608
Views
15
CrossRef citations to date
0
Altmetric
Review

Impaired brain plasticity as a potential therapeutic target for treatment and prevention of dementia

Pages 21-28 | Received 02 Jul 2018, Accepted 15 Nov 2018, Published online: 30 Nov 2018

References

  • https://www.Alz.Co.Uk/research/statistics
  • Alzheimer’s-Association. Alzheimer’s disease facts and figures. Alzheimers Dement. 2015;11(3):332–384.
  • Alzheimer-Association. Changing the trajectory of Alzheimer’s disease: how a treatment by 2025 saves lives and dollars. Chicago, IL: Alzheimer’s Association National Office; 2015.
  • Knight R, Khondoker M, Magill N, et al. A systematic review and meta-analysis of the effectiveness of acetylcholinesterase inhibitors and memantine in treating the cognitive symptoms of dementia. Dement Geriatr Cogn Disord. 2018;45(3–4):131–151.
  • Lanctot KL, Herrmann N, LouLou MM. Correlates of response to acetylcholinesterase inhibitor therapy in Alzheimer’s disease. J Psychiatry Neurosci. 2003;28(1):13–26.
  • Crous-Bou M, Minguillon C, Gramunt N, et al. Alzheimer’s disease prevention: from risk factors to early intervention. Alzheimers Res Ther. 2017;9.
  • Emery VOB. Alzheimer disease: are we intervening too late? J Neural Transm. 2011;118(9):1361–1378.
  • Dubois B, Feldman HH, Jacova C, et al. Advancing research diagnostic criteria for Alzheimer’s disease: the iwg-2 criteria. Lancet Neurol. 2014;13(6):614–629.
  • Chang YL, Jacobson MW, Fennema-Notestine C, et al. Alzheimer’s dis neuroimaging I: level of executive function influences verbal memory in amnestic mild cognitive impairment and predicts prefrontal and posterior cingulate thickness. Cereb Cortex. 2010;20(6):1305–1313.
  • Gomar JJ, Bobes-Bascaran MT, Conejero-Goldberg C, et al. Utility of combinations of biomarkers, cognitive markers, and risk factors to predict conversion from mild cognitive impairment to Alzheimer disease in patients in the Alzheimer’s disease neuroimaging initiative. Arch Gen Psychiatry. 2011;68(9):961–969.
  • Stefan K, Kunesch E, Cohen LG, et al. Induction of plasticity in the human motor cortex by paired associative stimulation. Brain. 2000;123:572–584.
  • Rajji TK, Liu SK, Frantseva MV, et al. Exploring the effect of inducing long-term potentiation in the human motor cortex on motor learning. Brain Stimul. 2011;4(3):137–144.
  • Rajji TK, Sun Y, Zomorrodi-Moghaddam R, et al. Pas-induced potentiation of cortical evoked activity in the dorsolateral prefrontal cortex. Neuropsychopharmacology. 2013;38:2545–2552.
  • Weintraub S, Wicklund AH, Salmon DP. The neuropsychological profile of Alzheimer disease. Cold Spring Harb Perspect Med. 2012;2(4).
  • Morrison JH, Hof PR. Life and death of neurons in the aging brain. Science. 1997;278(5337):412–419.
  • Lafleche G, Albert MS. Executive function deficits in mild Alzheimer’s disease. Neuropsychology. 1995;9(3):313–320.
  • Perry RJ, Hodges JR. Attention and executive deficits in Alzheimer’s disease - a critical review. Brain. 1999;122:383–404.
  • Chen PJ, Ratcliff G, Belle SH, et al. Patterns of cognitive decline in presymptomatic Alzheimer disease – a prospective community study. Arch Gen Psychiatry. 2001;58(9):853–858.
  • Zhao QH, Zhou B, Ding D, et al. Cognitive decline in patients with Alzheimer’s disease and its related factors in a memory clinic setting, Shanghai, China. PLoS One. 2014;9(4):8.
