194
Views
6
CrossRef citations to date
0
Altmetric
Review

The potential of BRAF-associated non-coding RNA as a therapeutic target in melanoma

, , ORCID Icon &
Pages 53-68 | Received 01 Aug 2018, Accepted 26 Nov 2018, Published online: 09 Dec 2018

References

  • Luke JJ, Flaherty KT, Ribas A, et al. Targeted agents and immunotherapies: optimizing outcomes in melanoma. Nat Rev Clin Oncol. 2017 Apr 04;14:463 EP.
  • Larkin J, Ascierto PA, Dreno B, et al. Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. N Engl J Med. 2014 Nov 13;371(20):1867–1876.
  • Robert C, Karaszewska B, Schachter J, et al. Improved overall survival in melanoma with combined dabrafenib and trametinib. N Engl J Med. 2015 Jan 1;372(1):30–39.
  • Ascierto PA, McArthur GA. Checkpoint inhibitors in melanoma and early phase development in solid tumors: what’s the future? J Transl Med. 2017;15(1):173.
  • Ascierto PA, Kirkwood JM, Grob JJ, et al. The role of BRAF V600 mutation in melanoma. J Transl Med. 2012 Jul 9;10:85,5876–10–85.
  • Flaherty KT, Puzanov I, Kim KB, et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med. 2010;363(9):809–819.
  • Shi H, Hugo W, Kong X, et al. Acquired resistance and clonal evolution in melanoma during BRAF inhibitor therapy. Cancer Discov. 2014 Jan 01;4(1):80.
  • Grob JJ, Amonkar MM, Karaszewska B, et al. Comparison of dabrafenib and trametinib combination therapy with vemurafenib monotherapy on health-related quality of life in patients with unresectable or metastatic cutaneous BRAF Val600-mutation-positive melanoma (COMBI-v): results of a phase 3, open-label, randomised trial. Lancet Oncol. 2015;16(13):1389–1398.
  • Korn EL, Liu P, Lee SJ, et al. Meta-analysis of phase II cooperative group trials in metastatic stage IV melanoma to determine progression-free and overall survival benchmarks for future phase II trials. Jco. 2008 Feb 01; 2018/07;26(4):527–534.
  • Hodi FS, O’Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010 Aug 19; 2018/07;363(8):711–723.
  • Robert C, Thomas L, Bondarenko I, et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med. 2011 Jun 30; 2018/07;364(26):2517–2526.
  • Krummel MF, Allison JP. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J Exp Med. 1995 Aug 01;182(2):459.
  • Schadendorf D, Hodi FS, Robert C, et al. Pooled analysis of long-term survival data from phase II and phase III trials of ipilimumab in unresectable or metastatic melanoma. JCO. 2015 Jun 10; 2018/07;33(17):1889–1894.
  • Topalian SL, Sznol M, McDermott DF, et al. Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. JCO. 2014 Apr 01; 2018/07;32(10):1020–1030.
  • Ribas A, Puzanov I, Dummer R, et al. Pembrolizumab versus investigator-choice chemotherapy for ipilimumab-refractory melanoma (KEYNOTE-002): a randomised, controlled, phase 2 trial. Lancet Oncol. 2015 Aug 01; 2018/07;16(8):908–918.
  • Zou W, Wolchok JD, Chen L. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: mechanisms, response biomarkers, and combinations. Sci Transl Med. 2016 Mar 02;8(328):328rv4.
  • Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015 Jul 02; 2018/07;373(1):23–34.
  • Knowling S, Morris KV. Non-coding RNA and antisense RNA. nature’s trash or treasure? Biochimie. 2011 Nov 01;93(11):1922–1927.
  • The ENCODE PC. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012 Sep 05;489:57.
  • Richtig G, Ehall B, Richtig E, et al. Function and clinical implications of long non-coding RNAs in melanoma. Int J Mol Sci. 2017;18(4).
  • St. Laurent G, Wahlestedt C, Kapranov P. The landscape of long noncoding RNA classification. Trends Genet. 2015 May 01; 2018/07;31(5):239–251.
  • Acunzo M, Romano G, Wernicke D, et al. MicroRNA and cancer–a brief overview. Adv Biol Regul. 2015;57:1–9.
  • Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 2014 Jul 16;15:509.
  • Hayes J, Peruzzi PP, Lawler S. MicroRNAs in cancer: biomarkers, functions and therapy. Trends Mol Med. 2014 Aug 01; 2018/07;20(8):460–469.
  • Fattore L, Costantini S, Malpicci D, et al. MicroRNAs in melanoma development and resistance to target therapy. Oncotarget. 2017;8(13):22262–22278.
  • Caramuta S, Egyhã¡Zi S, Rodolfo M, et al. MicroRNA expression profiles associated with mutational status and survival in malignant melanoma. J Invest Dermatol. 2010 Aug 01; 2018/07;130(8):2062–2070.
