814
Views
2
CrossRef citations to date
0
Altmetric
Review

HDAC6 as a potential therapeutic target for peripheral nerve disorders

, , &
Pages 993-1007 | Received 04 Jun 2018, Accepted 24 Oct 2018, Published online: 19 Nov 2018

References

  • NINDS. Peripheral neuropathy fact sheet. NIH Pub. No. 15-4853. 2014.
  • Tesfaye S, Boulton AJM, Dyck PJ, et al. Diabetic neuropathies: update on definitions, diagnostic criteria, estimation of severity, and treatments. Diabetes Care. 2010;2285–2293.
  • Karam C, Dyck PJB. Toxic neuropathies. Semin Neurol. 2015; 35(04): 448-457.
  • England JD, Asbury AK. Peripheral neuropathy. Lancet. 2004;2151–2161.
  • Baron R. Mechanisms of disease: neuropathic pain—a clinical perspective. Nat Clin Pract Neurol. 2006;2:95–106.
  • Cashman CR, Höke A. Mechanisms of distal axonal degeneration in peripheral neuropathies. Neurosci Lett. 2015;596:33–50.
  • Grozinger CM, Hassig CA, Schreiber SL. Three proteins define a class of human histone deacetylases related to yeast Hda1p. Biochemistry. 1999;96:4868–4873.
  • Cress WD, Seto E. Histone deacetylases, transcriptional control, and cancer. J Cell Physiol. 2000;184:1–16.
  • Zhang Y, Li N, Caron C, et al. HDAC-6 interacts with and deacetylates tubulin and microtubules in vivo. Embo J. 2003 Feb 28;22:1168–1179.
  • Kovacs JJ, Murphy PJ, Gaillard S, et al. HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol Cell. 2005 May 27;18:601–607.
  • Zhang X, Yuan Z, Zhang Y, et al. HDAC6 modulates cell motility by altering the acetylation level of cortactin. Mol Cell. 2007 July 24;27:197–213.
  • Ding G, Liu HD, Huang Q, et al. HDAC6 promotes hepatocellular carcinoma progression by inhibiting P53 transcriptional activity. FEBS Lett. 2013 Feb 14;587:880–886.
  • Kawaguchi Y, Kovacs JJ, McLaurin A, et al. The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell. 2003 Dec 17;115:727–738.
  • Miyake Y, Keusch JJ, Wang L, et al. Structural insights into HDAC6 tubulin deacetylation and its selective inhibition. Nat Chem Biol. 2016;12:748–754.
  • Bertos NR, Gilquin B, Chan GKT, et al. Role of the tetradecapeptide repeat domain of human histone deacetylase 6 in cytoplasmic retention. J Biol Chem. 2004;279:48246–48254.
  • D’Ydewalle C, Bogaert E. Van den Bosch L. HDAC6 at the intersection of neuroprotection and neurodegeneration. Traffic. 2012 Mar 1;13:771–779.
  • Guo W, Naujock M, Fumagalli L, et al. HDAC6 inhibition reverses axonal transport defects in motor neurons derived from FUS-ALS patients. Nat Commun [Internet]. 2017;8:1–14.
  • Majid T, Griffin D, Criss Z, et al. Pharmocologic treatment with histone deacetylase 6 inhibitor (ACY-738) recovers Alzheimer’s disease phenotype in amyloid precursor protein/presenilin 1 (APP/PS1) mice. Alzheimer’s Dement Transl Res Clin Interv. 2015;1:170–181.
  • Simões-Pires C, Zwick V, Nurisso A, et al. HDAC6 as a target for neurodegenerative diseases: what makes it different from the other HDACs? Mol Neurodegener. 2013;8:7.
  • Guedes-Dias P, de Proença J, Soares TR, et al. HDAC6 inhibition induces mitochondrial fusion, autophagic flux and reduces diffuse mutant huntingtin in striatal neurons. Biochim Biophys Acta Mol Basis Dis. 2015;1852:2484–2493.
  • Wang Z, Leng Y, Wang J, et al. Tubastatin A, an HDAC6 inhibitor, alleviates stroke-induced brain infarction and functional deficits: potential roles of α-tubulin acetylation and FGF-21 up-regulation. Sci Rep. 2016;6:1–12.
  • Van Helleputte L, Benoy V, Van den Bosch L. The role of histone deacetylase 6 (HDAC6) in neurodegeneration. 2014;5:1–13.
  • Hirokawa N, Niwa S, Tanaka Y. Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. Neuron [Internet]. 2010;68:610–638.
  • Griffin JW, Watson DF. Axonal transport in neurological disease. Ann Neurol. 1988;23:3–13.
  • Lloyd TE. Axonal transport disruption in peripheral nerve disease. J Peripher Nerv Syst. 2012;17:46–51.
