial agonism reveals novel paradigm for neuropsychiatric therapeutics. Biol Psychiatry. 2012 Dec 1;72(11):934–942. PubMed PMID: 22705041.
  • Revel FG, Moreau JL, Pouzet B, et al. A new perspective for schizophrenia: TAAR1 agonists reveal antipsychotic- and antidepressant-like activity, improve cognition and control body weight. Mol Psychiatry. 2013 May;18(5):543–556. PubMed PMID: 22641180.
  • Stalder H, Hoener MC, Norcross RD. Selective antagonists of mouse trace amine-associated receptor 1 (mTAAR1): discovery of EPPTB (RO5212773). Bioorg Med Chem Lett. 2011 Feb 15;21(4):1227–1231. PubMed PMID: 21237643.
  • Scanlan TS, Suchland KL, Hart ME, et al. 3-Iodothyronamine is an endogenous and rapid-acting derivative of thyroid hormone. Nat Med. 2004 Jun;10(6):638–642. PubMed PMID: 15146179.
  • Hoefig CS, Wuensch T, Rijntjes E, et al. Biosynthesis of 3-iodothyronamine from t4 in murine intestinal tissue. Endocrinology. 2015 Nov;156(11):4356–4364. PubMed PMID: 26348473.
  • Galli E, Marchini M, Saba A, et al. Detection of 3-iodothyronamine in human patients: a preliminary study. J Clin Endocrinol Metab. 2012 Jan;97(1):E69–74. PubMed PMID: 22031514.
  • Hoefig CS, Kohrle J, Brabant G, et al. Evidence for extrathyroidal formation of 3-iodothyronamine in humans as provided by a novel monoclonal antibody-based chemiluminescent serum immunoassay. J Clin Endocrinol Metab. 2011 Jun;96(6):1864–1872. PubMed PMID: 21490071.
  • Laurino A, De Siena G, Saba A, et al. In the brain of mice, 3-iodothyronamine (T1AM) is converted into 3-iodothyroacetic acid (TA1) and it is included within the signaling network connecting thyroid hormone metabolites with histamine. Eur J Pharmacol. 2015 Aug 15;761:130–134. PubMed PMID: 25941083.
  • Manni ME, De Siena G, Saba A, et al. Pharmacological effects of 3-iodothyronamine (T1AM) in mice include facilitation of memory acquisition and retention and reduction of pain threshold. Br J Pharmacol. 2013 Jan;168(2):354–362. PubMed PMID: 22889145; PubMed Central PMCID: PMCPMC3572562.
  • Musilli C, De Siena G, Manni ME, et al. Histamine mediates behavioural and metabolic effects of 3-iodothyroacetic acid, an endogenous end product of thyroid hormone metabolism. Br J Pharmacol. 2014 Jul;171(14):3476–3484. PubMed PMID: 24641572; PubMed Central PMCID: PMCPMC4105934.
  • Saba A, Chiellini G, Frascarelli S, et al. Tissue distribution and cardiac metabolism of 3-iodothyronamine. Endocrinology. 2010 Oct;151(10):5063–5073. PubMed PMID: 20739399.
  • Coster M, Biebermann H, Schoneberg T, et al. Evolutionary conservation of 3-iodothyronamine as an agonist at the trace amine-associated receptor 1. Eur Thyroid J. 2015 Sep;4(Suppl 1):9–20. PubMed PMID: 26601069; PubMed Central PMCID: PMCPMC4640299.
  • Zucchi R, Accorroni A, Chiellini G. Update on 3-iodothyronamine and its neurological and metabolic actions. Front Physiol. 2014;5:402. PubMed PMID: 25360120; PubMed Central PMCID: PMCPMC4199266. .
  • Dhillo WS, Bewick GA, White NE, et al. The thyroid hormone derivative 3-iodothyronamine increases food intake in rodents. Diabetes Obes Metab. 2009 Mar;11(3):251–260. PubMed PMID: 18671794.
  • Manni ME, De Siena G, Saba A, et al. 3-Iodothyronamine: a modulator of the hypothalamus-pancreas-thyroid axes in mice. Br J Pharmacol. 2012 May;166(2):650–658. PubMed PMID: 22225569; PubMed Central PMCID: PMCPMC3417495.
  • James TD, Moffett SX, Scanlan TS, et al. Effects of acute microinjections of the thyroid hormone derivative 3-iodothyronamine to the preoptic region of adult male rats on sleep, thermoregulation and motor activity. Horm Behav. 2013 Jun;64(1):81–88. PubMed PMID: 23702093; PubMed Central PMCID: PMCPMC4091812.
  • Gompf HS, Greenberg JH, Aston-Jones G, et al. 3-Monoiodothyronamine: the rationale for its action as an endogenous adrenergic-blocking neuromodulator. Brain Res. 2010 Sep 10;1351:130–140. PubMed PMID: 20615397; PubMed Central PMCID: PMCPMC2926234.