  • Chan E, Patel R, Nallur S, et al. MicroRNA signatures differentiate melanoma subtypes. Cell Cycle. 2011 Apr 06;10(11):1845–1852.
  • Mueller DW, Rehli M, Bosserhoff AK. miRNA expression profiling in melanocytes and melanoma cell lines reveals miRNAs associated with formation and progression of malignant melanoma. J Invest Dermatol. 2009 Jul 01; 2018/07;129(7):1740–1751.
  • Fattore L, Sacconi A, Mancini R, et al. MicroRNA-driven deregulation of cytokine expression helps development of drug resistance in metastatic melanoma. Cytokine Growth Factor Rev. 2017;36:39–48.
  • Li Y, Krahn JM, Flake GP, et al. Towards predicting metastatic progression of melanoma based on gene expression data. Pigment Cell Melanoma Res. 2015 Apr 24;28(4):453–463.
  • Couts KL, Anderson EM, Gross MM, et al. Oncogenic B-raf signaling in melanoma cells controls a network of microRNAs with combinatorial functions. Oncogene. 2012 Jul 02;32:1959.
  • Pinto R, Strippoli S, De Summa S, et al. MicroRNA expression in BRAF-mutated and wild-type metastatic melanoma and its correlation with response duration to BRAF inhibitors. Expert Opin Ther Targets. 2015 Aug 03;19(8):1027–1035.
  • Lunavat TR, Cheng L, Einarsdottir BO, et al. BRAFV600 inhibition alters the microRNA cargo in the vesicular secretome of malignant melanoma cells. Proc Natl Acad Sci USA. 2017;114(29):E5930–9.
  • Vitiello M, Tuccoli A, D’Aurizio R, et al. Context-dependent miR-204 and miR-211 affect the biological properties of amelanotic and melanotic melanoma cells. Oncotarget. 2017 Feb 06;8(15):25395–25417.
  • Galasso M, Morrison C, Minotti L, et al. Loss of miR-204 expression is a key event in melanoma. Mol Cancer. 2018;17(1).
  • Liu S, Lu J, Lee H, et al. miR-524-5p suppresses the growth of oncogenic BRAF melanoma by targeting BRAF and ERK2. Oncotarget. 2014 Jun 20;5(19):9444–9459.
  • Fattore L, Mancini R, Acunzo M, et al. miR-579-3p controls melanoma progression and resistance to target therapy. Proc Natl Acad Sci USA. 2016;113(34):E5005–13.
  • Poenitzsch AM, Setaluri V, Spiegelman VS. smicroRNA-340 as a modulator of RAS-RAF-MAPK signaling in melanoma. Arch Biochem Biophys. 2014 Jul 17;563:118–124.
  • Guttman M, Amit I, Garber M, et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature. 2009 Feb 01;458(7235):223–227.
  • Ma L, Bajic VB, Zhang Z. On the classification of long non-coding RNAs. RNA Biol. 2013 Apr 08;10(6):924–933.
  • Huarte M, Guttman M, Feldser D, et al. A large intergenic non-coding RNA induced by p53 mediates global gene repression in the p53 response. Cell. 2010 Aug 06;142(3):409–419.
  • Martianov I, Ramadass A, Serra Barros A, et al. Repression of the human dihydrofolate reductase gene by a non-coding interfering transcript. Nature. 2007 Jan 21;445:666.
  • Gutschner T, Hã¤Mmerle M, Eiãÿmann M, et al. The non-coding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Res. 2012 Dec 14;73(3):1180–1189.
  • Khalil AM, Guttman M, Huarte M, et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci USA. 2009 Mar 15;106(28):11667–11672.
  • Hulstaert E, Brochez L, Volders P, et al. Long non-coding RNAs in cutaneous melanoma: clinical perspectives. Oncotarget. 2017 Mar 13;8(26):43470–43480.
  • Sun C, Li S, Li G, et al. Long intergenic noncoding RNA 00511 acts as an oncogene in non-small-cell lung cancer by binding to EZH2 and suppressing p57. Mol Ther Nucleic Acids. 2016 Sep 09;5(11):e385.
  • Kotake Y, Nakagawa T, Kitagawa K, et al. Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15(INK4B) tumor suppressor gene. Oncogene. 2010 Dec 13;30(16):1956–1962.
  • Xu S, Wang H, Pan H, et al. ANRIL lncRNA triggers efficient therapeutic efficacy by reprogramming the aberrant INK4-hub in melanoma. Cancer Lett. 2016 Oct 10;381(1):41–48.
  • Lessard L, Liu M, Marzese DM, et al. The CASC15 long intergenic non-coding RNA locus is involved in melanoma progression and phenotype-switching. J Invest Dermatol. 2015 May 27;135(10):2464–2474.
  • Wang J, Pan Y, Wu J, et al. The association between abnormal long noncoding RNA MALAT-1 expression and cancer lymph node metastasis: a meta-analysis. Biomed Res Int. 2015 Jul 14;2016:1823482.