  • Zhao C, Takita J, Tanaka Y, et al. Charcot-Marie-Tooth disease type 2A caused by mutation in a microtubule motor KIF1Bbeta. Cell [Internet]. 2001;105:587–597. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11389829
  • Weedon MN, Hastings R, Caswell R, et al. Exome sequencing identifies a DYNC1H1 mutation in a large pedigree with dominant Axonal Charcot-Marie-Tooth disease. Am J Hum Genet [Internet]. 2011;89:308–312.
  • Puls I, Jonnakuty C, LaMonte BH, et al. Mutant dynactin in motor neuron disease. Nat Genet. 2003;33:455–456.
  • LaMonte BH, Wallace KE, Holloway BA, et al. Disruption of dynein/dynactin inhibits axonal transport in motor neurons causing late-onset progressive degeneration. Neuron. 2002;34:715–727.
  • Langworthy MM, Appel B. Schwann cell myelination requires Dynein function. Neural Dev [Internet]. 2012;7:1–15. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3520773&tool=pmcentrez&rendertype=abstract
  • Brownlees J, Ackerley S, Grierson AJ, et al. Charcot-Marie-Tooth disease neurofilament mutations disrupt neurofilament assembly and axonal transport. Hum Mol Genet. 2002;11:2837–2844.
  • Yates DM, Manser C, De Vos KJ, et al. Neurofilament subunit (NFL) head domain phosphorylation regulates axonal transport of neurofilaments. Eur J Cell Biol. 2009;88:193–202.
  • Yoon BC, Jung H, Dwivedy A, et al. Local translation of extranuclear lamin B promotes axon maintenance. Cell [Internet]. 2012;148:752–764.
  • Sugimoto K, Yasujima M, Yagihashi S. Role of advanced glycation end products in diabetic neuropathy. Curr Pharm Des. 2008;14:953–961.
  • Prior R, Van Helleputte L, Benoy V, et al. Defective axonal transport: a common pathological mechanism in inherited and acquired peripheral neuropathies. Neurobiol Dis [ [Internet]. 2017;105:300–320.
  • Nicolini G, Monfrini M, Scuteri A. Axonal transport impairment in chemotherapy-induced peripheral neuropathy. Toxics. 2015;3:322–341.
  • Cavaletti G, Marmiroli P. Chemotherapy-induced peripheral neurotoxicity. Nat Rev Neurol. 2010;12:657–667.
  • Höke A. Mechanisms of Disease: what factors limit the success of peripheral nerve regeneration in humans? Nat Clin Pract Neurol. 2006;2:448–454.
  • Chakraborti S, Natarajan K, Curiel J, et al. The emerging role of the tubulin code: from the tubulin molecule to neuronal function and disease. Cytoskeleton. 2016;73:521–550.
  • Janke C, Chloë bulinski J. Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions. Nat Rev Mol Cell Biol. 2011;12:773–786.
  • Dompierre JP, Godin JD, Charrin BC, et al. Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington’s disease by increasing tubulin acetylation. J Neurosci. 2007;27:3571–3583.
  • Rogowski K, van Dijk J, Magiera MM, et al. A family of protein-deglutamylating enzymes associated with neurodegeneration. Cell. 2010;143:564–578.
  • De Vos KJ, Hafezparast M. Neurobiology of axonal transport defects in motor neuron diseases: opportunities for translational research? Neurobiol Dis. 2017;105:283–299.
  • Hubbert C, Guardiola A, Shao R, et al. HDAC6 is a microtubule-associated deacetylase. Nature. 2002 May 25;417:455–458.
  • Matsuyama A, Shimazu T, Sumida Y, et al. In vivo destabilization of dynamic microtubules by HDAC6-mediated deacetylation. Embo J. 2002 Dec 18;21:6820–6831.
  • Zilberman Y, Ballestrem C, Carramusa L, et al. Regulation of microtubule dynamics by inhibition of the tubulin deacetylase HDAC6. J Cell Sci. 2009 Sep 10;122:3531–3541.
  • Reed NA, Cai D, Blasius TL, et al. Microtubule acetylation promotes kinesin-1 binding and transport. Curr Biol. 2006 Nov 7;16:2166–2172.
  • Chen S, Owens GC, Makarenkova H, et al. HDAC6 regulates mitochondrial transport in hippocampal neurons. PLoS One. 2010 Jun 4;5:e10848.
  • Cai Q, Sheng ZH. Moving or stopping mitochondria: miro as a traffic cop by sensing calcium. Neuron. 2009;61:493–496.
  • Wang X, Schwarz TL. The mechanism of Ca2+-dependent regulation of kinesin-mediated mitochondrial motility. Cell [Internet]. 2009;136:163–174.
  • D’Ydewalle C, Krishnan J, Chiheb DM, et al. HDAC6 inhibitors reverse axonal loss in a mouse model of mutant HSPB1-induced Charcot-Marie-Tooth disease. Nat Med [Internet]. 2011;17:968–974.