  • Baddeley AD, Bressi S, Dellasala S, et al. The decline of working memory in Alzheimer’s disease – a longitudinal-study. Brain. 1991;114:2521–2542.
  • Huntley JD, Howard RJ. Working memory in early Alzheimer’s disease: a neuropsychological review. Int J Geriatr Psychiatry. 2010;25(2):121–132.
  • Reed BR, Jagust WJ, Seab JP, et al. Memory and regional cerebral blood-flow in mildly symptomatic Alzheimers-disease. Neurology. 1989;39(11):1537–1539.
  • Kaufman LD, Pratt J, Levine B, et al. Executive deficits detected in mild Alzheimer’s disease using the antisaccade task. Brain Behav. 2012;2(1):15–21.
  • Leuchter AF, Newton TF, Cook IA, et al. Changes in brain functional connectivity in Alzheimer-type and multiinfarct dementia. Brain. 1992;115:1543–1561.
  • Haxby JV, Grady CL, Koss E, et al. Longitudinal-study of cerebral metabolic asymmetries and associated neuropsychological patterns in early dementia of the Alzheimer type. Arch Neurol. 1990;47(7):753–760.
  • Buckner RL, Wheeler ME. The cognitive neuroscience of remembering. Nat Rev Neurosci. 2001;2(9):624–634.
  • Milham MP, Erickson KI, Banich MT, et al. Attentional control in the aging brain: insights from an fMRI study of the stroop task. Brain Cogn. 2002;49(3):277–296.
  • Bush G, Vogt BA, Holmes J, et al. Dorsal anterior cingulate cortex: a role in reward-based decision making. Proc Natl Acad Sci USA. 2002;99(1):523–528.
  • Arriagada PV, Marzloff K, Hyman BT. Distribution of Alzheimer-type pathological-changes in nondemented elderly individuals matches the pattern in Alzheimers-disease. Neurology. 1992;42(9):1681–1688.
  • Vickers JC, Delacourte A, Morrison JH. Progressive transformation of the cytoskeleton associated with normal aging and Alzheimers-disease. Brain Res. 1992;594(2):273–278.
  • GomezIsla T, Price JL, McKeel DW, et al. Profound loss of layer ii entorhinal cortex neurons occurs in very mild Alzheimer’s disease. J Neurosci. 1996;16(14):4491–4500.
  • Gigi A, Babai R, Penker A, et al. Prefrontal compensatory mechanism may enable normal semantic memory performance in mild cognitive impairment (MCI). J Neuroimaging. 2010;20(2):163–168.
  • Bookheimer SY, Strojwas MH, Cohen MS, et al. Patterns of brain activation in people at risk for Alzheimer’s disease. N Engl J Med. 2000;343(7):450–456.
  • Grady C. Brain ageing the cognitive neuroscience of ageing. Nat Rev Neurosci. 2012;13(7):491–505.
  • Gutchess AH, Welsh RC, Hedden T, et al. Aging and the neural correlates of successful picture encoding: frontal activations compensate for decreased medial-temporal activity. J Cogn Neurosci. 2005;17(1):84–96.
  • Davis SW, Dennis NA, Daselaar SM, et al. Que pasa? The posterior-anterior shift in aging. Cereb Cortex. 2008;18(5):1201–1209.
  • Rosano C, Aizenstein HJ, Newman AB, et al. Neuroimaging differences between older adults with maintained versus declining cognition over a 10-year period. Neuroimage. 2012;62(1):307–313.
  • Stern Y. Cognitive reserve in ageing and Alzheimer’s disease. Lancet Neurol. 2012;11(11):1006–1012.
  • Stern Y. What is cognitive reserve? Theory and research application of the reserve concept. J Int Neuropsychol Soc. 2002;8(3):448–460.
