927
Views
5
CrossRef citations to date
0
Altmetric
Review

Targeting GSK3 signaling as a potential therapy of neurodegenerative diseases and aging

, , , , , , , & show all
Pages 833-848 | Received 08 Jul 2018, Accepted 18 Sep 2018, Published online: 26 Sep 2018

References

  • Sutherland C. What Are the bona fide GSK3 substrates?. Int J Alzheimers Dis. 2011;2011; ID 505607.
  • Nagini S, Sophia J, Mishra R. Glycogen synthase kinases: moonlighting proteins with theranostic potential in cancer. Semin Cancer Biol. 2018;
  • Manning BD, Toker A. AKT/PKB signaling: navigating the network. Cell. 2017;169:381–405.
  • Hermida MA, Dinesh Kumar J, Leslie NR. GSK3 and its interactions with the PI3K/AKT/mTOR signalling network. Adv Biol Regul. 2017;65:5–15.
  • Vallée A, Lecarpentier Y, Guillevin R, et al. Interactions between TGF-β1, canonical WNT/β-catenin pathway and PPAR γ in radiation-induced fibrosis. Oncotarget. 2017;8:90579–90604.
  • Eldar-Finkelman H, Seger R, Vandenheede JR, et al. Inactivation of glycogen synthase kinase-3 by epidermal growth factor is mediated by mitogen-activated protein kinase/p90 ribosomal protein S6 kinase signaling pathway in NIH/3T3 cells. Journal of Biological Chemistry. 1995;270;3:987–990.
  • Thornton TM, Pedraza-Alva G, Deng B, et al. Phosphorylation by p38 MAPK as an alternative pathway for GSK3beta inactivation. Science. 2008;320:667–670.
  • Fang X, Yu SX, Lu Y, et al. Phosphorylation and inactivation of glycogen synthase kinase 3 by protein kinase A. Proc Natl Acad Sci U S A. 2000;97:11960–11965.
  • Wu C, Dedhar S. Integrin-linked kinase (ILK) and its interactors: A new paradigm for the coupling of extracellular matrix to actin cytoskeleton and signaling complexes. J Cell Biol. 2001;155:505–510.
  • Arevalo M-A, Rodríguez-Tébar A. Activation of casein kinase II and inhibition of phosphatase and tensin homologue deleted on chromosome 10 phosphatase by nerve growth factor/p75 NTR inhibit glycogen synthase kinase-3β and stimulate axonal growth. Mol Biol Cell. 2006;17:3369–3377.
  • Wu G, Huang H, Abreu JG, et al. Inhibition of GSK3 phosphorylation of β-catenin via phosphorylated PPPSPXS motifs of Wnt coreceptor LRP6. PLoS One. 2009;4(3):e4926.
  • Bennecib M, Gong CX, Grundke-Iqbal I, et al. Role of protein phosphatase-2A and −1 in the regulation of GSK-3, cdk5 and cdc2 and the phosphorylation of tau in rat forebrain. FEBS Lett. 2000;485:87–93.
  • Hernández F, Langa E, Cuadros R, et al. Regulation of GSK3 isoforms by phosphatases PP1 and PP2A. Mol Cell Biochem. 2010;344:211–215.
  • Kim Y, Il LY, Seo M, et al. Calcineurin dephosphorylates glycogen synthase kinase-3 beta at serine-9 in neuroblast-derived cells. J Neurochem. 2009;111:344–354.
  • Al-Khouri AM, Ma Y, Togo SH, et al. Cooperative phosphorylation of the tumor suppressor phosphatase and tensin homologue (PTEN) by casein kinases and glycogen synthase kinase 3β. J Biol Chem. 2005;280:35195–35202.
  • Feng Y, Xia Y, Yu G, et al. Cleavage of GSK-3β by calpain counteracts the inhibitory effect of Ser9 phosphorylation on GSK-3β activity induced by H2O 2. J Neurochem. 2013;126:234–242.
  • Rangel-Barajas C, Coronel I, Florán B. Dopamine receptors and neurodegeneration. Aging Dis. 2015
  • Beaulieu JM. A role for Akt and glycogen synthase kinase-3 as integrators of dopamine and serotonin neurotransmission in mental health. J Psychiatry Neurosci. 2012;37:7–16.
  • Li X, Zhu W, Roh M-S, et al. In vivo regulation of glycogen synthase kinase-3beta (GSK3beta) by serotonergic activity in mouse brain. Neuropsychopharmacology. 2004
  • Polter AM, Yang S, Jope RS, et al. Functional significance of glycogen synthase kinase-3 regulation by serotonin. Cell Signal. 2012
  • O’Brien WT, Huang J, Buccafusca R, et al. Glycogen synthase kinase-3 is essential for β-arrestin-2 complex formation and lithium-sensitive behaviors in mice. J Clin Invest. 2011;121:3756–3762.
