491
Views
2
CrossRef citations to date
0
Altmetric
Review

The therapeutic potential of RNA regulation in neurological disorders

, &
Pages 1017-1028 | Received 24 Jul 2018, Accepted 26 Oct 2018, Published online: 31 Oct 2018

References

  • The Lancet Neurology. Rare neurological diseases: a united approach is needed. The Lancet Neurology. 2011 Feb 1;10(2):109.
  • Angelis A, Tordrup D, Kanavos P. Socio-economic burden of rare diseases: a systematic review of cost of illness evidence. Health Policy. 2015 Jul;119(7):964–979. PubMed PMID: 25661982.
  • Watts JK, Corey DR. Silencing disease genes in the laboratory and the clinic. J Pathol. 2012 Jan;226(2):365–379. PubMed PMID: 22069063; PubMed Central PMCID: PMCPMC3916955.
  • Rinaldi C, Wood MJA. Antisense oligonucleotides: the next frontier for treatment of neurological disorders. Nat Rev Neurol. 2018 Jan;14(1):9–21. PubMed PMID: 29192260.
  • Wittrup A, Lieberman J. Knocking down disease: a progress report on siRNA therapeutics. Nat Rev Genet. 2015 Sep;16(9):543–552. PubMed PMID: 26281785; PubMed Central PMCID: PMCPMC4756474.
  • Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004 Jan 23;116(2):281–297. PubMed PMID: 14744438.
  • Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009 Jan 23;136(2):215–233. PubMed PMID: 19167326; PubMed Central PMCID: PMCPMC3794896.
  • Landgraf P, Rusu M, Sheridan R, et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell. 2007 Jun 29;129(7):1401–1414. PubMed PMID: 17604727; PubMed Central PMCID: PMC2681231.
  • Lim LP, Lau NC, Garrett-Engele P, et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature. 2005 Feb 17;433(7027):769–773. PubMed PMID: 15685193.
  • Liu H, Chen Y, Huang L, et al. Drug distribution into peripheral nerve. J Pharmacol Exp Ther. 2018 May;365(2):336–345. PubMed PMID: 29511033.
  • Kaczmarek JC, Kowalski PS, Anderson DG. Advances in the delivery of RNA therapeutics: from concept to clinical reality. Genome Med. 2017 Jun 27;9(1):60. DOI:10.1186/s13073-017-0450-0 PubMed PMID: 28655327; PubMed Central PMCID: PMCPMC5485616
  • Ghosh R, Tabrizi SJ. Gene suppression approaches to neurodegeneration. Alzheimers Res Ther. 2017 Oct 5;9(1):82. DOI:10.1186/s13195-017-0307-1 PubMed PMID: 28982376; PubMed Central PMCID: PMCPMC5629803.
  • Piguet F, Alves S, Cartier N. Clinical gene therapy for neurodegenerative diseases: past, present, and future. Hum Gene Ther. 2017 Nov;28(11):988–1003. PubMed PMID: 29035118.
  • Choudhury SR, Hudry E, Maguire CA, et al. Viral vectors for therapy of neurologic diseases. Neuropharmacology. 2017 Jul;1(120):63–80. PubMed PMID: 26905292; PubMed Central PMCID: PMCPMC5929167.
  • Joshi CR, Labhasetwar V, Ghorpade A. Destination brain: the past, present, and future of therapeutic gene delivery. J Neuroimmune Pharmacol. 2017 Mar;12(1):51–83. DOI:10.1007/s11481-016-9724-3 PubMed PMID: 28160121; PubMed Central PMCID: PMCPMC5393046.
  • Foust KD, Nurre E, Montgomery CL, et al. Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat Biotechnol. 2009 Jan;27(1):59–65. PubMed PMID: 19098898; PubMed Central PMCID: PMCPMC2895694.
  • Hoyng SA, De Winter F, Gnavi S, et al. Gene delivery to rat and human Schwann cells and nerve segments: a comparison of AAV 1-9 and lentiviral vectors. Gene Ther. 2015 Oct;22(10):767–780. PubMed PMID: 25938190.