  • Brickman AM, Honig LS, Scarmeas N, et al. Measuring cerebral atrophy and white matter hyperintensity burden to predict the rate of cognitive decline in Alzheimer disease. Arch Neurol. 2008;65(9):1202–1208.
  • Brickman AM, Meier IB, Korgaonkar MS, et al. Testing the white matter retrogenesis hypothesis of cognitive aging. Neurobiol Aging. 2012;33(8):1699–1715.
  • Rentz DM, Locascio JJ, Becker JA, et al. Cognition, reserve, and amyloid deposition in normal aging. Ann Neurol. 2010;67(3):353–364.
  • Jagust WJ, Mormino EC. Lifespan brain activity, beta-amyloid, and Alzheimer’s disease. Trends Cogn Sci. 2011;15(11):520–526.
  • Jagust WJ, Budinger TF, Reed BR. The diagnosis of dementia with single photon-emission computed-tomography. Arch Neurol. 1987;44(3):258–262.
  • Jagust WJ, Eberling JL, Reed BR, et al. Clinical studies of cerebral blood flow in Alzheimer’s disease. In: delaTorre JC, Hachinski V, editors. Cerebrovascular pathology in Alzheimer’s disease. New York, NY:New York Academy of Sciences: Vol. 826; 1997. p. 254–262.
  • Rapoport SI. Positron emission tomography in Alzheirmers-disease in relation to disease pathogenesis - a critical review. Cerebrovasc Brain Metab Rev. 1991;3(4):297–335.
  • Brown DRP, Hunter R, Wyper DJ, et al. Longitudinal changes in cognitive function and regional cerebral function in Alzheimer’s disease: a SPECT blood flow study. J Psychiatr Res. 1996;30(2):109.
  • Bokde ALW, Karmann M, Born C, et al. Altered brain activation during a verbal working memory task in subjects with amnestic mild cognitive impairment. J Alzheimers Dis. 2010;21(1):103–118.
  • Cabeza R. Hemispheric asymmetry reduction in older adults: the Harold model. Psychol Aging. 2002;17(1):85–100.
  • Reuter-Lorenz PA, Cappell KA. Neurocognitive aging and the compensation hypothesis. Curr Dir Psychol Sci. 2008;17(3):177–182.
  • Tyler LK, Shafto MA, Randall B, et al. Preserving syntactic processing across the adult life span: the modulation of the frontotemporal language system in the context of age-related atrophy. Cereb Cortex. 2010;20(2):352–364.
  • Cappell KA, Gmeindl L, Reuter-Lorenz PA. Age differences in prefontal recruitment during verbal working memory maintenance depend on memory load. Cortex. 2010;46(4):462–473.
  • Schneider-Garces NJ, Gordon BA, Brumback-Peltz CR, et al. Span, crunch, and beyond: working memory capacity and the aging brain. J Cogn Neurosci. 2010;22(4):655–669.
  • Vincent JL, Kahn I, Snyder AZ, et al. Evidence for a frontoparietal control system revealed by intrinsic functional connectivity. J Neurophysiol. 2008;100(6):3328–3342.
  • Corbetta M, Patel G, Shulman GL. The reorienting system of the human brain: from environment to theory of mind. Neuron. 2008;58(3):306–324.
  • Vallesi A, McIntosh AR, Stuss DT. Overrecruitment in the aging brain as a function of task demands: evidence for a compensatory view. J Cogn Neurosci. 2011;23(4):801–815.
  • Davis SW, Kragel JE, Madden DJ, et al. The architecture of cross-hemispheric communication in the aging brain: linking behavior to functional and structural connectivity. Cereb Cortex. 2012;22(1):232–242.
  • Bell KFS, Bennett DA, Cuello AC. Paradoxical upregulation of glutamatergic presynaptic boutons during mild cognitive impairment. J Neurosci. 2007;27(40):10810–10817.
  • Bossers K, Wirz KTS, Meerhoff GF, et al. Concerted changes in transcripts in the prefrontal cortex precede neuropathology in Alzheimer’s disease. Brain. 2010;133:3699–3723.