  • Xu D, Song R, Wang G, et al. Obg-like ATPase 1 regulates global protein serine/threonine phosphorylation in cancer cells by suppressing the GSK3β-inhibitor 2-PP1 positive feedback loop. Oncotarget. 2016;7:3427–3439.
  • Hilioti Z, Gallagher DA, Low-Nam ST, et al. GSK-3 kinases enhance calcineurin signaling by phosphorylation of RCNs. Genes Dev. 2004;18:35–47.
  • Tullai JW, Tacheva S, Owens LJ, et al. AP-1 is a component of the transcriptional network regulated by GSK-3 in quiescent cells. PLoS One. 2011;6
  • Hoshi M, Takashima A, Noguchi K, et al. Regulation of mitochondrial pyruvate dehydrogenase activity by tau protein kinase I/glycogen synthase kinase 3beta in brain. Proc Natl Acad Sci U S A. 1996;93:2719–2723.
  • Clayton EL, Sue N, Smillie KJ, et al. Dynamin I phosphorylation by GSK3 controls activity-dependent bulk endocytosis of synaptic vesicles. Nat Neurosci. 2010;13:845–851.
  • Uemura K, Kuzuya A, Shimozono Y, et al. GSK3β activity modifies the localization and function of presenilin 1. J Biol Chem. 2007;282:15823–15832.
  • Grimes CA, Jope RS. CREB DNA binding activity is inhibited by glycogen synthase kinase-3 beta and facilitated by lithium. J Neurochem. 2001
  • Wildburger NC, Laezza F. Control of neuronal ion channel function by glycogen synthase kinase-3: new prospective for an old kinase. Front Mol Neurosci. 2012;5:1–15.
  • Tyagarajan SK, Ghosh H, Yevenes GE, et al. Regulation of GABAergic synapse formation and plasticity by GSK3 -dependent phosphorylation of gephyrin. Proc Natl Acad Sci. 2011;108:379–384.
  • Hur EM, Saijilafu, Lee BD, et al. GSK3 controls axon growth via CLASP-mediated regulation of growth cone microtubules. Genes Dev. 2011;25:1968–1981.
  • Scales TME, Lin S, Kraus M, et al. Nonprimed and DYRK1A-primed GSK3 -phosphorylation sites on MAP1B regulate microtubule dynamics in growing axons. J Cell Sci. 2009;122:2424–2435.
  • Sánchez C, Pérez M, Avila J. GSK3β-mediated phosphorylation of the microtubule-associated protein 2C (MAP2C) prevents microtubule bundling. Eur J Cell Biol. 2000;79:252–260.
  • Hergovich A, Lisztwan J, Thoma CR, et al. Priming-dependent phosphorylation and regulation of the tumor suppressor pVHL by glycogen synthase kinase 3. Mol Cell Biol. 2006;26:5784–5796.
  • Yoshimura T, Kawano Y, Arimura N, et al. GSK-3β regulates phosphorylation of CRMP-2 and neuronal polarity. Cell. 2005;120:137–149.
  • Alabed YZ, Pool M, Ong Tone S, et al. GSK3 regulates myelin-dependent axon outgrowth inhibition through CRMP4. J Neurosci. 2010;30:5635–5643.
  • Ferrao Santos S, Tasiaux B, Sindic C, et al. Inhibition of neuronal calcium oscillations by cell surface APP phosphorylated on T668. Neurobiol Aging. 2011;32:2308–2313.
  • Hanger DP, Hughes K, Woodgett JR, et al. Glycogen synthase kinase-3 induces Alzheimer’s disease-like phosphorylation of tau: generation of paired helical filament epitopes and neuronal localisation of the kinase. Neurosci Lett. 1992;147:58–62.
  • Timm T, Balusamy K, Li X, et al. Glycogen synthase kinase (GSK) 3β directly phosphorylates serine 212 in the regulatory loop and inhibits microtubule affinity-regulating kinase (MARK) 2. J Biol Chem. 2008;283:18873–18882.
  • Bliss TVP, Collingridge GL. A synaptic model of memory: long-term potentiation in the hippocampus. Nature. 1993;361:31–39.
  • Bear MF, Abraham WC. Long-term depression in hippocampus. Annu Rev Neurosci. 1996;19:437–462.
  • Mulkey RM, Endo S, Shenolikar S, et al. Involvement of a calcineurin/inhibitor-1 phosphatase cascade in hippocampal long-term depression. Nature. 1994;369:486–488.
  • Peineau S, Bradley C, Taghibiglou C, et al. The role of GSK-3 in synaptic plasticity. Br J Pharmacol. 2008;153(Suppl 1):S428–37.