  • Benoy V, Van Helleputte L, Prior R, et al. HDAC6 is a therapeutic target in mutant GARS-induced Charcot-Marie-Tooth disease. Brain [Internet]. 2018;1–15. Available from. http://www.ncbi.nlm.nih.gov/pubmed/29415205%0Ahttps://academic.oup.com/brain/advance-article/doi/10.1093/brain/awx375/4838963 :
  • Van Helleputte L, Kater M, Cook DP, et al. Inhibition of histone deacetylase 6 (HDAC6) protects against vincristine-induced peripheral neuropathies and inhibits tumor growth. Neurobiol Dis [ [Internet]. 2018;111:59–69.
  • Krukowski K, Ma J, Golonzhka O, et al. HDAC6 inhibition effectively reverses chemotherapy-induced peripheral neuropathy. Pain. 2017;158:1126–1137.
  • Mo Z, Zhao X, Liu H, et al. Aberrant GlyRS-HDAC6 interaction linked to axonal transport deficits in Charcot-Marie-Tooth neuropathy. Nat Commun. 2018;9:1007.
  • Jung J, Cai W, Lee HK, et al. Actin polymerization is essential for myelin sheath fragmentation during Wallerian degeneration. J Neurosci. 2011;31:2009–2015.
  • Bacon C, Lakics V, Machesky L, et al. N-WASP regulates extension of filopodia and processesby oligodendrocyte progenitors, oligodendrocytes, andschwann cells—implications for axon ensheathmentat myelination. Glia. 2007;55:844–858.
  • FernandezValle C, Gorman D, Gomez AM, et al. Actin plays a role in both changes in cell shape and gene- expression associated with Schwann cell myelination. J Neurosci. 1997;17:241–250.
  • Goldberg AL. Protein degradation and protection against misfolded or damaged proteins. Nature. 2003 Dec 20;426:895–899.
  • Thibaudeau TA, Anderson RT, Smith DM. A common mechanism of proteasome impairment by neurodegenerative disease-associated oligomers. Nat Commun. 2018.
  • Dantuma NP, Bott LC. The ubiquitin-proteasome system in neurodegenerative diseases: precipitating factor, yet part of the solution. Front Mol Neurosci. 2014;7.
  • Cuervo AM, Wong E. Chaperone-mediated autophagy: roles in disease and aging. Cell Res. 2014;24:92–104.
  • Züchner S, Vance JM. Molecular genetics of autosomal-dominant axonal charcot-marie-tooth disease. NeuroMolecular Med. 2006;8:63–74.
  • Lee SM, Chin LS, Li L. Protein misfolding and clearance in demyelinating peripheral neuropathies: therapeutic implications. Commun Integr Biol. 2012 Apr 7;5:107–110.
  • Piperi C, Adamopoulos C, Dalagiorgou G, et al. Crosstalk between advanced glycation and endoplasmic reticulum stress: emerging therapeutic targeting for metabolic diseases. J Clin Endocrinol Metab. 2012;97:2231–2242.
  • Cameron NE. Role of endoplasmic reticulum stress in diabetic neuropathy. Diabetes. 2013;62:696–697.
  • Lupachyk S, Watcho P, Stavniichuk R, et al. Endoplasmic reticulum stress plays a key role in the pathogenesis of diabetic peripheral neuropathy. Diabetes. 2013;62:944–952.
  • Queisser MA, Yao D, Geisler S, et al. Hyperglycemia impairs proteasome function by methylglyoxal. Diabetes. 2010;59:670–678.
  • Henstridge DC, Whitham M, Febbraio MA. Chaperoning to the metabolic party: the emerging therapeutic role of heat-shock proteins in obesity and type 2 diabetes. Mol Metab. 2014;3:781–793.
  • Meregalli C. An Overview of Bortezomib-Induced Neurotoxicity. Toxics. 2015;3:294–303.
  • Elder RM, Jayaraman A. Sequence-specific recognition of cancer drug-DNA adducts by HMGB1a repair protein. Biophys J. 2012;102:2331–2338.
  • LaPointe NE, Morfini G, Brady ST, et al. Effects of eribulin, vincristine, paclitaxel and ixabepilone on fast axonal transport and kinesin-1 driven microtubule gliding: implications for chemotherapy-induced peripheral neuropathy. Neurotoxicology. 2013 May 29;37:231–239.
  • Massey AC, Zhang C, Cuervo AM. Chaperone-mediated autophagy in aging and disease. Curr Top Dev Biol. 2006 Jun 20;73:205–235.
  • Haidar M, Timmerman V. Autophagy as an emerging common pathomechanism in inherited peripheral neuropathies. Front Mol Neurosci. 2017;10:1–17.
  • Boyault C, Sadoul K, Pabion M, et al. HDAC6, at the crossroads between cytoskeleton and cell signaling by acetylation and ubiquitination. Oncogene. 2007;26:5468–5476.
  • Richter-Landsberg C The α-tubulin deacetylase HDAC6 in aggresome formation and autophagy: implications for neurodegeneration. In: Autophagy cancer, other pathol. Inflammation, immunity, infect. Aging. Hayat MA, editor. Academic Press; 2015;5:273–282.