  • Brown RE, Basheer R, McKenna JT, et al. Control of sleep and wakefulness. Physiol Rev. 2012 Jul;92(3):1087–1187. PubMed PMID: 22811426; PubMed Central PMCID: PMCPMC3621793.
  • Jones BE. From waking to sleeping: neuronal and chemical substrates. Trends Pharmacol Sci. 2005 Nov;26(11):578–586. PubMed PMID: 16183137.
  • Saper CB, Fuller PM, Pedersen NP, et al. Sleep state switching. Neuron. 2010 Dec 22;68(6):1023–1042.
  • Accorroni A, Criscuolo C, Sabatini M, et al. 3-iodothyronamine and trace amine-associated receptor 1 are involved in the expression of long-term potentiation in mouse enthorhinal cortex. [abstract]. Eur Thyroid J. 2016;5(1):21–22.
  • Bräunig J, Dinter J, Höfig CS, Paisdzior S, Szczepek M, Scheerer P, Rosowski M, Mittag J, Kleinau G, Biebermann H. The Trace Amine-Associated Receptor 1 Agonist 3-Iodothyronamine Induces Biased Signaling at the Serotonin 1b Receptor. Front Pharmacol. 2018 Mar 12;9222. DOI: 10.3389/fphar.2018.00222. eCollection 2018. PMID: 29593543
  • Hoefig CS, Zucchi R, Kohrle J. Thyronamines and derivatives: physiological relevance, pharmacological actions, and future research directions. Thyroid. 2016 Dec;26(12):1656–1673. PubMed PMID: 27650974.
  • Hart ME, Suchland KL, Miyakawa M, et al. Trace amine-associated receptor agonists: synthesis and evaluation of thyronamines and related analogues. J Med Chem. 2006 Feb 9;49(3):1101–1112. PubMed PMID: 16451074.
  • Tan ES, Miyakawa M, Bunzow JR, et al. Exploring the structure-activity relationship of the ethylamine portion of 3-iodothyronamine for rat and mouse trace amine-associated receptor 1. J Med Chem. 2007 Jun 14;50(12):2787–2798. PubMed PMID: 17497842.
  • Chiellini G, Nesi G, Digiacomo M, et al. Design, synthesis, and evaluation of thyronamine analogues as novel potent Mouse Trace Amine Associated Receptor 1 (mTAAR1) agonists. J Med Chem. 2015 Jun 25;58(12):5096–5107. PubMed PMID: 26010728.
  • Chiellini G, Nesi G, Sestito S, et al. Hit-to-lead optimization of Mouse Trace Amine Associated Receptor 1 (mTAAR1) agonists with a diphenylmethane-scaffold: design, synthesis, and biological study. J Med Chem. 2016 Nov 10;59(21):9825–9836. PubMed PMID: 27731647.
  • Chiellini G, Bellusci L, Sabatini M, et al. Thyronamines and analogues - the route from rediscovery to translational research on thyronergic amines. Mol Cell Endocrinol. 2017 Dec 15;458:149–155. PubMed PMID: 28069535.
  • Boulton AA. Some aspects of basic psychopharmacology: the trace amines [Research Support, Non-U.S. Gov’t]. Prog Neuropsychopharmacol Biol Psychiatry. 1982;6(4–6): 563–570. PubMed PMID: 6298892; eng.
  • Davis BA. Biogenic amines and their metabolites in body fluids of normal, psychiatric and neurological subjects [Research Support, Non-U.S. Gov’t Review]. J Chromatogr. 1989 Apr 19;466:89–218. PubMed PMID: 2663901; eng.
  • Potkin SG, Karoum F, Chuang LW, et al. Phenylethylamine in paranoid chronic schizophrenia. Science. 1979 Oct 26;206(4417):470–471. PubMed PMID: 504988; eng.
  • Davis BA, Boulton AA. The trace amines and their acidic metabolites in depression–an overview [Research Support, Non-U.S. Gov’t Review]. Prog Neuropsychopharmacol Biol Psychiatry. 1994 Jan;18(1):17–45. PubMed PMID: 8115671; eng.
  • Sandler M, Ruthven CR, Goodwin BL, et al. Decreased cerebrospinal fluid concentration of free phenylacetic acid in depressive illness [Comparative Study]. Clin Chim Acta. 1979 Apr 2;93(1):169–171. PubMed PMID: 436296; eng.
  • Szabo A, Billett E, Turner J. Phenylethylamine, a possible link to the antidepressant effects of exercise? [Clinical Trial]. Br J Sports Med. 2001 Oct;35(5):342–343. PubMed PMID: 11579070; PubMed Central PMCID: PMC1724404. eng.
  • Beaulieu JM, Gainetdinov RR. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev. 2011 Mar;63(1):182–217. PubMed PMID: 21303898.
  • Berry MD. Mammalian central nervous system trace amines. Pharmacologic amphetamines, physiologic neuromodulators. J Neurochem. 2004 Jul;90(2):257–271. PubMed PMID: 15228583.