  • Castillo PE, Chiu CQ, Carroll RC. Long-term plasticity at inhibitory synapses. Curr Opin Neurobiol. 2011;21:328–338.
  • Meunier CNJ, Chameau P, Fossier PM. Modulation of synaptic plasticity in the cortex needs to understand all the players. Front Synaptic Neurosci. 2017;9:2.
  • Dennis SH, Pasqui F, Colvin EM, et al. Activation of muscarinic M1 acetylcholine receptors induces long-term potentiation in the hippocampus. Cereb Cortex. 2016;26:414–426.
  • Bartzokis G. Neuroglialpharmacology: myelination as a shared mechanism of action of psychotropic treatments. Neuropharmacology. 2012;62:2137–2153.
  • Beurel E, Grieco SF, Jope RS. Glycogen synthase kinase-3 (GSK3): regulation, actions, and diseases. Pharmacol Ther. 2015;148:114–131.
  • Gagolewicz PJ, Dringenberg HC. Age-dependent switch of the role of serotonergic 5-HT 1A receptors in gating long-term potentiation in rat visual cortex In Vivo. Neural Plast. 2016;2016:1–11.
  • Shahidi S, Asl SS, Komaki A, et al. The effect of chronic stimulation of serotonin receptor type 7 on recognition, passive avoidance memory, hippocampal long-term potentiation, and neuronal apoptosis in the amyloid β protein treated rat. Psychopharmacology (Berl). 2018;235:1513–1525.
  • Wang RY, Arvanov VL. M100907, a highly selective 5-HT2A receptor antagonist and a potential atypical antipsychotic drug, facilitates induction of long-term potentiation in area CA1 of the rat hippocampal slice. Brain Res. 1998;779:309–313.
  • Leroy K, Brion JP. Developmental expression and localization of glycogen synthase kinase-3beta in rat brain. J Chem Neuroanat. 1999;16:279–293.
  • Shahab L, Plattner F, Irvine EE, et al. Dynamic range of GSK3α not GSK3β is essential for bidirectional synaptic plasticity at hippocampal CA3-CA1 synapses. Hippocampus. 2014;24:1413–1416.
  • Li Y-C, Yang -S-S, Gao W-J. Disruption of Akt signaling decreases dopamine sensitivity in modulation of inhibitory synaptic transmission in rat prefrontal cortex. Neuropharmacology. 2016;108:403–414.
  • Polter AM, Li X. Glycogen synthase kinase-3 is an intermediate modulator of serotonin neurotransmission. Front Mol Neurosci. 2011;4:31.
  • De Sarno P, Bijur GN, Zmijewska AA, et al. In vivo regulation of GSK3 phosphorylation by cholinergic and NMDA receptors. Neurobiol Aging. 2006;27:413–422.
  • Jiang L, Kosenko A, Yu C, et al. Activation of m1 muscarinic acetylcholine receptor induces surface transport of KCNQ channels through a CRMP-2-mediated pathway. J Cell Sci. 2015;128:4235–4245.
  • Giessel AJ, Sabatini BL. M1 muscarinic receptors boost synaptic potentials and calcium influx in dendritic spines by inhibiting postsynaptic SK channels. Neuron. 2010;68:936–947.
  • Peineau S, Taghibiglou C, Bradley C, et al. LTP inhibits LTD in the hippocampus via regulation of GSK3β. Neuron. 2007;53:703–717.
  • Mt M-P, Gomez-Villafuertes R, Gualix J, et al. Nucleotides in neuroregeneration and neuroprotection. Neuropharmacology. 2016;104:243–254.
  • Chew B, Ryu JR, Ng T, et al. Lentiviral silencing of GSK-3β in adult dentate gyrus impairs contextual fear memory and synaptic plasticity. Front Behav Neurosci. 2015;9:158.
  • Zhu L-Q, Wang S-H, Liu D, et al. Activation of glycogen synthase kinase-3 inhibits long-term potentiation with synapse-associated impairments. J Neurosci. 2007;27:12211–12220.
  • Pardo M, Abrial E, Jope RS, et al. GSK3β isoform-selective regulation of depression, memory and hippocampal cell proliferation. Genes, Brain Behav. 2016;15:348–355.
  • Ochs SM, Dorostkar MM, Aramuni G, et al. Loss of neuronal GSK3β reduces dendritic spine stability and attenuates excitatory synaptic transmission via β-catenin. Mol Psychiatry. 2015;20:482–489.
  • Gozdz A, Nikolaienko O, Urbanska M, et al. GSK3α and GSK3β phosphorylate Arc and regulate its degradation. Front Mol Neurosci. 2017;10:192.