  • Boyault C, Gilquin B, Zhang Y, et al. HDAC6-p97/VCP controlled polyubiquitin chain turnover. Embo J. 2006 Jul 1;25:3357–3366.
  • Johnson JO, Mandrioli J, Benatar M, et al. Exome sequencing reveals VCP mutations as a cause of familial ALS. Neuron. 2010;68:857–864.
  • Seigneurin-Berny D, Verdel A, Curtet S, et al. Identification of components of the murine histone deacetylase 6 complex: link between acetylation and ubiquitination signaling pathways. Mol Cell Biol. 2001 Nov 2;21:8035–8044.
  • Kopito RR. Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol. 2000 Dec 21;10:524–530.
  • Waza M, Adachi H, Katsuno M, et al. Modulation of Hsp90 function in neurodegenerative disorders: a molecular-targeted therapy against disease-causing protein. J Mol Med. 2006 Jul 3;84:635–646.
  • Boyault C, Zhang Y, Fritah S, et al. HDAC6 controls major cell response pathways to cytotoxic accumulation of protein aggregates. Genes Dev. 2007 Sep 6;21:2172–2181.
  • Pandey UB, Nie Z, Batlevi Y, et al. HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature. 2007 Jun 15;447:859–863.
  • Levine B, Klionsky DJ. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell. 2004 Apr 8;6:463–477.
  • Lee JY, Koga H, Kawaguchi Y, et al. HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy. Embo J. 2010 Jan 16;29:969–980.
  • Liebl D, Griffiths G. Transient assembly of F-actin by phagosomes delays phagosome fusion with lysosomes in cargo-overloaded macrophages. J Cell Sci. 2009 Jul 30;122:2935–2945.
  • Iwata A, Riley BE, Johnston JA, et al. HDAC6 and microtubules are required for autophagic degradation of aggregated huntingtin. J Biol Chem. 2005 Sep 30;280:40282–40292.
  • Anderson P, Kedersha N. RNA granules. J Cell Biol. 2006 Mar 8;172:803–808.
  • Mazroui R, Di marco S, Kaufman RJ, et al. Inhibition of the ubiquitin-proteasome system induces stress granule formation. Mol Biol Cell. 2007 May 4;18:2603–2618.
  • Kwon S, Zhang Y, Matthias P. The deacetylase HDAC6 is a novel critical component of stress granules involved in the stress response. Genes Dev. 2007 Dec 15;21:3381–3394.
  • Kappeler KV, Zhang J, Dinh TN, et al. Histone deacetylase 6 associates with ribosomes and regulates de novo protein translation during arsenite stress. Toxicol Sci. 2012;127:246–255.
  • van Paassen BW, van der Kooi AJ, van Spaendonck-Zwarts KY, et al. PMP22 related neuropathies: charcot-marie-tooth disease type 1A and hereditary neuropathy with liability to pressure palsies. Orphanet J Rare Dis [Internet]. 2014;9:38. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3994927&tool=pmcentrez&rendertype=abstract
  • Shy ME, Jáni A, Krajewski K, et al. Phenotypic clustering in MPZ mutations. Brain. 2004;127:371–384.
  • Sevilla T, Sivera R, Martínez-Rubio D, et al. The EGR2 gene is involved in axonal Charcot-Marie-Tooth disease. Eur J Neurol. 2015;22:1548–1555.
  • Nagarajan R, Svaren J, Le N, et al. EGR2 mutations in inherited neuropathies dominant-negatively inhibit myelin gene expression. Neuron. 2001;30:355–368.
  • LeBlanc SE, Ward RM, Svaren J. Neuropathy-associated Egr2 mutants disrupt cooperative activation of myelin protein zero by Egr2 and Sox10. Mol Cell Biol. 2007;27:3521–3529.
  • Clemence A, Mirsky R, Jessen KR. Non-myelin-forming Schwann cells proliferate rapidly during Wallerian degeneration in the rat sciatic nerve. J Neurocytol. 1989;18:185–192.
  • Jessen KR, Mirsky R. The repair Schwann cell and its function in regenerating nerves. J Physiol. 2016;594:3521–3531.
  • Arthur-Farraj PJ, Latouche M, Wilton DK, et al. c-Jun reprograms schwann cells of injured nerves to generate a repair cell essential for regeneration. Neuron. 2012;75:633–647.
  • de Waegh S, Brady ST. Altered slow axonal transport and regeneration in a, myelin- deficient mutant mouse : the trembler as an in viva model for schwann cell-axon interactions. J Neurosci. 1990;10:1855–1865.
  • de Waegh S, Lee V, Brady S. Local modulation of neurofilament phosphorylation, axonal caliber, and slow axonal transport by myelinating schwann cells. Cell. 1992;68:451–463.