  • Munch RC, Janicki H, Volker I, et al. Displaying high-affinity ligands on adeno-associated viral vectors enables tumor cell-specific and safe gene transfer. Mol Ther. 2013 Jan;21(1):109–118. PubMed PMID: 22968478; PubMed Central PMCID: PMCPMC3538307.
  • Muik A, Reul J, Friedel T, et al. Covalent coupling of high-affinity ligands to the surface of viral vector particles by protein trans-splicing mediates cell type-specific gene transfer. Biomaterials. 2017 Nov;144:84–94. PubMed PMID: 28825979.
  • Samaranch L, Salegio EA, San Sebastian W, et al. Adeno-associated virus serotype 9 transduction in the central nervous system of nonhuman primates. Hum Gene Ther. 2012 Apr;23(4):382–389. PubMed PMID: 22201473; PubMed Central PMCID: PMCPMC3327605.
  • Tyagi P, Santos JL. Macromolecule nanotherapeutics: approaches and challenges. Drug Discov Today. 2018 Jan 8. DOI:10.1016/j.drudis.2018.01.017. PubMed PMID: 29326081.
  • De Jong WH, Borm PJ. Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine. 2008;3(2):133–149. PubMed PMID: 18686775; PubMed Central PMCID: PMCPMC2527668.
  • Shah L, Yadav S, Amiji M. Nanotechnology for CNS delivery of bio-therapeutic agents. Drug Deliv Transl Res. 2013 Aug 1;3(4):336–351. PubMed PMID: 23894728; PubMed Central PMCID: PMCPMC3719983.
  • Liu Y, Liu Z, Wang Y, et al. Investigation of the performance of PEG-PEI/ROCK-II-siRNA complexes for Alzheimer’s disease in vitro. Brain Res. 2013 Jan;15(1490):43–51. PubMed PMID: 23103413.
  • Liu YY, Yang XY, Li Z, et al. Characterization of polyethylene glycol-polyethyleneimine as a vector for alpha-synuclein siRNA delivery to PC12 cells for Parkinson’s disease. CNS Neurosci Ther. 2014 Jan;20(1):76–85. PubMed PMID: 24279586.
  • Perez-Martinez FC, Carrion B, Cena V. The use of nanoparticles for gene therapy in the nervous system. J Alzheimers Dis. 2012;31(4):697–710. PubMed PMID: 22695620
  • Finkel RS, Mercuri E, Darras BT, et al. Nusinersen versus sham control in infantile-onset spinal muscular atrophy. N Engl J Med. 2017 Nov 2;377(18):1723–1732. PubMed PMID: 29091570.
  • Jimenez-Mateos EM, Engel T, Merino-Serrais P, et al. Silencing microRNA-134 produces neuroprotective and prolonged seizure-suppressive effects. Nat Med. 2012 Jul;18(7):1087–1094. PubMed PMID: 22683779; PubMed Central PMCID: PMCPMC3438344.
  • Lee ST, Jeon D, Chu K, et al. Inhibition of miR-203 reduces spontaneous recurrent seizures in mice. Mol Neurobiol. 2017 Jul;54(5):3300–3308. DOI:10.1007/s12035-016-9901-7. PubMed PMID: 27165289.
  • Henshall DC, Hamer HM, Pasterkamp RJ, et al. MicroRNAs in epilepsy: pathophysiology and clinical utility. Lancet Neurol. 2016 Dec;15(13):1368–1376. PubMed PMID: 27839653.
  • Meredith ME, Salameh TS, Banks WA. Intranasal delivery of proteins and peptides in the treatment of neurodegenerative diseases. Aaps J. 2015 Jul;17(4):780–787. PubMed PMID: 25801717; PubMed Central PMCID: PMCPMC4476983.
  • Robbins M, Judge A, MacLachlan I. siRNA and innate immunity. Oligonucleotides. 2009 Jun;19(2):89–102. PubMed PMID: 19441890.
  • Mazid RR, Divisekera U, Yang W, et al. Biological stability and activity of siRNA in ionic liquids. Chem Commun (Camb). 2014 Nov 14;50(88):13457–13460. PubMed PMID: 25232641.