  • Petrini EM, Ravasenga T, Hausrat TJ, et al. Synaptic recruitment of gephyrin regulates surface GABAA receptor dynamics for the expression of inhibitory LTP. Nat Commun. 2014;5:3921.
  • Zhu L-Q, Liu D, Hu J, et al. GSK-3 beta inhibits presynaptic vesicle exocytosis by phosphorylating P/Q-type calcium channel and interrupting SNARE complex formation. J Neurosci. 2010;30:3624–3633.
  • King MK, Pardo M, Cheng Y, et al. Glycogen synthase kinase-3 inhibitors: rescuers of cognitive impairments. Pharmacol Ther. 2014;141:1–12.
  • Maqbool M, Mobashir M, Hoda N. Pivotal role of glycogen synthase kinase-3: A therapeutic target for Alzheimer’s disease. Eur J Med Chem. 2016;107:63–81.
  • Suzuki A, Stern SA, Bozdagi O, et al. Astrocyte-neuron lactate transport is required for long-term memory formation. Cell. 2011;144:810–823.
  • Drulis-Fajdasz D, Wójtowicz T, Wawrzyniak M, et al. Involvement of cellular metabolism in age-related LTP modifications in rat hippocampal slices. Oncotarget. 2015;6:14065–14081.
  • Silva T, Reis J, Teixeira J, et al. Alzheimer’s disease, enzyme targets and drug discovery struggles: from natural products to drug prototypes. Ageing Res Rev. 2014;15:116–145.
  • Haass C, Selkoe DJ. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid β-peptide. Nat Rev Mol Cell Biol. 2007;8:101–112.
  • Morroni F, Sita G, Tarozzi A, et al. Early effects of Aβ1-42 oligomers injection in mice: involvement of PI3K/Akt/GSK3 and MAPK/ERK1/2 pathways. Behav Brain Res. 2016;314:106–115.
  • Yi JH, Baek SJ, Heo S, et al. Direct pharmacological Akt activation rescues Alzheimer’s disease like memory impairments and aberrant synaptic plasticity. Neuropharmacology. 2018;128:282–292.
  • Zhang Z-X, Zhao R-P, Wang D-S, et al. Fuzhisan ameliorates Aβ production and tau phosphorylation in hippocampal of 11 month old APP/PS1 transgenic mice: A western blot study. Exp Gerontol. 2016;84:88–95.
  • Deng Y, Xiong Z, Chen P, et al. β-Amyloid impairs the regulation of N-methyl-D-aspartate receptors by glycogen synthase kinase 3. Neurobiol Aging. 2014;35:449–459.
  • Tajes M, Gutierrez-Cuesta J, Folch J, et al. Lithium treatment decreases activities of tau kinases in a murine model of senescence. J Neuropathol Exp Neurol. 2008;67:612–623.
  • Hampel H, Ewers M, Bürger K, et al. Lithium trial in Alzheimer’s disease: a randomized, single-blind, placebo-controlled, multicenter 10-week study. J Clin Psychiatry. 2009;70:922–931.
  • Bao X-Q, Li N, Wang T, et al. FLZ alleviates the memory deficits in transgenic mouse model of Alzheimer’s disease via decreasing beta-amyloid production and tau hyperphosphorylation. PLoS One. 2013;8:e78033.
  • Prati F, De Simone A, Bisignano P, et al. Multitarget drug discovery for Alzheimer’s Disease: triazinones as BACE-1 and GSK-3β inhibitors. Angew Chemie Int Ed. 2015;54:1578–1582.
  • Domínguez JM, Fuertes A, Orozco L, et al. Evidence for Irreversible Inhibition of Glycogen Synthase Kinase-3β by Tideglusib. J Biol Chem. 2012;287:893–904.
  • Serenó L, Coma M, Rodríguez M, et al. A novel GSK-3β inhibitor reduces Alzheimer’s pathology and rescues neuronal loss in vivo. Neurobiol Dis. 2009;35:359–367.
  • Del Ser T, Steinwachs KC, Gertz HJ, et al. Treatment of Alzheimer’s disease with the GSK-3 inhibitor tideglusib: a pilot study. J Alzheimer’s Dis. 2012;33:205–215.
  • Dey A, Hao S, Wosiski-Kuhn M, et al. Glucocorticoid-mediated activation of GSK3β promotes tau phosphorylation and impairs memory in type 2 diabetes. Neurobiol Aging. 2017;57:75–83.
  • Lange C, Mix E, Frahm J, et al. Small molecule GSK-3 inhibitors increase neurogenesis of human neural progenitor cells. Neurosci Lett. 2011;488:36–40.
  • Petit-Paitel A, Brau F, Cazareth J, et al. Involvment of cytosolic and mitochondrial GSK-3β in mitochondrial dysfunction and neuronal cell death of MPTP/MPP+-treated neurons. PLoS One. 2009;4:e5491.