  • Lau P, Bossers K, Janky R, et al. Alteration of the microrna network during the progression of Alzheimer’s disease. EMBO Mol Med. 2013;5(10):1613–1634.
  • Counts SE, Nadeem M, Lad SP, et al. Differential expression of synaptic proteins in the frontal and temporal cortex of elderly subjects with mild cognitive impairment. J Neuropathol Exp Neurol. 2006;65(6):592–601.
  • Head E, Corrada MM, Kahle-Wrobleski K, et al. Synaptic proteins, neuropathology and cognitive status in the oldest-old. Neurobiol Aging. 2009;30(7):1125–1134.
  • Vidal C, Changeux JP. Nicotinic and muscarinic modulations of excitatory synaptic transmission in the rat prefrontal cortex in-vitro. Neuroscience. 1993;56(1):23–32.
  • Blitzer RD, Gil O, Landau EM. Cholinergic stimulation enhances long-term potentiation in the ca1 region of rat hippocampus. Neurosci Lett. 1990;119(2):207–210.
  • Brocher S, Artola A, Singer W. Agonists of cholinergic and noradrenergic receptors facilitate synergistically the induction of long-term potentiation in slices of rat visual-cortex. Brain Res. 1992;573(1):27–36.
  • DeKosky ST, Ikonomovic MD, Styren SD, et al. Upregulation of choline acetyltransferase activity in hippocampus and frontal cortex of elderly subjects with mild cognitive impairment. Ann Neurol. 2002;51(2):145–155.
  • Lane R, Feldman HH, Meyer J, et al. Synergistic effect of apolipoprotein e epsilon 4 and butyrylcholinesterase k-variant on progression from mild cognitive impairment to Alzheimer’s disease. Pharmacogenet Genomics. 2008;18(4):289–298.
  • Darreh-Shori T, Forsberg A, Modiri N, et al. Differential levels of apolipoprotein e and butyrylcholinesterase show strong association with pathological signs of Alzheimer’s disease in the brain in vivo. Neurobiol Aging. 2011;32(12):e15-32.
  • Bao FX, Wicklund L, Lacor PN, et al. Different beta-amyloid oligomer assemblies in Alzheimer brains correlate with age of disease onset and impaired cholinergic activity. Neurobiol Aging. 2012;33(4):e1-13.
  • Samuel W, Terry RD, Deteresa R, et al. Clinical correlates of cortical and nucleus basalis pathology in Alzheimer dementia. Arch Neurol. 1994;51(8):772–778.
  • Ashraf A, Fan Z, Brooks DJ, et al. Cortical hypermetabolism in mci subjects: a compensatory mechanism? Eur J Nucl Med Mol Imaging. 2015;42(3):447–458.
  • Trebbastoni A, Pichiorri F, D’Antonio F, et al. Altered cortical synaptic plasticity in response to 5-hz repetitive transcranial magnetic stimulation as a new electrophysiological finding in amnestic mild cognitive impairment converting to Alzheimer’s disease: results from a 4-year prospective cohort study. Front Aging Neurosci. 2016;7(10):253.
  • van Veluw SJ, Sawyer EK, Clover L, et al. Prefrontal cortex cytoarchitecture in normal aging and Alzheimer’s disease: a relationship with iq. Brain Struct Funct. 2012;217(4):797–808.
  • Voytek B, Davis M, Yago E, et al. Dynamic neuroplasticity after human prefrontal cortex damage. Neuron. 2010;68(3):401–408.
  • Grady CL, McIntosh AR, Beig S, et al. Evidence from functional neuroimaging of a compensatory prefrontal network in Alzheimer’s disease. J Neurosci. 2003;23(3):986–993.
  • Becker JT, Mintun MA, Aleva K, et al. Compensatory reallocation of brain resources supporting verbal episodic memory in Alzheimer’s disease. Neurology. 1996;46(3):692–700.