  • Vavlitou N, Sargiannidou I, Markoullis K, et al. Axonal pathology precedes demyelination in a mouse model of x-linked demyelinating/type i charcot-marie tooth (CMT1X) neuropathy. J Neuropathol Exp Neurol. 2011;69:945–958.
  • Brügger V, Duman M, Bochud M, et al. Delaying histone deacetylase response to injury accelerates conversion into repair Schwann cells and nerve regeneration. Nat Commun. 2017;14272:1–16.
  • He X, Zhang L, Queme LF, et al. A histone deacetylase 3–dependent pathway delimits peripheral myelin growth and functional regeneration. Nat Med [Internet]. 2018;24:338–351. doi:10.1038/nm.4483.
  • Hung H, Kohnken R, Svaren J. The nucleosome remodeling and deacetylase chromatin remodeling (NuRD) complex is required for peripheral nerve myelination. J Neurosci [Internet]. 2012;32:1517–1527. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3292862&tool=pmcentrez&rendertype=abstract
  • Mager GM, Ward RM, Srinivasan R, et al. Active gene repression by the Egr2·NAB complex during peripheral nerve myelination. J Biol Chem. 2008;283:18187–18197.
  • Xue YT, Wong JM, Moreno GT, et al. NURD, a novel complex with both ATP-dependent chromatin- remodeling and histone deacetylase activities. Mol Cell. 1998;2:851–861.
  • Noritsugu K, Ito A, Nakao Y, et al. Identification of zinc finger transcription factor EGR2 as a novel acetylated protein. Biochem Biophys Res Commun. 2017;489:455–459.
  • Akimova T, Beier UH, Liu Y, et al. Histone/protein deacetylases and T-cell immune responses. Blood. 2012;119:2443–2451.
  • Cheng F, Lienlaf M, Wang H-W, et al. A novel role for histone deacetylase 6 in the regulation of the tolerogenic STAT3/IL-10 pathway in APCs. J Immunol [Internet]. 2014;193:2850–2862. doi:10.4049/jimmunol.1302778.
  • Xu C, Bailly-Maitre B, Reed JC. Endoplasmic reticulum stress: cell life and death decisions. J Clin Invest. 2005;115:2656–2664.
  • Viader A, Sasaki Y, Kim S, et al. Aberrant schwann cell lipid metabolism linked to mitochondrial deficits leads to axon degeneration and neuropathy. Neuron. 2013;77:886–898.
  • Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature. 2006 Oct 20;443:787–795.
  • Podratz JL, Lee H, Knorr P, et al. Cisplatin induces mitochondrial deficits in Drosophila larval segmental nerve. Neurobiol Dis. 2017;97:60–69.
  • Dalakas MC, Semino-Mora C, Leon-Monzon M. Mitochondrial alterations with mitochondrial DNA depletion in the nerves of AIDS patients with peripheral neuropathy induced by 2′3′-dideoxycytidine (DDC). Lab Investig. 2001;81:1537–1544.
  • Fernyhough P, Roy Chowdhury SK, Schmidt RE. Mitochondrial stress and the pathogenesis of diabetic neuropathy. Expert Rev Endocrinol Metab. 2010;5:39–49.
  • Niemann A, Berger P, Suter U. Pathomechanisms of mutant proteins in Charcot-Marie-Tooth Disease. Neuromolecular Med. 2006;8:217–241.
  • Saporta MA, Dang V, Volfson D, et al. Axonal Charcot-Marie-Tooth disease patient-derived motor neurons demonstrate disease-specific phenotypes including abnormal electrophysiological properties. Exp Neurol [Internet]. 2015;263:190–199.
  • Misko A, Jiang S, Wegorzewska I, et al. Mitofusin 2 is necessary for transport of axonal mitochondria and interacts with the Miro/Milton complex. J Neurosci [Internet]. 2010;30:4232–4240. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20335458%5Cnhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC2852190/pdf/nihms189508.pdf
  • Baloh RH, Schmidt RE, Pestronk A, et al. Altered axonal mitochondrial transport in the pathogenesis of Charcot-Marie-Tooth disease from mitofusin 2 mutations. J Neurosci [Internet]. 2007;27:422–430. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17215403
  • Wood ZA, Schroder E, Robin Harris J, et al. Structure, mechanism and regulation of peroxiredoxins. Trends Biochem Sci. 2003 Jan 9;28:32–40.
  • Moon JC, Kim GM, Kim EK, et al. Reversal of 2-Cys peroxiredoxin oligomerization by sulfiredoxin. Biochem Biophys Res Commun. 2013 Feb 12;432:291–295.
  • Parmigiani RB, Xu WS, Venta-Perez G, et al. HDAC6 is a specific deacetylase of peroxiredoxins and is involved in redox regulation. Proc Natl Acad Sci U S A. 2008 Jul 9;105:9633–9638.
  • Choi H, Kim HJ, Kim J, et al. Increased acetylation of Peroxiredoxin1 by HDAC6 inhibition leads to recovery of Aβ-induced impaired axonal transport. Mol Neurodegener. 2017;12:1–14.