  • Cross DA, Culbert AA, Chalmers KA, et al. Selective small-molecule inhibitors of glycogen synthase kinase-3 activity protect primary neurones from death. J Neurochem. 2001;77:94–102.
  • McCubrey JA, Abrams SL, Lertpiriyapong K, et al. Effects of berberine, curcumin, resveratrol alone and in combination with chemotherapeutic drugs and signal transduction inhibitors on cancer cells—power of nutraceuticals. Adv Biol Regul. 2018;67:190–211.
  • Turner RS, Thomas RG, Craft S, et al. Alzheimer’s Disease cooperative study. A randomized, double-blind, placebo-controlled trial of resveratrol for Alzheimer disease. Neurology. 2015;85:1383–1391.
  • Durairajan SSK, Liu L-F, Lu J-H, et al. Berberine ameliorates β-amyloid pathology, gliosis, and cognitive impairment in an Alzheimer’s disease transgenic mouse model. Neurobiol Aging. 2012;33:2903–2919.
  • Goñi-Oliver P, Avila J, Hernández F. Memantine inhibits calpain-mediated truncation of GSK-3 Induced by NMDA: implications in Alzheimer’s Disease. J Alzheimer’s Dis. 2009;18:843–848.
  • Tayeb HO, Yang HD, Price BH, et al. Pharmacotherapies for Alzheimer’s disease: beyond cholinesterase inhibitors. Pharmacol Ther. 2012;134:8–25.
  • Noh M-Y, Koh S-H, Kim Y, et al. Neuroprotective effects of donepezil through inhibition of GSK-3 activity in amyloid-β-induced neuronal cell death. J Neurochem. 2009;108:1116–1125.
  • Kalia LV, Lang AE. Parkinson’s disease. Lancet. 2015;386:896–912.
  • DeMaagd G, Philip A. Parkinson’s disease and its management: part 1: disease entity, risk factors, pathophysiology, clinical presentation, and diagnosis. P T. 2015;40:504–532.
  • Nagao M, Hayashi H. Glycogen synthase kinase-3beta is associated with Parkinson’s disease. Neurosci Lett. 2009;449:103–107.
  • Hernandez-Baltazar D, Mendoza-Garrido ME, Martinez-Fong D. Activation of GSK-3β and caspase-3 occurs in nigral dopamine neurons during the development of apoptosis activated by a striatal injection of 6-hydroxydopamine. PLoS One. 2013;8:e70951.
  • Pandey MK, DeGrado TR. Glycogen synthase kinase-3 (GSK-3)-targeted therapy and imaging. Theranostics. 2016;6:571–593.
  • Ren Z-X, Zhao Y-F, Cao T, et al. Dihydromyricetin protects neurons in an MPTP-induced model of Parkinson’s disease by suppressing glycogen synthase kinase-3 beta activity. Acta Pharmacol Sin. 2016;37:1315–1324.
  • Wang W, Yang Y, Ying C, et al. Inhibition of glycogen synthase kinase-3beta protects dopaminergic neurons from MPTP toxicity. Neuropharmacology. 2007;52:1678–1684.
  • Morales-García JA, Susín C, Alonso-Gil S, et al. Glycogen synthase kinase-3 inhibitors as potent therapeutic agents for the treatment of Parkinson disease. ACS Chem Neurosci. 2013;4:350–360.
  • Schapira AH, Cooper JM, Dexter D, et al. Mitochondrial complex I deficiency in Parkinson’s disease. Lancet. 1989;1:1269.
  • Moon HE, Paek SH. Mitochondrial dysfunction in Parkinson’s Disease. Exp Neurobiol. 2015;24:103–116.
  • Linseman DA, Butts BD, Precht TA, et al. Glycogen synthase kinase-3beta phosphorylates bax and promotes its mitochondrial localization during neuronal apoptosis. J Neurosci. 2004;24:9993–10002.
  • Engelender S, Kaminsky Z, Guo X, et al. Synphilin-1 associates with alpha-synuclein and promotes the formation of cytosolic inclusions. Nat Genet. 1999;22:110–114.
  • Credle JJ, George JL, Wills J, et al. GSK-3β dysregulation contributes to Parkinson’s-like pathophysiology with associated region-specific phosphorylation and accumulation of tau and α-synuclein. Cell Death Differ. 2015;22:838–851.
  • Kim WS, Kågedal K, Halliday GM. Alpha-synuclein biology in Lewy body diseases. Alzheimers Res Ther. 2014;6:73.
  • Perez RG, Waymire JC, Lin E, et al. A role for alpha-synuclein in the regulation of dopamine biosynthesis. J Neurosci. 2002;22:3090–3099.