  • Lubini P, Zurcher W, Egli M. Stabilizing effects of the RNA 2ʹ-substituent: crystal structure of an oligodeoxynucleotide duplex containing 2ʹ-O-methylated adenosines. Chem Biol. 1994 Sep;1(1):39–45. PubMed PMID: 9383369.
  • Harp JM, Guenther DC, Bisbe A, et al. Structural basis for the synergy of 4ʹ- and 2ʹ-modifications on siRNA nuclease resistance, thermal stability and RNAi activity. Nucleic Acids Res. 2018 Sep 19;46(16):8090–8104. PubMed PMID: 30107495; PubMed Central PMCID: PMCPMC6144868.
  • Hamm S, Latz E, Hangel D, et al. Alternating 2ʹ-O-ribose methylation is a universal approach for generating non-stimulatory siRNA by acting as TLR7 antagonist. Immunobiology. 2010 Jul;215(7):559–569. PubMed PMID: 19854535.
  • Douglas AG, Wood MJ. Splicing therapy for neuromuscular disease. Mol Cell Neurosci. 2013 Sep;56:169–185. PubMed PMID: 23631896; PubMed Central PMCID: PMCPMC3793868.
  • Chiu YL, Rana TM. siRNA function in RNAi: a chemical modification analysis. Rna. 2003 Sep;9(9):1034–1048. PubMed PMID: 12923253; PubMed Central PMCID: PMCPMC1370469.
  • Prakash TP, Allerson CR, Dande P, et al. Positional effect of chemical modifications on short interference RNA activity in mammalian cells. J Med Chem. 2005 Jun 30;48(13):4247–4253. PubMed PMID: 15974578.
  • Grimm D, Streetz KL, Jopling CL, et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature. 2006 May 25;441(7092):537–541. PubMed PMID: 16724069.
  • Martin JN, Wolken N, Brown T, et al. Lethal toxicity caused by expression of shRNA in the mouse striatum: implications for therapeutic design. Gene Ther. 2011 Jul;18(7):666–673. PubMed PMID: 21368900; PubMed Central PMCID: PMCPMC3131434.
  • Yi R, Doehle BP, Qin Y, et al. Overexpression of exportin 5 enhances RNA interference mediated by short hairpin RNAs and microRNAs. Rna. 2005 Feb;11(2):220–226. PubMed PMID: 15613540; PubMed Central PMCID: PMCPMC1370710.
  • Birmingham A, Em A, Reynolds A, et al. 3ʹ UTR seed matches, but not overall identity, are associated with RNAi off-targets. Nat Methods. 2006 Mar;3(3):199–204. PubMed PMID: 16489337.
  • Hannus M, Beitzinger M, Engelmann JC, et al. siPools: highly complex but accurately defined siRNA pools eliminate off-target effects. Nucleic Acids Res. 2014 Jul;42(12):8049–8061. PubMed PMID: 24875475; PubMed Central PMCID: PMCPMC4081087.
  • Zhao HT, Damle S, Ikeda-Lee K, et al. PMP22 antisense oligonucleotides reverse Charcot-Marie-Tooth disease type 1A features in rodent models. J Clin Invest. 2018 Jan 2;128(1):359–368. PubMed PMID: 29202483; PubMed Central PMCID: PMCPMC5749515.
  • Jungbluth H, Treves S, Zorzato F, et al. Congenital myopathies: disorders of excitation-contraction coupling and muscle contraction. Nat Rev Neurol. 2018 Mar;14(3):151–167. PubMed PMID: 29391587.
  • Tasfaout H, Buono S, Guo S, et al. Antisense oligonucleotide-mediated Dnm2 knockdown prevents and reverts myotubular myopathy in mice. Nat Commun. 2017 Jun;7(8):15661. PubMed PMID: 28589938; PubMed Central PMCID: PMCPMC5467247.
  • Tasfaout H, Lionello VM, Kretz C, et al. Single intramuscular injection of AAV-shRNA reduces DNM2 and prevents myotubular myopathy in mice. Mol Ther. 2018 Apr 4;26(4):1082–1092. PubMed PMID: 29506908.
  • Hund E, Linke RP, Willig F, et al. Transthyretin-associated neuropathic amyloidosis. Pathogenesis and treatment. Neurology. 2001 Feb 27;56(4):431–435. PubMed PMID: 11261421.