  • Di Cara B, Maggio R, Aloisi G, et al. Genetic deletion of trace amine 1 receptors reveals their role in auto-inhibiting the actions of ecstasy (MDMA). J Neurosci. 2011 Nov 23;31(47):16928–16940. PubMed PMID: 22114263.
  • Lindemann L, Meyer CA, Jeanneau K, et al. Trace amine-associated receptor 1 modulates dopaminergic activity. J Pharmacol Exp Ther. 2008 Mar;324(3):948–956. PubMed PMID: 18083911.
  • Wolinsky TD, Swanson CJ, Smith KE, et al. The Trace Amine 1 receptor knockout mouse: an animal model with relevance to schizophrenia. Genes Brain Behav. 2007 Oct;6(7):628–639. PubMed PMID: 17212650.
  • Seeman P. Dopamine D2 receptors as treatment targets in schizophrenia. Clin Schizophr Relat Psychoses. 2010 Apr;4(1):56–73. PubMed PMID: 20643630.
  • Zetterstrom T, Sharp T, Marsden CA, et al. In vivo measurement of dopamine and its metabolites by intracerebral dialysis: changes after d-amphetamine. J Neurochem. 1983 Dec;41(6):1769–1773. PubMed PMID: 6196446.
  • Zhuang X, Oosting RS, Jones SR, et al. Hyperactivity and impaired response habituation in hyperdopaminergic mice. Proc Natl Acad Sci U S A. 2001 Feb 13;98(4):1982–1987. PubMed PMID: 11172062; PubMed Central PMCID: PMCPMC29368.
  • Groves PM, Rebec GV. Biochemistry and behavior: some central actions of amphetamine and antipsychotic drugs. Annu Rev Psychol. 1976;27:91–127. PubMed PMID: 773267.
  • Lipska BK, Weinberger DR. To model a psychiatric disorder in animals: schizophrenia as a reality test. Neuropsychopharmacology. 2000 Sep;23(3):223–239. PubMed PMID: 10942847.
  • Panas HN, Lynch LJ, Vallender EJ, et al. Normal thermoregulatory responses to 3-iodothyronamine, trace amines and amphetamine-like psychostimulants in trace amine associated receptor 1 knockout mice. J Neurosci Res. 2010 Jul;88(9):1962–1969. PubMed PMID: 20155805; PubMed Central PMCID: PMCPMC3587846.
  • Achat-Mendes C, Lynch LJ, Sullivan KA, et al. Augmentation of methamphetamine-induced behaviors in transgenic mice lacking the trace amine-associated receptor 1. Pharmacol Biochem Behav. 2012 Apr;101(2):201–207. PubMed PMID: 22079347; PubMed Central PMCID: PMCPMC3288391.
  • Sotnikova TD, Zorina OI, Ghisi V, et al. Trace amine associated receptor 1 and movement control. Parkinsonism Relat Disord. 2008;14(Suppl 2):S99–102. PubMed PMID: 18585080.
  • Espinoza S, Ghisi V, Emanuele M, et al. Postsynaptic D2 dopamine receptor supersensitivity in the striatum of mice lacking TAAR1. Neuropharmacology. 2015 Jun;93:308–313. PubMed PMID: 25721394.
  • Sukhanov I, Caffino L, Efimova EV, et al. Increased context-dependent conditioning to amphetamine in mice lacking TAAR1. Pharmacol Res. 2016 Jan;103:206–214. PubMed PMID: 26640076.
  • Revel FG, Meyer CA, Bradaia A, et al. Brain-specific overexpression of trace amine-associated receptor 1 alters monoaminergic neurotransmission and decreases sensitivity to amphetamine. Neuropsychopharmacology. 2012 Nov;37(12):2580–2592. PubMed PMID: 22763617; PubMed Central PMCID: PMCPMC3473323.
  • Leo D, Sukhanov I, Zoratto F, et al. Pronounced hyperactivity, cognitive dysfunctions and Bdnf dysregulation in dopamine transporter knockout rats. J Neurosci. 2018 Jan 18:17–1931. PubMed PMID: 29348190. DOI: 10.1523/JNEUROSCI.1931-17.2018
  • Danysz W, Essmann U, Bresink I, et al. Glutamate antagonists have different effects on spontaneous locomotor activity in rats. Pharmacol Biochem Behav. 1994 May;48(1):111–118. PubMed PMID: 8029281.
  • Ford LM, Norman AB, Sanberg PR. The topography of MK-801-induced locomotor patterns in rats. Physiol Behav. 1989 Oct;46(4):755–758. PubMed PMID: 2557649.
  • Gleason SD, Shannon HE. Blockade of phencyclidine-induced hyperlocomotion by olanzapine, clozapine and serotonin receptor subtype selective antagonists in mice. Psychopharmacology (Berl). 1997 Jan;129(1):79–84. PubMed PMID: 9122367.
  • Harkness JH, Shi X, Janowsky A, et al. Trace amine-associated receptor 1 regulation of methamphetamine intake and related traits. Neuropsychopharmacology. 2015 Aug;40(9):2175–2184. PubMed PMID: 25740289; PubMed Central PMCID: PMCPMC4613607.