  • Colla E, Jensen PH, Pletnikova O, et al. Accumulation of toxic α-synuclein oligomer within endoplasmic reticulum occurs in α-synucleinopathy in vivo. J Neurosci. 2012;32:3301–3305.
  • Song L, De Sarno P, Jope RS. Central role of glycogen synthase kinase-3beta in endoplasmic reticulum stress-induced caspase-3 activation. J Biol Chem. 2002;277:44701–44708.
  • Avraham E, Szargel R, Eyal A, et al. Glycogen synthase kinase 3beta modulates synphilin-1 ubiquitylation and cellular inclusion formation by SIAH: implications for proteasomal function and Lewy body formation. J Biol Chem. 2005;280:42877–42886.
  • Beaulieu J-M, Sotnikova TD, Yao W-D, et al. Lithium antagonizes dopamine-dependent behaviors mediated by an AKT/glycogen synthase kinase 3 signaling cascade. Proc Natl Acad Sci. 2004;101:5099–5104.
  • Li X, Rosborough KM, Friedman AB, et al. Regulation of mouse brain glycogen synthase kinase-3 by atypical antipsychotics. Int J Neuropsychopharmacol. 2007;10:7–19.
  • Lim JH, Kim K-M, Kim SW, et al. Bromocriptine activates NQO1 via Nrf2-PI3K/Akt signaling: novel cytoprotective mechanism against oxidative damage. Pharmacol Res. 2008;57:325–331.
  • American Psychiatric Association. DSM-5 Task Force. Diagnostic and statistical manual of mental disorders : DSM-5. American Psychiatric Association (Washington, D.C.);2013. p. 947.
  • Saha S, Chant D, Welham J, et al. A Systematic Review of the Prevalence of Schizophrenia. Hyman SE, editor. PLoS Med. 2005;2:e141.
  • Misiak B, Stramecki F, Gawęda Ł, et al. Interactions between variation in candidate genes and environmental factors in the etiology of schizophrenia and bipolar disorder: a systematic review. Mol Neurobiol. 2018;55:5075–5100.
  • Robinson DG. Pharmacological treatments for first-episode schizophrenia. Schizophr Bull. 2005;31:705–722.
  • Beaulieu J-M, Gainetdinov RR, Caron MG. Akt/GSK3 signaling in the action of psychotropic drugs. Annu Rev Pharmacol Toxicol. 2009;49:327–347.
  • Tamura M, Mukai J, Gordon JA, et al. Developmental inhibition of Gsk3 rescues behavioral and neurophysiological deficits in a mouse model of schizophrenia predisposition. Neuron. 2016;89:1100–1109.
  • Mao Y, Ge X, Frank CL, et al. Disrupted in schizophrenia 1 regulates neuronal progenitor proliferation via modulation of GSK3β/β-catenin signaling. Cell. 2009;136:1017–1031.
  • Abdel-Aleem GA, Khaleel EF, Mostafa DG, et al. Neuroprotective effect of resveratrol against brain ischemia reperfusion injury in rats entails reduction of DJ-1 protein expression and activation of PI3K/Akt/GSK3b survival pathway. Arch Physiol Biochem. 2016;122:200–213.
  • Magaji MG, Iniaghe LO, Abolarin M, et al. Neurobehavioural evaluation of resveratrol in murine models of anxiety and schizophrenia. Metab Brain Dis. 2017;32:437–442.
  • Zortea K, Franco VC, Guimarães P, et al. Resveratrol supplementation did not improve cognition in patients with schizophrenia: results from a randomized clinical trial. Front Psychiatry. 2016;7:159.
  • Hu S, Begum AN, Jones MR, et al. GSK3 inhibitors show benefits in an Alzheimer’s disease (AD) model of neurodegeneration but adverse effects in control animals. Neurobiol Dis. 2009;33:193–206.
  • Eldar-Finkelman H, Martinez A. GSK-3 inhibitors: preclinical and clinical focus on CNS. Front Mol Neurosci. 2011;4:32.
  • O’Brien WT, Harper AD, Jové F, et al. Glycogen synthase kinase-3beta haploinsufficiency mimics the behavioral and molecular effects of lithium. J Neurosci. 2004;24:6791–6798.
  • Prickaerts J, Moechars D, Cryns K, et al. Transgenic mice overexpressing glycogen synthase kinase 3beta: a putative model of hyperactivity and mania. J Neurosci. 2006;26:9022–9029.
  • Kozlovsky N, Shanon-Weickert C, Tomaskovic-Crook E, et al. Reduced GSK-3beta mRNA levels in postmortem dorsolateral prefrontal cortex of schizophrenic patients. J Neural Transm. 2004;111:1583–1592.
  • Kozlovsky N, Regenold WT, Levine J, et al. GSK-3beta in cerebrospinal fluid of schizophrenia patients. J Neural Transm. 2004;111:1093–1098.