  • Hou X, Aguilar MI, Small DH. Transthyretin and familial amyloidotic polyneuropathy. Recent progress in understanding the molecular mechanism of neurodegeneration. FEBS J. 2007 Apr;274(7):1637–1650. PubMed PMID: 17381508.
  • Suhr OB, Coelho T, Buades J, et al. Efficacy and safety of patisiran for familial amyloidotic polyneuropathy: a phase II multi-dose study. Orphanet J Rare Dis. 2015 Sep;4(10):109. PubMed PMID: 26338094; PubMed Central PMCID: PMCPMC4559363.
  • Rothstein JD. Current hypotheses for the underlying biology of amyotrophic lateral sclerosis. Ann Neurol. 2009 Jan;65 Suppl 1:S3–9. PubMed PMID: 19191304.
  • Reaume AG, Elliott JL, Hoffman EK, et al. Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury. Nat Genet. 1996 May;13(1):43–47. PubMed PMID: 8673102.
  • Smith RA, Miller TM, Yamanaka K, et al. Antisense oligonucleotide therapy for neurodegenerative disease. J Clin Invest. 2006 Aug;116(8):2290–2296. PubMed PMID: 16878173; PubMed Central PMCID: PMCPMC1518790.
  • Miller TM, Pestronk A, David W, et al. An antisense oligonucleotide against SOD1 delivered intrathecally for patients with SOD1 familial amyotrophic lateral sclerosis: a phase 1, randomised, first-in-man study. Lancet Neurol. 2013 May;12(5):435–442. PubMed PMID: 23541756; PubMed Central PMCID: PMCPMC3712285.
  • Walker FO. Huntington’s disease. Lancet. 2007 Jan 20;369(9557):218–228. PubMed PMID: 17240289.
  • Kordasiewicz HB, Stanek LM, Wancewicz EV, et al. Sustained therapeutic reversal of Huntington’s disease by transient repression of huntingtin synthesis. Neuron. 2012 Jun 21;74(6):1031–1044. PubMed PMID: 22726834; PubMed Central PMCID: PMCPMC3383626.
  • Skotte NH, Southwell AL, Me O, et al. Allele-specific suppression of mutant huntingtin using antisense oligonucleotides: providing a therapeutic option for all Huntington disease patients. PLoS One. 2014;9(9):e107434. PubMed PMID: 25207939; PubMed Central PMCID: PMCPMC4160241.
  • Lombardi MS, Jaspers L, Spronkmans C, et al. A majority of Huntington’s disease patients may be treatable by individualized allele-specific RNA interference. Exp Neurol. 2009 Jun;217(2):312–319. PubMed PMID: 19289118.
  • Wang GS, Cooper TA. Splicing in disease: disruption of the splicing code and the decoding machinery. Nat Rev Genet. 2007 Oct;8(10):749–761. PubMed PMID: 17726481.
  • Cieply B, Carstens RP. Functional roles of alternative splicing factors in human disease. Wiley Interdiscip Rev RNA. 2015 May-Jun;6(3):311–326. PubMed PMID: 25630614; PubMed Central PMCID: PMCPMC4671264.
  • Wirth B. An update of the mutation spectrum of the survival motor neuron gene (SMN1) in autosomal recessive spinal muscular atrophy (SMA). Hum Mutat. 2000;15(3):228–237. PubMed PMID: 10679938.
  • Mailman MD, Heinz JW, Papp AC, et al. Molecular analysis of spinal muscular atrophy and modification of the phenotype by SMN2. Genet Med. 2002 Jan-Feb;4(1):20–26. PubMed PMID: 11839954.
  • Ogino S, Wilson RB. Spinal muscular atrophy: molecular genetics and diagnostics. Expert Rev Mol Diagn. 2004 Jan;4(1):15–29. PubMed PMID: 14711346.
  • Chiriboga CA, Swoboda KJ, Darras BT, et al. Results from a phase 1 study of nusinersen (ISIS-SMN(Rx)) in children with spinal muscular atrophy. Neurology. 2016 Mar 8;86(10):890–897. PubMed PMID: 26865511; PubMed Central PMCID: PMCPMC4782111.