  • Stargardt A, Swaab DF, Bossers K. The storm before the quiet: neuronal hyperactivity and a beta in the presymptomatic stages of Alzheimer’s disease. Neurobiol Aging. 2015;36(1):1–11.
  • Tampellini D. Synaptic activity and Alzheimer’s disease: a critical update. Front Neurosci. 2015;9423.
  • Yamamoto K, Tanei Z, Hashimoto T, et al. Chronic optogenetic activation augments a beta pathology in a mouse model of Alzheimer disease. Cell Rep. 2015;11(6):859–865.
  • Tampellini D, Capetillo-Zarate E, Dumont M, et al. Effects of synaptic modulation on beta-amyloid, synaptophysin, and memory performance in Alzheimer’s disease transgenic mice. J Neurosci. 2010;30(43):14299–14304.
  • Bero AW, Yan P, Roh JH, et al. Neuronal activity regulates the regional vulnerability to amyloid-beta deposition. Nat Neurosci. 2011;14(6):750–U353.
  • Lazarov O, Robinson J, Tang YP, et al. Environmental enrichment reduces a beta levels and amyloid deposition in transgenic mice. Cell. 2005;120(5):701–713.
  • Baazaoui N, Flory M, Iqbal K. Synaptic compensation as a probable cause of prolonged mild cognitive impairment in Alzheimer’s disease: implications from a transgenic mouse model of the disease. J Alzheimers Dis. 2017;56(4):1385–1401.
  • Tampellini D, Rahman N, Gallo EF, et al. Synaptic activity reduces intraneuronal a beta, promotes app transport to synapses, and protects against a beta-related synaptic alterations. J Neurosci. 2009;29(31):9704–9713.
  • Tampellini D, Rahman N, Lin MT, et al. Impaired beta-amyloid secretion in Alzheimer’s disease pathogenesis. J Neurosci. 2011;31(43):15384–15390.
  • Hama E, Shirotani K, Iwata N, et al. Effects of neprilysin chimeric proteins targeted to subcellular compartments on amyloid beta peptide clearance in primary neurons. J Biol Chem. 2004;279(29):30259–30264.
  • Malito E, Hulse RE, Tang WJ. Amyloid beta-degrading cryptidases: insulin degrading enzyme, presequence peptidase, and neprilysin. Cell Mol Life Sci. 2008;65(16):2574–2585.
  • Backstrom JR, Lim GP, Cullen MJ, et al. Matrix metalloproteinase-9 (mmp-9) is synthesized in neurons of the human hippocampus and is capable of degrading the amyloid-beta peptide (1–40). J Neurosci. 1996;16(24):7910–7919.
  • Szklarczyk A, Lapinska J, Rylski M, et al. Matrix metalloproteinase-9 undergoes expression and activation during dendritic remodeling in adult hippocampus. J Neurosci. 2002;22(3):920–930.
  • Kamenetz F, Tomita T, Hsieh H, et al. App processing and synaptic function. Neuron. 2003;37(6):925–937.
  • Puzzo D, Privitera L, Fa M, et al. Endogenous amyloid-beta is necessary for hippocampal synaptic plasticity and memory. Ann Neurol. 2011;69(5):819–830.
  • Puzzo D, Privitera L, Leznik E, et al. Picomolar amyloid-beta positively modulates synaptic plasticity and memory in hippocampus. J Neurosci. 2008;28(53):14537–14545.
  • Garcia-Osta A, Alberini CM. Amyloid beta mediates memory formation. Learn Mem. 2009;16(4):267–272.
  • Stargardt A, Gillis J, Kamphuis W, et al. Reduced amyloid- degradation in early Alzheimer’s disease but not in the appsweps1de9 and 3xtg-ad mouse models. Aging Cell. 2013;12(3):499–507.