  • Kozlovsky N, Belmaker RH, Agam G. Low GSK-3 activity in frontal cortex of schizophrenic patients. Schizophr Res. 2001;52:101–105.
  • Nadri C, Dean B, Scarr E, et al. GSK-3 parameters in postmortem frontal cortex and hippocampus of schizophrenic patients. Schizophr Res. 2004;71:377–382.
  • Beasley C, Cotter D, Khan N, et al. Glycogen synthase kinase-3beta immunoreactivity is reduced in the prefrontal cortex in schizophrenia. Neurosci Lett. 2001;302:117–120.
  • Beasley C, Cotter D, Everall I. An investigation of the Wnt-signalling pathway in the prefrontal cortex in schizophrenia, bipolar disorder and major depressive disorder. Schizophr Res. 2002;58:63–67.
  • Emamian ES, Hall D, Birnbaum MJ, et al. Convergent evidence for impaired AKT1-GSK3β signaling in schizophrenia. Nat Genet. 2004;36:131–137.
  • Joaquim HPG, Zanetti MV, Serpa MH, et al. Increased platelet glycogen sysnthase kinase 3beta in first-episode psychosis. Schizophr Res. 2018;195:402–405.
  • Ricci A, Bronzetti E, Mannino F, et al. Dopamine receptors in human platelets. Naunyn Schmiedebergs Arch Pharmacol. 2001;363:376–382.
  • Honea R, Crow TJ, Passingham D, et al. Regional deficits in brain volume in schizophrenia: a meta-analysis of voxel-based morphometry studies. Am J Psychiatry. 2005;162:2233–2245.
  • Glantz LA, Gilmore JH, Lieberman JA, et al. Apoptotic mechanisms and the synaptic pathology of schizophrenia. Schizophr Res. 2006;81:47–63.
  • Beurel E, Jope RS. The paradoxical pro- and anti-apoptotic actions of GSK3 in the intrinsic and extrinsic apoptosis signaling pathways. Prog Neurobiol. 2006;79:173–189.
  • Wexler EM, Rosen E, Lu D, et al. Genome-wide analysis of a Wnt1-regulated transcriptional network implicates neurodegenerative pathways. Sci Signal. 2011;4:ra65–ra65.
  • Dobson-Stone C, Polly P, Korgaonkar MS, et al. GSK3B and MAPT polymorphisms are associated with grey matter and intracranial volume in healthy individuals. PLoS One. 2013;8:e71750.
  • Mortimer JA, Snowdon DA, Markesbery WR. Head circumference, education and risk of dementia: findings from the nun study. J Clin Exp Neuropsychol (Neuropsychology Dev Cogn Sect A). 2003;25:671–679.
  • Hu J-H, Zhang H, Wagey R, et al. Protein kinase and protein phosphatase expression in amyotrophic lateral sclerosis spinal cord. J Neurochem. 2003;85:432–442.
  • Yang W, Leystra-Lantz C, Strong MJ. Upregulation of GSK3β expression in frontal and temporal cortex in ALS with cognitive impairment (ALSci). Brain Res. 2008;1196:131–139.
  • Sreedharan J, Neukomm LJ, Brown RH, et al. Age-dependent TDP-43-mediated motor neuron degeneration requires GSK3, hat-trick, and xmas-2. Curr Biol. 2015;25:2130–2136.
  • Shen Q, Wang X, Chen Y, et al. Expression QTL and regulatory network analysis of microtubule-associated protein tau gene. Parkinsonism Relat Disord. 2009;15:525–531.
  • Mines MA, Yuskaitis CJ, King MK, et al. GSK3 influences social preference and anxiety-related behaviors during social interaction in a mouse model of fragile X syndrome and Autism. PLoS One. 2010;5:e9706.
  • Adli M, Hollinde DL, Stamm T, et al. Response to lithium augmentation in depression is associated with the glycogen synthase kinase 3-Beta −50T/C single nucleotide polymorphism. Biol Psychiatry. 2007;62:1295–1302.
  • Martin M, Rehani K, Jope RS, et al. Toll-like receptor–mediated cytokine production is differentially regulated by glycogen synthase kinase 3. Nat Immunol. 2005;6:777–784.
  • Beurel E, Yeh W-I, Michalek SM, et al. Glycogen synthase kinase-3 is an early determinant in the differentiation of pathogenic Th17 Cells. J Immunol. 2011;186:1391–1398.
  • Bianchi M, De Lucchini S, Marin O, et al. Regulation of FAK Ser-722 phosphorylation and kinase activity by GSK3 and PP1 during cell spreading and migration. Biochem J. 2005;391:359–370.