  • Wan L, Dreyfuss G. Splicing-correcting therapy for SMA. Cell. 2017 Jun 29;170(1):5. PubMed PMID: 28666123.
  • Finkel RS, Chiriboga CA, Vajsar J, et al. Treatment of infantile-onset spinal muscular atrophy with nusinersen: a phase 2, open-label, dose-escalation study. Lancet. 2016 Dec 17;388(10063):3017–3026. PubMed PMID: 27939059.
  • Falzarano MS, Scotton C, Passarelli C, et al. Duchenne muscular dystrophy: from diagnosis to therapy. Molecules. 2015 Oct 7;20(10):18168–18184. PubMed PMID: 26457695.
  • van Deutekom JC, Janson AA, Ginjaar IB, et al. Local dystrophin restoration with antisense oligonucleotide PRO051. N Engl J Med. 2007 Dec 27;357(26):2677–2686. PubMed PMID: 18160687.
  • Lim KR, Maruyama R, Yokota T. Eteplirsen in the treatment of Duchenne muscular dystrophy. Drug Des Devel Ther. 2017;11:533–545. PubMed PMID: 28280301; PubMed Central PMCID: PMCPMC5338848.
  • Aslesh T, Maruyama R, Yokota T. Skipping multiple exons to treat DMD-promises and challenges. Biomedicines. 2018 Jan 2;6(1). PubMed PMID: 29301272. DOI:10.3390/biomedicines6010001
  • Fletcher EV, Kullmann DM, Schorge S. Alternative splicing modulates inactivation of type 1 voltage-gated sodium channels by toggling an amino acid in the first S3-S4 linker. J Biol Chem. 2011 Oct 21;286(42):36700–36708. PubMed PMID: 21890636; PubMed Central PMCID: PMCPMC3196094.
  • Lin WH, Wright DE, Muraro NI, et al. Alternative splicing in the voltage-gated sodium channel DmNav regulates activation, inactivation, and persistent current. J Neurophysiol. 2009 Sep;102(3):1994–2006. PubMed PMID: 19625535; PubMed Central PMCID: PMCPMC2746785.
  • Lin WH, He M, Baines RA. Seizure suppression through manipulating splicing of a voltage-gated sodium channel. Brain. 2015 Apr;138(Pt 4):891–901. PubMed PMID: 25681415; PubMed Central PMCID: PMCPMC5014079.
  • Tate SK, Singh R, Hung CC, et al. A common polymorphism in the SCN1A gene associates with phenytoin serum levels at maintenance dose. Pharmacogenet Genomics. 2006 Oct;16(10):721–726. PubMed PMID: 17001291.
  • Tate SK, Depondt C, Sisodiya SM, et al. Genetic predictors of the maximum doses patients receive during clinical use of the anti-epileptic drugs carbamazepine and phenytoin. Proc Natl Acad Sci U S A. 2005 Apr 12;102(15):5507–5512. PubMed PMID: 15805193; PubMed Central PMCID: PMCPMC556232.
  • Thompson CH, Kahlig KM, George AL Jr. SCN1A splice variants exhibit divergent sensitivity to commonly used antiepileptic drugs. Epilepsia. 2011 May;52(5):1000–1009. PubMed PMID: 21453355; PubMed Central PMCID: PMCPMC3093448.
  • Wahlestedt C. Targeting long non-coding RNA to therapeutically upregulate gene expression. Nat Rev Drug Discov. 2013 Jun;12(6):433–446. PubMed PMID: 23722346.
  • Faghihi MA, Wahlestedt C. Regulatory roles of natural antisense transcripts. Nat Rev Mol Cell Biol. 2009 Sep;10(9):637–643. PubMed PMID: 19638999; PubMed Central PMCID: PMCPMC2850559.
  • Hsiao J, Yuan TY, Tsai MS, et al. Upregulation of haploinsufficient gene expression in the brain by targeting a long non-coding RNA improves seizure phenotype in a model of Dravet syndrome. EBioMedicine. 2016 Jul;9:257–277. PubMed PMID: 27333023; PubMed Central PMCID: PMCPMC4972487.