  • van Veluw SJ, Sawyer EK, Clover L, et al. Prefrontal cortex cytoarchitecture in normal aging and Alzheimer’s disease: a relationship with IQ. Brain Struct Funct.2012 Oct;217(4):797–808.
  • Celone KA, Calhoun VD, Dickerson BC, et al. Alterations in memory networks in mild cognitive impairment and Alzheimer’s disease: an independent component analysis. J Neurosci. 2006;26(40):10222–10231.
  • Kumar S, Zomorrodi R, Ghazala Z, et al. Extent of dorsolateral prefrontal cortex plasticity and its association with working memory in patients with Alzheimer disease. JAMA Psychiatry. 2017;74(12):1266–1274.
  • Battaglia F, Wang HY, Ghilardi MF, et al. Cortical plasticity in Alzheimer’s disease in humans and rodents. Biol Psychiatry. 2007;62(12):1405–1412.
  • Terranova C, SantAngelo A, Morgante F, et al. Impairment of sensory-motor plasticity in mild Alzheimer’s disease. Brain Stimul. 2013;6(1):62–66.
  • Koch G, Di Lorenzo F, Bonnì S, et al. Impaired LTP-but not LTD-like cortical plasticity in Alzheimer’s disease patients. J Alzheimers Dis. 2012;31(3):593–599.
  • Di Lorenzo F, Ponzo V, Bonni S, et al. Long-term potentiation-like cortical plasticity is disrupted in Alzheimer’s disease patients independently from age of onset. Ann Neurol. 2016;80(2):202–210.
  • Lahr J, Peter J, Minkova L, et al. No difference in paired associative stimulation induced cortical neuroplasticity between patients with mild cognitive impairment and elderly controls. Clin Neurophysiol. 2016;127(2):1254–1260.
  • Maren S. Synaptic mechanisms of associative memory in the amygdala. Neuron. 2005;47(6):783–786.
  • Trachtenberg JT, Chen BE, Knott GW, et al. Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature. 2002;420(6917):788–794.
  • Holtmaat A, Wilbrecht L, Knott GW, et al. Experience-dependent and cell-type-specific spine growth in the neocortex. Nature. 2006;441(7096):979–983.
  • Broser P, Grinevich V, Osten P, et al. Critical period plasticity of axonal arbors of layer 2/3 pyramidal neurons in rat somatosensory cortex: layer-specific reduction of projections into deprived cortical columns. Cereb Cortex. 2007;18:1588–1603.
  • Bliss TV, Lomo T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol. 1973;232(2):331–356.
  • Malenka RC, Bear MF. LTP and LTD: an embarrassment of riches. Neuron. 2004;44(1):5–21.
  • Markram H, Lubke J, Frotscher M, et al. Regulation of synaptic efficacy by coincidence of postsynaptic aps and EPSPs. Science. 1997;275(5297):213–215.
  • Florian J, Muller M, Orekhov Y, et al. Homeostatic plasticity in human motor cortex demonstrated by two consecutive sessions of paired associative stimulation. Eur J Neurosci. 2007;25(11):3461–3468.
  • Donoghue JP, Parham C. Afferent connections of the lateral agranular field of the rat motor cortex. J Comp Neurol. 1983;217(4):390–404.
  • Miller MW, Vogt BA. Direct connections of rat visual-cortex with sensory, motor, and association cortices. J Comp Neurol. 1984;226(2):184–202.
  • Reep RL, Goodwin GS, Corwin JV. Topographic organization in the corticocortical connections of medial agranular cortex in rats. J Comp Neurol. 1990;294(2):262–280.
  • Sarter M, Markowitsch HJ. Convergence of intrahemispheric and interhemispheric cortical afferents - lack of collateralization and evidence for a subrhinal cell group projecting heterotopically. J Comp Neurol. 1985;236(3):283–296.