  • Stys PK, Sontheimer H, Ransom BR, et al. Noninactivating, tetrodotoxin-sensitive Na+ conductance in rat optic nerve axons. Proc Natl Acad Sci USA [Internet]. 1993;90:6976–6980. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=47058&tool=pmcentrez&rendertype=abstract
  • Stys PK, Waxman SG, Ransom BR. Ionic mechanisms of anoxic injury in mammalian CNS white matter: role of Na+ channels and Na(+)-Ca2+ exchanger. J Neurosci [Internet]. 1992;12:430–439. Available from: http://www.jneurosci.org/content/12/2/430.abstract
  • Landouré G, Zdebik AA, Martinez TL, et al. Mutations in TRPV4 cause Charcot-Marie-Tooth disease type 2C. Nat Genet [ [Internet]. 2009;42:170–174. doi:10.1038/ng.512.
  • Auer-Grumbach M, Olschewski A, Papić L, et al. Alterations in the ankyrin domain of TRPV4 cause congenital distal SMA, scapuloperoneal SMA and HMSN2C. Nat Genet [ [Internet]. 2010;42:160–164. doi:10.1038/ng.508.
  • Kann O, Kovacs R. Mitochondria and neuronal activity. AJP Cell Physiol. 2006;292:C641–C657.
  • Jaggi AS, Singh N. Mechanisms in cancer-chemotherapeutic drugs-induced peripheral neuropathy. Toxicology. 2012;291:1–9.
  • Kumar P, Kumar D, Jha SK, et al. Ion channels in neurological disorders. Adv Protein Chem Struct Biol Elsevier Ltd. 2016;103:97–136.
  • Aromolaran KA, Goldstein PA. Ion channels and neuronal hyperexcitability in chemotherapy-induced peripheral neuropathy. Mol Pain. 2017;13.
  • Hofmeijer J, Franssen H, van Schelven LJ, et al. Why are sensory axons more vulnerable for ischemia than motor axons? PLoS One. 2013;8.
  • Brockington A, Ning K, Heath PR, et al. Unravelling the enigma of selective vulnerability in neurodegeneration: motor neurons resistant to degeneration in ALS show distinct gene expression characteristics and decreased susceptibility to excitotoxicity. Acta Neuropathol. 2013;125:95–109.
  • Spence S, Deurinck M, Ju H, et al. Histone deacetylase inhibitors prolong cardiac repolarization through transcriptional mechanisms. Toxicol Sci. 2016;153:39–54.
  • Zhang D, Wu CT, Qi XY, et al. Activation of Histone Deacetylase-6 (HDAC6) induces contractile dysfunction through derailment of alpha-tubulin proteostasis in experimental and human atrial fibrillation. Circulation [Internet]. 2013;6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24146251
  • Kempuraj D, Thangavel R, Selvakumar GP, et al. Brain and peripheral atypical inflammatory mediators potentiate neuroinflammation and neurodegeneration. Front Cell Neurosci. 2017;11.
  • Vlassara H, Brownlee M, Cerami A. High-affinity-receptor-mediated uptake and degradation of glucose-modified proteins: a potential mechanism for the removal of senescent macromolecules. Proc Natl Acad Sci U S A. 1985;82:5588–5592.
  • Yeh CH, Sturgis L, Haidacher J, et al. Requirement for p38 and p44/p42 mitogen-activated protein kinases in RAGE-mediated nuclear factor-kappaB transcriptional activation and cytokine secretion. Diabetes. 2001;50:1495–1504.
  • Zhu J, Coyne CB, Sarkar SN. PKC alpha regulates Sendai virus-mediated interferon induction through HDAC6 and ? 2-catenin. Embo J. 2011;30:4838–4849.
  • Yang C-J, Liu Y-P, Dai H-Y, et al. Nuclear HDAC6 inhibits invasion by suppressing NF-kB/MMP2 and is inversely correlated with metastasis of non-small cell lung cancer. Oncotarget [Internet]. 2015;6:30263–30276. Available from: http://www.oncotarget.com/fulltext/4749
  • Powers JJ, Maharaj KK, Sahakian E, et al. Histone Deacetylase 6 (HDAC6) as a regulator of immune Check-Point Molecules in Chronic Lymphocytic Leukemia (CLL). Blood. 2014;124:3311.
  • Hance KW, Anderson WF, Devesa SS, et al. Trends in inflammatory breast carcinoma incidence and survival: the surveillance, epidemiology, and end results program at the national cancer institute. JNCI J Natl Cancer Inst. 2005;97:966–975.
  • Santo L, Hideshima T, Kung AL, et al. Preclinical activity, pharmacodynamic, and pharmacokinetic properties of a selective HDAC6 inhibitor, ACY-1215, in combination with bortezomib in multiple myeloma. Blood. 2012;119:2579–2589.