  • de Melker AA, Desban N, Duband J-L. Cellular localization and signaling activity of β-catenin in migrating neural crest cells. Dev Dyn. 2004;230:708–726.
  • Etienne-Manneville S, Hall A. Cdc42 regulates GSK-3β and adenomatous polyposis coli to control cell polarity. Nature. 2003;421:753–756.
  • Licinio J, Wong ML. The role of inflammatory mediators in the biology of major depression: central nervous system cytokines modulate the biological substrate of depressive symptoms, regulate stress-responsive systems, and contribute to neurotoxicity and neuroprotection. Mol Psychiatry. 1999;4:317–327.
  • Block ML, Hong J-S. Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol. 2005;76:77–98.
  • Akiyama H, Barger S, Barnum S, et al. Inflammation and Alzheimer’s disease. Neurobiol Aging. 2000;21:383–421.
  • Akiyama H, Mori H, Saido T, et al. Occurrence of the diffuse amyloid β-protein (Aβ) deposits with numerous Aβ-containing glial cells in the cerebral cortex of patients with Alzheimer’s disease. Glia. 1999;25:324–331.
  • Brochard V, Combadière B, Prigent A, et al. Infiltration of CD4+ lymphocytes into the brain contributes to neurodegeneration in a mouse model of Parkinson disease. J Clin Invest. 2008;119:182–192.
  • Tang Y, Le W. Differential roles of M1 and M2 microglia in neurodegenerative diseases. Mol Neurobiol. 2016;53:1181–1194.
  • Park C, Lee S, Cho I-H, et al. TLR3-mediated signal induces proinflammatory cytokine and chemokine gene expression in astrocytes: differential signaling mechanisms of TLR3-induced IP-10 and IL-8 gene expression. Glia. 2006;53:248–256.
  • Yuskaitis CJ, Jope RS. Glycogen synthase kinase-3 regulates microglial migration, inflammation, and inflammation-induced neurotoxicity. Cell Signal. 2009;21:264–273.
  • Peña-Altamira E, Petralla S, Massenzio F, et al. Nutritional and pharmacological strategies to regulate microglial polarization in cognitive aging and Alzheimer’s Disease. Front Aging Neurosci. 2017;9:175.
  • Beurel E, Jope RS. Differential regulation of STAT family members by glycogen synthase kinase-3. J Biol Chem. 2008;283:21934–21944.
  • Cao Q, Karthikeyan A, Dheen ST, et al. Production of proinflammatory mediators in activated microglia is synergistically regulated by Notch-1, glycogen synthase kinase (GSK-3β) and NF-κB/p65 signalling. PLoS One. 2017;12:e0186764.
  • Kim DW, Lee JH, Park SK, et al. Astrocytic expressions of phosphorylated Akt, GSK3β and CREB following an excitotoxic lesion in the mouse hippocampus. Neurochem Res. 2007;32:1460–1468.
  • Wang M-J, Huang H-Y, Chen W-F, et al. Glycogen synthase kinase-3β inactivation inhibits tumor necrosis factor-α production in microglia by modulating nuclear factor κB and MLK3/JNK signaling cascades. J Neuroinflammation. 2010;7:99.
  • Nahman S, Belmaker R, Azab AN. Effects of lithium on lipopolysaccharide-induced inflammation in rat primary glia cells. Innate Immun. 2012;18:447–458.
  • Licht-Murava A, Paz R, Vaks L, et al. A unique type of GSK-3 inhibitor brings new opportunities to the clinic. Sci Signal Am Assoc Adv Sci. 2016;9:ra110.
  • Haroutunian V, Katsel P, Roussos P, et al. Myelination, oligodendrocytes, and serious mental illness. Glia. 2014;62:1856–1877.
  • Wyss-Coray T, Loike JD, Brionne TC, et al. Adult mouse astrocytes degrade amyloid-β in vitro and in situ. Nat Med. 2003;9:453–457.
  • Gibbs M. Reflections on glycogen and β-amyloid: why does glycogenolytic β2-adrenoceptor stimulation not rescue memory after β-amyloid? Metab Brain Dis. 2015;30:345–352.
  • McCubrey JA, Lertpiriyapong K, Steelman LS, et al. Regulation of GSK-3 activity by curcumin, berberine and resveratrol: potential effects on multiple diseases. Adv Biol Regul. 2017;65:77–88.
  • Drulis-Fajdasz D, Rakus D, Wiśniewski JR, et al. Systematic analysis of GSK-3 signaling pathways in aging of cerebral tissue. Adv Biol Regul. 2018;69:35–42.
  • Drulis-Fajdasz D, Gizak A, Wójtowicz T, et al. Aging-associated changes in hippocampal glycogen metabolism in mice. Evidence for and against astrocyte-to-neuron lactate shuttle. Glia. 2018;66:1481–1495.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.