  • Jing L, Li JX. Trace amine-associated receptor 1: A promising target for the treatment of psychostimulant addiction. Eur J Pharmacol. 2015 Aug 15;761:345–352.
  • Thorn DA, Zhang C, Zhang Y, et al. The trace amine associated receptor 1 agonist RO5263397 attenuates the induction of cocaine behavioral sensitization in rats. Neurosci Lett. 2014 Apr 30;566:67–71. PubMed PMID: 24561093; PubMed Central PMCID: PMCPMC3991844.
  • Sukhanov I, Espinoza S, Yakovlev DS, et al. TAAR1-dependent effects of apomorphine in mice. Int J Neuropsychopharmacol. 2014 Oct;17(10):1683–1693. PubMed PMID: 24925023.
  • Costall B, Naylor RJ, Nohria V. Climbing behaviour induced by apomorphine in mice: a potential model for the detection of neuroleptic activity. Eur J Pharmacol. 1978 Jul 1;50(1):39–50. PubMed PMID: 28233.
  • Protais P, Costentin J, Schwartz JC. Climbing behavior induced by apomorphine in mice: a simple test for the study of dopamine receptors in striatum. Psychopharmacology (Berl). 1976 Oct 20;50(1):1–6. PubMed PMID: 827755.
  • Puech AJ, Simon P, Boissier JR. Antagonism by sulpiride of three apomorphine-induced effects in rodents. Eur J Pharmacol. 1976 Apr;36(2):439–441. PubMed PMID: 945169.
  • Sharma T, Antonova L. Cognitive function in schizophrenia. Deficits, functional consequences, and future treatment. Psychiatr Clin North Am. 2003 Mar;26(1):25–40. PubMed PMID: 12683258.
  • Geyer MA, Krebs-Thomson K, Braff DL, et al. Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: a decade in review. Psychopharmacology (Berl). 2001 Jul;156(2–3):117–154. PubMed PMID: 11549216.
  • Alvarsson A, Zhang X, Stan TL, et al. Modulation by trace amine-associated receptor 1 of experimental parkinsonism, L-DOPA responsivity, and glutamatergic neurotransmission. J Neurosci. 2015 Oct 14;35(41):14057–14069. PubMed PMID: 26468205.
  • Sotnikova TD, Beaulieu JM, Barak LS, et al. Dopamine-independent locomotor actions of amphetamines in a novel acute mouse model of Parkinson disease. PLoS Biol. 2005 Aug;3(8):e271. PubMed PMID: 16050778; PubMed Central PMCID: PMCPMC1181539.
  • Cheon KA, Ryu YH, Kim YK, et al. Dopamine transporter density in the basal ganglia assessed with [123I]IPT SPET in children with attention deficit hyperactivity disorder. Eur J Nucl Med Mol Imaging. 2003 Feb;30(2):306–311. PubMed PMID: 12552351.
  • DiMaio S, Grizenko N, Joober R. Dopamine genes and attention-deficit hyperactivity disorder: a review. J Psychiatry Neurosci. 2003 Jan;28(1):27–38. PubMed PMID: 12587848.
  • Dougherty DD, Bonab AA, Spencer TJ, et al. Dopamine transporter density in patients with attention deficit hyperactivity disorder. Lancet. 1999 Dec 18- 25;354(9196):2132–2133. PubMed PMID: 10609822.
  • Leo D, Gainetdinov RR. Transgenic mouse models for ADHD. Cell Tissue Res. 2013 Oct;354(1):259–271. PubMed PMID: 23681253; PubMed Central PMCID: PMCPMC3785710.
  • Gainetdinov RR, Mohn AR, Bohn LM, et al. Glutamatergic modulation of hyperactivity in mice lacking the dopamine transporter. Proc Natl Acad Sci U S A. 2001 Sep 25;98(20):11047–11054. PubMed PMID: 11572967.
  • Giros B, Jaber M, Jones SR, et al. Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature. 1996 Feb 15;379(6566):606–612. PubMed PMID: 8628395.
  • Gainetdinov RR, Wetsel WC, Jones SR, et al. Role of serotonin in the paradoxical calming effect of psychostimulants on hyperactivity. Science. 1999 Jan 15;283(5400):397–401. PubMed PMID: 9888856.
  • Espinoza S, Lignani G, Caffino L, et al. TAAR1 modulates cortical glutamate NMDA receptor function. Neuropsychopharmacology. 2015 Aug;40(9):2217–2227. PubMed PMID: 25749299; PubMed Central PMCID: PMCPMC4613611.
  • Xue Z, Siemian JN, Johnson BN, et al. Methamphetamine-induced impulsivity during chronic methamphetamine treatment in rats: effects of the TAAR 1 agonist RO5263397. Neuropharmacology. 2018 Feb;129:36–46. PubMed PMID: 29128305.