  • Vogl DT, Raje NS, Jagannath S, et al. Ricolinostat (ACY-1215), the first selective HDAC6 inhibitor, in combination with bortezomib and dexamethasone in patients with relapsed or relapsed-and-refractory multiple myeloma: phase 1b results (ACY-100 Study). Blood. 2015;126:1827.
  • de Zoeten EF, Wang L, Butler K, et al. Histone deacetylase 6 and heat shock protein 90 control the functions of Foxp3(+) T-regulatory cells. Mol Cell Biol. 2011;31:2066–2078.
  • Shakespear MR, Halili MA, Irvine KM, et al. Histone deacetylases as regulators of inflammation and immunity. Trends Immunol. 2011;32:335–343.
  • Seidel C, Schnekenburger M, Dicato M, et al. Histone deacetylase 6 in health and disease. Epigenomics. 2015;7:103–118.
  • Saifi GM, Szigeti K, Snipes GJ, et al. Molecular mechanisms, diagnosis, and rational approaches to management of and therapy for Charcot-Marie-Tooth disease and related peripheral neuropathies. J Investig Med. 2003;51:261–283.
  • Feldman EL. Oxidative stress and diabetic neuropathy: a new understanding of an old problem. J Clin Invest. 2003;111(4):431–433.
  • Areti A, Yerra VG, Naidu V, et al. Oxidative stress and nerve damage: role in chemotherapy induced peripheral neuropathy. Redox Biol. 2014;2:289–295.
  • Albano E. Alcohol, oxidative stress and free radical damage. Proc Nutr Soc. 2006;65:278–290.
  • Mccall KA, Huang -C-C, Fierke CA. Zinc and health: current status and future directions function and mechanism of zinc metalloenzymes 1. J Nutr. 2000;130:1437–1446.
  • Krämer OH, Mahboobi S, Sellmer A. Drugging the HDAC6-HSP90 interplay in malignant cells. Trends Pharmacol Sci. 2014;35:501–509.
  • Tang G, Wong JC, Zhang W, et al. Identification of a novel aminotetralin class of HDAC6 and HDAC8 selective inhibitors. J Med Chem. 2014;57:8026–8034.
  • Bergman JA, Woan K, Perez-Villarroel P, et al. Selective histone deacetylase 6 inhibitors bearing substituted urea linkers inhibit melanoma cell growth. J Med Chem. 2012;55:9891–9899.
  • Kuendgen A, Schmid M, Schlenk R, et al. The histone deacetylase (HDAC) inhibitor valproic acid as monotherapy or in combination with all-trans retinoic acid in patients with acute myeloid leukemia. Cancer. 2006;106:112–119.
  • Pal D, Saha S. Hydroxamic acid - A novel molecule for anticancer therapy. J Adv Pharm Technol Res [Internet]. 2012;3:92. Available from: http://www.japtr.org/text.asp?2012/3/2/92/97281
  • Chateauvieux S, Morceau F, Dicato M, et al. Molecular and therapeutic potential and toxicity of valproic acid. J Biomed Biotechnol [Internet];2010:479364. Available from: http://www.hindawi.com/journals/bmri/2010/479364/
  • Ghodke-Puranik Y, Thorn CF, Lamba JK, et al. Valproic acid pathway: pharmacokinetics and pharmacodynamics. Pharmacogenet Genomics. 2013;23:236–241.
  • Ueda H, Nakajima H, Hori Y, et al. FR901228, A novel antitumor bicyclic depsipeptide produced by Chromobacterium violaceum no 968.1. Taxonomy, fermentation, isolation, physicochemical and biological properties and antitumor activity. J Antibiot (Tokyo). 1994;47:301–310
  • HIGHLIGHTS OF PRESCRIBING INFORMATION FOR ISTODAX® (romidepsin) [Internet]. 2016. Available from: ISTBAXPI.007/PPI.007 7/2016.
  • Subramanian S, Bates SE, Wright JJ, et al. Clinical toxicities of histone deacetylase inhibitors. Pharmaceuticals. 2010;3:2751–2767.
  • Xu S, De Veirman K, Vanderkerken K, et al. Vorinostat-induced bone loss might be related to drug toxicity. Bone [Internet]. 2013;57:384–385.
  • Doi T, Hamaguchi T, Shirao K, et al. Evaluation of safety, pharmacokinetics, and efficacy of vorinostat, a histone deacetylase inhibitor, in the treatment of gastrointestinal (GI) cancer in a phase i clinical trial. Int J Clin Oncol. 2013;18:87–95.
  • Hamberg P, Woo MM, Chen LC, et al. Effect of ketoconazole-mediated CYP3A4 inhibition on clinical pharmacokinetics of panobinostat (LBH589), an orally active histone deacetylase inhibitor. Cancer Chemother Pharmacol. 2011;68:805–813.
  • Warren KE, McCully C, Dvinge H, et al. Plasma and cerebrospinal fluid pharmacokinetics of the histone deacetylase inhibitor, belinostat (PXD101), in non-human primates. Cancer Chemother Pharmacol. 2008;62:433–437.