  • Dravet C. The core Dravet syndrome phenotype. Epilepsia. 2011 Apr;52 Suppl 2:3–9. PubMed PMID: 21463272.
  • Katayama S, Tomaru Y, Kasukawa T, et al. Antisense transcription in the mammalian transcriptome. Science. 2005 Sep 2;309(5740):1564–1566. PubMed PMID: 16141073.
  • Jimenez-Mateos EM, Engel T, Merino-Serrais P, et al. Antagomirs targeting microRNA-134 increase hippocampal pyramidal neuron spine volume in vivo and protect against pilocarpine-induced status epilepticus. Brain Struct Funct. 2015 Jul;220(4):2387–2399. PubMed PMID: 24874920.
  • Zheng H, Tang R, Yao Y, et al. MiR-219 protects against seizure in the kainic acid model of epilepsy. Mol Neurobiol. 2016 Jan;53(1):1–7. PubMed PMID: 25394384.
  • Zhan L, Yao Y, Fu H, et al. Protective role of miR-23b-3p in kainic acid-induced seizure. Neuroreport. 2016 Jul 6;27(10):764–768. PubMed PMID: 27232518.
  • Doudna JA, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014 Nov 28;346(6213):1258096. PubMed PMID: 25430774.
  • Fagerlund RD, Staals RH, Fineran PC. The Cpf1 CRISPR-Cas protein expands genome-editing tools. Genome Biol. 2015 Nov 17;16:251. PubMed PMID: 26578176; PubMed Central PMCID: PMCPMC4647450.
  • Heidenreich M, Zhang F. Applications of CRISPR-Cas systems in neuroscience. Nat Rev Neurosci. 2016 Jan;17(1):36–44. PubMed PMID: 26656253; PubMed Central PMCID: PMCPMC4899966.
  • Shin JW, Lee JM. The prospects of CRISPR-based genome engineering in the treatment of neurodegenerative disorders. Ther Adv Neurol Disord. 2018;11:1756285617741837. DOI:10.1177/1756285617741837 PubMed PMID: 29399048; PubMed Central PMCID: PMCPMC5784517.
  • Minassian BA. Post-modern therapeutic approaches for progressive myoclonus epilepsy. Epileptic Disord. 2016 Sep 1;18(S2):154–158. PubMed PMID: 27630083; PubMed Central PMCID: PMCPMC5691359.
  • Liao HK, Hatanaka F, Araoka T, et al. In vivo target gene activation via CRISPR/Cas9-mediated trans-epigenetic modulation. Cell. 2017 Dec 14;171(7):1495–1507 e15. PubMed PMID: 29224783; PubMed Central PMCID: PMCPMC5732045.
  • Cox DBT, Gootenberg JS, Abudayyeh OO, et al. RNA editing with CRISPR-Cas13. Science. 2017 Nov 24;358(6366):1019–1027. PubMed PMID: 29070703.
  • Nakamura A, Fueki N, Shiba N, et al. Deletion of exons 3-9 encompassing a mutational hot spot in the DMD gene presents an asymptomatic phenotype, indicating a target region for multiexon skipping therapy. J Hum Genet. 2016 Jul;61(7):663–667. PubMed PMID: 27009627.
  • Nakamura A, Yoshida K, Fukushima K, et al. Follow-up of three patients with a large in-frame deletion of exons 45-55 in the Duchenne muscular dystrophy (DMD) gene. J Clin Neurosci. 2008 Jul;15(7):757–763. PubMed PMID: 18261911.
  • Miskew Nichols B, Aoki Y, Kuraoka M, et al. Multi-exon skipping using cocktail antisense oligonucleotides in the canine X-linked muscular dystrophy. J Vis Exp. 2016 May;24(111). DOI:10.3791/53776 PubMed PMID: 27285612; PubMed Central PMCID: PMCPMC4927712.
  • Johnston JD, Feldschreiber P. Challenges posed to the European pharmaceutical regulatory system by highly personalized medicines. Br J Clin Pharmacol. 2014 Mar;77(3):421–426. PubMed PMID: 23738917; PubMed Central PMCID: PMCPMC3952717.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.