  • Cinque S, Zoratto F, Poleggi A, et al. Behavioral phenotyping of dopamine transporter knockout rats: compulsive traits, motor stereotypies, and anhedonia. Front Psychiatry. 2018;9:43. PubMed PMID: 29520239; PubMed Central PMCID: PMCPMC5826953.
  • Kellner M. Drug treatment of obsessive-compulsive disorder. Dialogues Clin Neurosci. 2010;12(2): 187–197. PubMed PMID: 20623923; PubMed Central PMCID: PMCPMC3181958.
  • Koo MS, Kim EJ, Roh D, et al. Role of dopamine in the pathophysiology and treatment of obsessive-compulsive disorder. Expert Rev Neurother. 2010 Feb;10(2):275–290. PubMed PMID: 20136383.
  • Dolgorukova A, Dorotenko A, Mus L, et al. Activation of trace amine-associated receptor 1 reduces schedule-induced polydipsia in rats. Eur Neuropsychopharmacol. 2017 Oct;27:S673–S673. PubMed PMID: WOS:000413847701074; English.
  • Ferragud A, Howell AD, Moore CF, et al. The trace amine-associated receptor 1 agonist RO5256390 blocks compulsive, binge-like eating in rats. Neuropsychopharmacology. 2017 Jun;42(7):1458–1470. PubMed PMID: 27711047; PubMed Central PMCID: PMCPMC5436108.
  • Can A, Dao DT, Arad M, et al. The mouse forced swim test. J Vis Exp. 2012 Jan 29;59:e3638. PubMed PMID: 22314943; PubMed Central PMCID: PMCPMC3353513. DOI:10.3791/3638
  • Ashok AH, Marques TR, Jauhar S, et al. The dopamine hypothesis of bipolar affective disorder: the state of the art and implications for treatment. Mol Psychiatry. 2017 May;22(5):666–679. PubMed PMID: 28289283; PubMed Central PMCID: PMCPMC5401767.
  • Kampman KM. What’s new in the treatment of cocaine addiction? Curr Psychiatry Rep. 2010 Oct;12(5):441–447. PubMed PMID: 20697850.
  • Penberthy JK, Ait-Daoud N, Vaughan M, et al. Review of treatment for cocaine dependence. Curr Drug Abuse Rev. 2010 3;Mar(1):49–62. PubMed PMID: 20088819.
  • Lin Z, Canales JJ, Bjorgvinsson T, et al. Monoamine transporters: vulnerable and vital doorkeepers. Prog Mol Biol Transl Sci. 2011;98:1–46. PubMed PMID: 21199769.
  • Velazquez-Sanchez C, Canales JJ. Atypical dopamine transporter inhibitors: candidates for the treatment of psychostimulant addiction. In: Canales JJ, ed. Emerging targets for drug addiction treatment. New York: Nova Publishers; 2012 Jul 1. p. 103–150. S0278-5846(13)00018-3 [pii]. PubMed PMID: 23385166; eng. DOI:10.1016/j.pnpbp.2013.01.016
  • Pei Y, Lee J, Leo D, et al. Activation of the trace amine-associated receptor 1 prevents relapse to cocaine seeking. Neuropsychopharmacology. 2014;39(10):2299–2308.
  • Pei Y, Asif-Malik A, Hoener M, et al. A partial trace amine-associated receptor 1 agonist exhibits properties consistent with a methamphetamine substitution treatment. Addict Biol. 2017 Sep;22(5):1246–1256. PubMed PMID: 27193165.
  • Marinelli M, White FJ. Enhanced vulnerability to cocaine self-administration is associated with elevated impulse activity of midbrain dopamine neurons. J Neurosci. 2000 Dec 1;20(23):8876–8885. PubMed PMID: 11102497.
  • McCutcheon JE, White FJ, Marinelli M. Individual differences in dopamine cell neuroadaptations following cocaine self-administration. Biol Psychiatry. 2009 Oct 15;66(8):801–803. PubMed PMID: 19539267.
  • Cotter R, Pei Y, Mus L, et al. The trace amine-associated receptor 1 modulates methamphetamine’s neurochemical and behavioral effects. Frontiers in Neuroscience. 2015;9:39.
  • Jing L, Zhang Y, Li J-X. Effects of the trace amine associated receptor 1 agonist RO5263397 on abuse-related behavioral indices of methamphetamine in rats. Int J Neuropsychopharmacol. 2014;18(4):pyu060.
  • Thorn DA, Jing L, Qiu Y, et al. Effects of the trace amine-associated receptor 1 agonist RO5263397 on abuse-related effects of cocaine in rats. Neuropsychopharmacology. 2014;39(10:2309-2316.
  • Pei Y, Mortas P, Hoener MC, et al. Selective activation of the trace amine-associated receptor 1 decreases cocaine’s reinforcing efficacy and prevents cocaine-induced changes in brain reward thresholds. Prog Neuropsychopharmacol Biol Psychiatry. 2015;63:70–75. PubMed PMID: 26048337.