  • Vaneden CG, Lamme VAF, Uylings HBM. Heterotopic cortical afferents to the medial prefrontal cortex in the rat – a combined retrograde and anterograde tracer study. Eur J Neurosci. 1992;4(1):77–97.
  • Vogt BA, Miller MW. Cortical connections between rat cingulate cortex and visual, motor, and postsubicular cortices. J Comp Neurol. 1983;216(2):192–210.
  • Loheswaran G, Barr MS, Zomorrodi R, et al. Impairment of neuroplasticity in the dorsolateral prefrontal cortex by alcohol. Sci Rep. 2017;7.
  • Veniero D, Ponzo V, Koch G. Paired associative stimulation enforces the communication between interconnected areas. J Neurosci. 2013;33(34):13773–13783.
  • Terranova C, Sant’Angelo A, Morgante F, et al. Impairment of sensory-motor plasticity in mild Alzheimer’s disease (vol 6, pg 62, 2013). Brain Stimul. 2013;6(3):468.
  • Huang YZ, Edwards MJ, Rounis E, et al. Theta burst stimulation of the human motor cortex. Neuron. 2005;45(2):201–206.
  • Larson J, Munkacsy E. Theta-burst LTP. Brain Res. 2015;1621:38–50.
  • Larson J, Wong D, Lynch G. Patterned stimulation at the theta-frequency is optimal for the induction of hippocampal long-term potentiation. Brain Res. 1986;368(2):347–350.
  • Koch G, Di Lorenzo F, Bonni S, et al. Dopaminergic modulation of cortical plasticity in Alzheimer’s disease patients. Neuropsychopharmacology. 2014;39(11):2654–2661.
  • Buzsaki G, Wang XJ. 35. Mechanisms of gamma oscillations. Annu Rev Neurosci. 2012;35:203–225.;
  • Babiloni C, Lizio R, Marzano N, et al. Brain neural synchronization and functional coupling in Alzheimer’s disease as revealed by resting state EEG rhythms. Int J Psychophysiol. 2016;103:88–102.
  • Palop JJ, Chin J, Roberson ED, et al. Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer’s disease. Neuron. 2007;55(5):697–711.
  • Verret L, Mann EO, Hang GB, et al. Inhibitory interneuron deficit links altered network activity and cognitive dysfunction in Alzheimer model. Cell. 2012;149(3):708–721.
  • Iaccarino HF, Singer AC, Martorell AJ, et al. Gamma frequency entrainment attenuates amyloid load and modifies microglia. Nature. 2016;540(7632):230.
  • Thut G, Schyns PG, Gross J. Entrainment of perceptually relevant brain oscillations by non-invasive rhythmic stimulation of the human brain. Front Psychol. 2011;2.
  • Herrmann CS, Struber D, Helfrich RF, et al. EEG oscillations: from correlation to causality. Int J Psychophysiol. 2016;103:12–21.
  • Moisa M, Polania R, Grueschow M, et al. Brain network mechanisms underlying motor enhancement by transcranial entrainment of gamma oscillations. J Neurosci. 2016;36(47):12053–12065.
  • Lozano AM, Fosdick L, Chakravarty MM, et al. A phase ii study of fornix deep brain stimulation in mild Alzheimer’s disease. J Alzheimers Dis. 2016;54(2):777–787.
  • Lisman JE, Idiart MAP. Storage of 7±2 short-term memories in oscillatory subcycles. Science. 1995;267(5203):1512–1515.
  • Canolty RT, Knight RT. The functional role of cross-frequency coupling. Trends Cogn Sci. 2010;14(11):506–515.
  • Rajji TK, Zomorrodi R, Barr MS, et al. Ordering information in working memory and modulation of gamma by theta oscillations in humans. Cereb Cortex. 2017;27(2):1482–1490.
  • Goodman MS, Kumar S, Zomorrodi R, et al. Theta-gamma coupling and working memory in Alzheimer’s dementia and mild cognitive impairment. Front Aging Neurosci. 2018;10.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.