  • Witt O, Deubzer HE, Milde T, et al. HDAC family: what are the cancer relevant targets? Cancer Lett [ [Internet]. 2009;277:8–21.
  • Su H, Altucci L, You Q. Competitive or noncompetitive, that’s the question: research toward histone deacetylase inhibitors. Mol Cancer Ther [Internet]. 2008;7:1007–1012. doi:10.1158/1535-7163.MCT-07-2289.
  • Li Y, Shin D, Kwon SH. Histone deacetylase 6 plays a role as a distinct regulator of diverse cellular processes. FEBS J. 2013;280:775–793.
  • Hai Y, Christianson DW. Histone deacetylase 6 structure and molecular basis of catalysis and inhibition. Nat Chem Biol. 2016;741–747.
  • Goracci L, Deschamps N, Randazzo GM, et al. A rational approach for the identification of non-hydroxamate HDAC6-selective inhibitors. Sci Rep [ [Internet]. 2016;6:1–12.
  • Haggarty SJ, Koeller KM, Wong JC, et al. Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation. Proc Natl Acad Sci [Internet]. 2003;100:4389–4394. doi:10.1073/pnas.0430973100.
  • Dallavalle S, Pisano C, Zunino F. Development and therapeutic impact of HDAC6-selective inhibitors. Biochem Pharmacol [Internet]. 2012;84:756–765.
  • Kalin JH, Bergman JA. Development and therapeutic implications of selective histone deacetylase 6 inhibitors. J Med Chem. 2013;56:6297–6313.
  • Porter NJ, Mahendran A, Breslow R, et al. Unusual zinc-binding mode of HDAC6-selective hydroxamate inhibitors. Proc Natl Acad Sci [Internet]. 2017;114:201718823. doi:10.1073/pnas.1718823114.
  • Porter NJ, Osko JD, Diedrich D, et al. Histone Deacetylase 6-selective inhibitors and the influence of capping groups on hydroxamate-zinc denticity. J Med Chem [Internet]. 2018;61: acs.jmedchem.8b01013. doi:10.1021/acs.jmedchem.8b01013.
  • Groutas WC, Giri PK, Crowley JP, et al. The lossen rearrangement in biological systems. Inactivation of leukocyte elastase and alpha-chymotrypsin by (DL)-3-benzyl-N- (methanesulfonyloxy) succinimide. Biochem Biophys Res Commun. 1986;141:741–748.
  • Lee MS, Isobe M. Metabolic activation of the potent mutagen, 2-naphthohydroxamic acid, in salmonella typhimurium TA98. Cancer Res. 1990;50:4300–4307.
  • Shen S, Kozikowski AP. Why hydroxamates may not be the best histone deacetylase inhibitors - what some may have forgotten or would rather forget? ChemMedChem. 2016;11:15–21.
  • Simões-Pires CA, Bertrand P, Cuendet M. Novel histone deacetylase 6 (HDAC6) selective inhibitors: a patent evaluation (WO2014181137). Expert Opin Ther Pat. 2017;229–236.
  • Hoffman PN, Lasek RJ. Axonal transport of the cytoskeleton in regenerating motor neurons: constancy and change. Brain Res. 1980;202:317–333.
  • Zhou B, Yu P, Lin M-Y, et al. Facilitation of axon regeneration by enhancing mitochondrial transport and rescuing energy deficits. J Cell Biol. 2016;214:103–119.
  • Kim J-Y, Woo S-Y, Hong YB, et al. HDAC6 inhibitors rescued the defective axonal mitochondrial movement in motor neurons derived from the induced pluripotent stem cells of peripheral neuropathy patients with HSPB1 mutation. Stem Cells Int [Internet]. 2016;2016:1–14. Available from: https://www.hindawi.com/journals/sci/2016/9475981/
  • Zhang Y, Kwon S, Yamaguchi T, et al. Mice lacking histone deacetylase 6 have hyperacetylated tubulin but are viable and develop normally. Mol Cell Biol [Internet]. 2008;28:1688–1701. doi:10.1128/MCB.01154-06.
  • Fukada M, Hanai A, Nakayama A, et al. Loss of deacetylation activity of Hdac6 affects emotional behavior in mice. PLoS One. 2012;7:1–8.
  • Pandey UB, Nie Z, Batlevi Y, et al. HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature. 2007/06/15. 2007;447:859–863.
  • Simon D, Laloo B, Barillot M, et al. A mutation in the 3′-UTR of the HDAC6 gene abolishing the post-transcriptional regulation mediated by hsa-miR-433 is linked to a new form of dominant X-linked chondrodysplasia. Hum. Mol. Genet. 2010;19:2015–2027.
  • Butler KV, Kalin J, Brochier C, et al. Rational design and simple chemistry yield a superior, neuroprotective HDAC6 inhibitor. Tubastatin A. 2010;132(31):10842–10846.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.