  • Liu JF, Seaman R Jr., Siemian JN, et al. Role of trace amine-associated receptor 1 in nicotine’s behavioral and neurochemical effects. Neuropsychopharmacology. 2018 Feb 5. 10.1038/s41386-018-0017-9. PubMed PMID: 29472642.
  • Liu JF, Siemian JN, Seaman R Jr., et al. Role of TAAR1 within the subregions of the mesocorticolimbic dopaminergic system in cocaine-seeking behavior. J Neurosci. 2017 Jan 25;37(4):882–892. PubMed PMID: 28123023.
  • Xie Z, Miller GM. Trace amine-associated receptor 1 is a modulator of the dopamine transporter. J Pharmacol Exp Ther. 2007 Apr;321(1):128–136.
  • Miller GM, Verrico CD, Jassen A, et al. Primate trace amine receptor 1 modulation by the dopamine transporter. J Pharmacol Exp Ther. 2005;313(3):983–994.
  • Harmeier A, Obermueller S, Meyer CA, et al. Trace amine-associated receptor 1 activation silences GSK3β signaling of TAAR1 and D2R heteromers. Eur Neuropsychopharmacol. 2015;25:2049–2061.
  • Xu CM, Wang J, Wu P, et al. Glycogen synthase kinase 3beta in the nucleus accumbens core mediates cocaine-induced behavioral sensitization. J Neurochem. 2009 Dec;111(6):1357–1368. PubMed PMID: 19799712.
  • Shi X, Miller JS, Harper LJ, et al. Reactivation of cocaine reward memory engages the Akt/GSK3/mTOR signaling pathway and can be disrupted by GSK3 inhibition. Psychopharmacology (Berl). 2014 Aug;231(16):3109–3118. PubMed PMID: 24595501.
  • Daley M, Morin CM, LeBlanc M, et al. The economic burden of insomnia: direct and indirect costs for individuals with insomnia syndrome, insomnia symptoms, and good sleepers. Sleep. 2009 Jan;32(1):55–64. PubMed PMID: 19189779.
  • Hillman DR, Murphy AS, Pezzullo L. The economic cost of sleep disorders. Sleep. 2006 Mar;29(3):299–305. PubMed PMID: 16553015.
  • Wulff K, Dijk DJ, Middleton B, et al. Sleep and circadian rhythm disruption in schizophrenia. Br J Psychiatry. 2012 Apr;200(4):308–316. PubMed PMID: 22194182; PubMed Central PMCID: PMCPMC3317037.
  • Happe S, Baier PC, Helmschmied K, et al. Association of daytime sleepiness with nigrostriatal dopaminergic degeneration in early Parkinson’s disease. J Neurol. 2007 Aug;254(8):1037–1043. PubMed PMID: 17351722.
  • Rye DB. Parkinson’s disease and RLS: the dopaminergic bridge. Sleep Med. 2004 May;5(3):317–328. PubMed PMID: 15165542.
  • Brower KJ. Alcohol’s effects on sleep in alcoholics. Alcohol Res Health. 2001;25(2): 110–125. PubMed PMID: 11584550.
  • Brower KJ, Perron BE. Sleep disturbance as a universal risk factor for relapse in addictions to psychoactive substances. Med Hypotheses. 2010;74(5):928–933. PubMed PMID: 19910125.
  • Scammell TE, Arrigoni E, Lipton JO. Neural Circuitry of Wakefulness and Sleep. Neuron. 2017 Feb 22;93(4):747–765. PubMed PMID: 28231463.
  • Schwartz MD, Black SW, Fisher SP, et al. Trace amine-associated receptor 1 regulates wakefulness and EEG spectral composition. Neuropsychopharmacology. 2017 May;42(6):1305–1314. PubMed PMID: 27658486; PubMed Central PMCID: PMCPMC5437878.
  • Wisor JP, Nishino S, Sora I, et al. Dopaminergic role in stimulant-induced wakefulness. J Neurosci. 2001 Mar 01;21(5):1787–1794. PubMed PMID: 11222668.
  • Eban-Rothschild A, Rothschild G, Giardino WJ, et al. VTA dopaminergic neurons regulate ethologically relevant sleep-wake behaviors. Nat Neurosci. 2016 Oct;19(10):1356–1366. PubMed PMID: 27595385; PubMed Central PMCID: PMCPMC5519826.
  • Cho JR, Treweek JB, Robinson JE, et al. Dorsal raphe dopamine neurons modulate arousal and promote wakefulness by salient stimuli. Neuron. 2017 Jun 21;94(6):1205–1219 e8. PubMed PMID: 28602690.
  • McGinty DJ, Harper RM. Dorsal raphe neurons: depression of firing during sleep in cats. Brain Res. 1976 Jan 23;101(3):569–575. PubMed PMID: 1244990.
  • Morairty SR, Hedley L, Flores J, et al. Selective 5HT2A and 5HT6 receptor antagonists promote sleep in rats. Sleep. 2008 Jan;31(1):34–44. PubMed PMID: 18220076; PubMed Central PMCID: PMCPMC2225549.
  • Aston-Jones G, Bloom FE. Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. J Neurosci. 1981 Aug;1(8):876–886. PubMed PMID: 7346592.
  • Brown RE, McKenna JT. Turning a negative into a positive: ascending GABAergic control of cortical activation and arousal. Front Neurol. 2015;6:135. PubMed PMID: 26124745; PubMed Central PMCID: PMCPMC4463930.
  • Ferris MJ, Espana RA, Locke JL, et al. Dopamine transporters govern diurnal variation in extracellular dopamine tone. Proc Natl Acad Sci U S A. 2014 Jul 01;111(26):E2751–9. PubMed PMID: 24979798; PubMed Central PMCID: PMCPMC4084435.
  • Cape EG, Jones BE. Differential modulation of high-frequency gamma-electroencephalogram activity and sleep-wake state by noradrenaline and serotonin microinjections into the region of cholinergic basalis neurons. J Neurosci. 1990;18(7):2653–2666.
  • Vertes RP, Kocsis B. Brainstem-diencephalo-septohippocampal systems controlling the theta rhythm of the hippocampus. Neuroscience. 1997;81(4):893–926. PubMed PMID: 9330355.
  • Feinberg I, Schoepp DD, Hsieh KC, et al. The metabotropic glutamate (mGLU)2/3 receptor antagonist LY341495 [2S-2-amino-2-(1S,2S-2-carboxycyclopropyl-1-yl)-3-(xanth-9-yl)propanoic acid] stimulates waking and fast electroencephalogram power and blocks the effects of the mGLU2/3 receptor agonist ly379268 [(-)-2-oxa-4-aminobicyclo[3.1.0]hexane-4,6-dicarboxylate] in rats. J Pharmacol Exp Ther. 2005312(2):826–833. PubMed PMID: 15383637.
  • Ahnaou A, De Boer P, Lavreysen H, et al. Translational neurophysiological markers for activity of the metabotropic glutamate receptor (mGluR2) modulator JNJ-40411813: sleep EEG correlates in rodents and healthy men. Neuropharmacology. 2016 Apr;103:290–305. PubMed PMID: 26686390.
  • Gilmour G, Broad LM, Wafford KA, et al. In vitro characterisation of the novel positive allosteric modulators of the mGlu(5) receptor, LSN2463359 and LSN2814617, and their effects on sleep architecture and operant responding in the rat. Neuropharmacology. 2013 Jan;64:224–239. PubMed PMID: 22884720.
  • Ahnaou A, Langlois X, Steckler T, et al. Negative versus positive allosteric modulation of metabotropic glutamate receptors (mGluR5): indices for potential pro-cognitive drug properties based on EEG network oscillations and sleep-wake organization in rats. Psychopharmacology (Berl). 2015 Mar;232(6):1107–1122. PubMed PMID: 25323624.
  • Lindemann L, Porter RH, Scharf SH, et al. Pharmacology of basimglurant (RO4917523, RG7090), a unique metabotropic glutamate receptor 5 negative allosteric modulator in clinical development for depression. J Pharmacol Exp Ther. 2015 Apr;353(1):213–233. PubMed PMID: 25665805.
  • Schwartz MD, Palmerston JB, Lee DL, et al. Deletion of trace amine-associated receptor 1 attenuates behavioral responses to caffeine. Front Pharmacol. 2018;9. DOI:10.3389/fphar.2018.00035
  • Black SW, Schwartz MD, Chen TM, et al. Trace amine-associated receptor 1 agonists as narcolepsy therapeutics. Biol Psychiatry. 2017 Nov 1;82(9):623–633. PubMed PMID: 27919403; PubMed Central PMCID: PMCPMC5395352.
  • Borbely AA. A two process model of sleep regulation. Hum Neurobiol. 1982;1(3): 195–204. PubMed PMID: 7185792.
  • Mistlberger RE. Circadian regulation of sleep in mammals: role of the suprachiasmatic nucleus. Brain Res Brain Res Rev. 2005 Nov;49(3):429–454. PubMed PMID: 16269313.
  • Lena I, Parrot S, Deschaux O, et al. Variations in extracellular levels of dopamine, noradrenaline, glutamate, and aspartate across the sleep–wake cycle in the medial prefrontal cortex and nucleus accumbens of freely moving rats. J Neurosci Res. 2005 Sep 15;81(6):891–899. PubMed PMID: 16041801.
  • Dahan L, Astier B, Vautrelle N, et al. Prominent burst firing of dopaminergic neurons in the ventral tegmental area during paradoxical sleep. Neuropsychopharmacology. 2007 Jun;32(6):1232–1241. PubMed PMID: 17151599.
  • Xie Z, Miller GM. Beta-phenylethylamine alters monoamine transporter function via trace amine-associated receptor 1: implication for modulatory roles of trace amines in brain. J Pharmacol Exp Ther. 2008 May;325(2):617–628. PubMed PMID: 18182557.
  • Xie Z, Westmoreland SV, Miller GM. Modulation of monoamine transporters by common biogenic amines via trace amine-associated receptor 1 and monoamine autoreceptors in human embryonic kidney 293 cells and brain synaptosomes. J Pharmacol Exp Ther. 2008 May;325(2):629–640. PubMed PMID: 18310473.
  • Boutrel B, Franc B, Hen R, et al. Key role of 5-HT1B receptors in the regulation of paradoxical sleep as evidenced in 5-HT1B knock-out mice. J Neurosci. 1999;19(8):3204–3212.
  • Boutrel B, Monaca C, Hen R, et al. Involvement of 5-HT1A receptors in homeostatic and stress-induced adaptive regulations of paradoxical sleep: studies in 5-HT1A knock-out mice. J Neurosci. 2002 Jun 1;22(11):4686–4692. doi: 20026427. PubMed PMID: 12040075.
  • Monti JM, Monti D, Jantos H, et al. Effects of selective activation of the 5-HT1B receptor with CP-94,253 on sleep and wakefulness in the rat. Neuropharmacology. 1995 Dec;34(12):1647–1651. PubMed PMID: 8788962.
  • Chemelli RM, Willie JT, Sinton CM, et al. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell. 1999 Aug 20;98(4):437–451. PubMed PMID: 10481909.
  • Thannickal TC, Moore RY, Nienhuis R, et al. Reduced number of hypocretin neurons in human narcolepsy. Neuron. 2000 Sep;27(3):469–474. PubMed PMID: 11055430.
  • Nishino S, Ripley B, Overeem S, et al. Hypocretin (orexin) deficiency in human narcolepsy. Lancet. 2000 Jan 1;355(9197):39–40. .
  • Black SW, Yamanaka A, Kilduff TS. Challenges in the development of therapeutics for narcolepsy. Prog Neurobiol. 2017 May;152:89–113. PubMed PMID: 26721620.
  • Trace Amine-Associated Receptor 1 Modulates the Locomotor and Sensitization Effects of Nicotine. Sukhanov I, Dorofeikova M, Dolgorukova A, Dorotenko A, Gainetdinov RR. Front Pharmacol. 2018 Apr 6;9:329. doi: 10.3389/fphar.2018.00329. eCollection 2018. PMID: 29681856
  • Hara J, Beuckmann CT, Nambu T, et al. Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron. 2001 May;30(2):345–354. PubMed PMID: 11394998.
  • Tabuchi S, Tsunematsu T, Black SW, et al. Conditional ablation of orexin/hypocretin neurons: a new mouse model for the study of narcolepsy and orexin system function. J Neurosci. 2014 May 07;34(19):6495–6509. PubMed PMID: 24806676; PubMed Central PMCID: PMCPMC4012309.
  • Burgess CR, Peever JH. A noradrenergic mechanism functions to couple motor behavior with arousal state. Curr Biol. 2013;23(18):1719–1725. PubMed PMID: 23993842.
  • Hasegawa E, Maejima T, Yoshida T, et al. Serotonin neurons in the dorsal raphe mediate the anticataplectic action of orexin neurons by reducing amygdala activity. Proc Natl Acad Sci U S A. 2017 Apr 25;114(17):E3526–E3535. PubMed PMID: 28396432; PubMed Central PMCID: PMCPMC5410844.
  • Hasegawa E, Yanagisawa M, Sakurai T, et al. Orexin neurons suppress narcolepsy via 2 distinct efferent pathways. J Clin Invest. 2014 Feb;124(2):604–616. PubMed PMID: 24382351; PubMed Central PMCID: PMCPMC3904620.
  • Burgess CR, Tse G, Gillis L, et al. Dopaminergic regulation of sleep and cataplexy in a murine model of narcolepsy. Sleep. 2010 Oct;33(10):1295–1304. PubMed PMID: 21061851; PubMed Central PMCID: PMCPMC2941415.
  • Dinter J, Muhlhaus J, Wienchol CL, et al. Inverse agonistic action of 3-iodothyronamine at the human trace amine-associated receptor 5. PLoS One. 2015;10(2):e0117774. PubMed PMID: 25706283; PubMed Central PMCID: PMCPMC4382497.
  • Lynch LJ, Sullivan KA, Vallender EJ, et al. Trace amine associated receptor 1 modulates behavioral effects of ethanol. Subst Abuse. 2013;7:117–126. PubMed PMID: 23861588; PubMed Central PMCID: PMCPMC3682756.
  • Raab S, Wang H, Uhles S, et al. Incretin-like effects of small molecule trace amine-associated receptor 1 agonists. Mol Metab. 2016 Jan;5(1):47–56. PubMed PMID: 26844206; PubMed Central PMCID: PMCPMC4703809.
  • Wulff K, Gatti S, Wettstein JG, et al. Sleep and circadian rhythm disruption in psychiatric and neurodegenerative disease. Nat Rev Neurosci. 2018 Apr;6(9):329. DOI: 10.3389/fphar.2018.00329. eCollection 2018. PMID: 29681856

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.