  • Luan W, Li L, Shi Y, et al. Long non-coding RNA MALAT1 acts as a competing endogenous RNA to promote malignant melanoma growth and metastasis by sponging miR-22. Oncotarget. 2016 Aug 13;7(39):63901–63912.
  • Leucci E, Vendramin R, Spinazzi M, et al. Melanoma addiction to the long non-coding RNA SAMMSON. Nature. 2016 Mar 23;531:518.
  • Eleonora L, Coe EA, Marine J-C, et al. The emerging role of long non-coding RNAs in cutaneous melanoma. Pigment Cell Melanoma Res. 2016 Nov 01; 2018/07;29(6):619–626.
  • Tang L, Zhang W, Su B, et al. Long noncoding RNA HOTAIR is associated with motility, invasion, and metastatic potential of metastatic melanoma. Biomed Res Int. 2013 May 21;2013:251098.
  • Rinn JL, Kertesz M, Wang JK, et al. Functional demarcation of active and silent chromatin domains in human HOX loci by non-coding RNAs. Cell. 2007 Jun 29;129(7):1311–1323.
  • Sousa JF, Torrieri R, Silva RR, et al. Novel primate-specific genes, RMEL 1, 2 and 3, with highly restricted expression in melanoma, assessed by new data mining tool. PLoS ONE. 2010 Sep 15;5(10):e13510.
  • Goedert L, Pereira CG, Roszik J, et al. RMEL3, a novel BRAF(V600E)-associated long noncoding RNA, is required for MAPK and PI3K signaling in melanoma. Oncotarget. 2016 Apr 16;7(24):36711–36718.
  • Flockhart RJ, Webster DE, Qu K, et al. BRAF(V600E) remodels the melanocyte transcriptome and induces BANCR to regulate melanoma cell migration. Genome Res. 2012 Apr 11;22(6):1006–1014.
  • Li R, Zhang L, Jia L, et al. Long non-coding RNA BANCR promotes proliferation in malignant melanoma by regulating MAPK pathway activation. PLOS ONE. 2014 Jun 26;9(6):e100893.
  • Cai B, Zheng Y, Ma S, et al. BANCR contributes to the growth and invasion of melanoma by functioning as a competing endogenous RNA to upregulate Notch2 expression by sponging miR-204. Int J Oncol. 2017;51(6):1941–1951.
  • Keller HR, Zhang X, Li L, et al. Overcoming resistance to targeted therapy with immunotherapy and combination therapy for metastatic melanoma. Oncotarget. 2017 Jun 05;8(43):75675–75686.
  • Zhang G, Frederick DT, Wu L, et al. Targeting mitochondrial biogenesis to overcome drug resistance to MAPK inhibitors. J Clin Invest. 2016;126(5):1834–1856.
  • Moriceau G, Hugo W, Hong A, et al. Tunable-combinatorial mechanisms of acquired resistance limit the efficacy of BRAF/MEK cotargeting but result in melanoma drug addiction. Cancer Cell. 2015 Feb 9;27(2):240–256.
  • Fattore L, Marra E, Pisanu ME, et al. Activation of an early feedback survival loop involving phospho-ErbB3 is a general response of melanoma cells to RAF/MEK inhibition and is abrogated by anti-ErbB3 antibodies. J Transl Med. 2013;11(1):180.
  • Fattore L, Malpicci D, Marra E, et al. Combination of antibodies directed against different ErbB3 surface epitopes prevents the establishment of resistance to BRAF/MEK inhibitors in melanoma. Oncotarget. 2015;6(28):24823–24841.
  • Young HL, Rowling EJ, Bugatti M, et al. An adaptive signaling network in melanoma inflammatory niches confers tolerance to MAPK signaling inhibition. J Exp Med. 2017;214(6):1691–1710.
  • Hugo W, Shi H, Sun L, et al. Non-genomic and immune evolution of melanoma acquiring MAPKi resistance. Cell. 2015 Sep 10;162(6):1271–1285.
  • Rapino F, Delaunay S, Rambow F, et al. Codon-specific translation reprogramming promotes resistance to targeted therapy. Nature. 2018 Jun 01;558(7711):605–609.
  • Zuo Q, Liu J, Huang L, et al. AXL/AKT axis mediated-resistance to BRAF inhibitor depends on PTEN status in melanoma. Oncogene. 2018 Jun 01;37(24):3275–3289.
  • Schoumacher M, Burbridge M. Key roles of AXL and MER receptor tyrosine kinases in resistance to multiple anticancer therapies. Curr Oncol Rep. 2017;19(3):19.
  • Ahmed F, Haass NK. Microenvironment-driven dynamic heterogeneity and phenotypic plasticity as a mechanism of melanoma therapy resistance. Front Oncol. 2018 May 03;8:173.
  • Hugo W, Zaretsky JM, Sun L, et al. Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell. 2017 Jan 26;168(3):542.
  • Sharma P, Hu-Lieskovan S, Wargo JA, et al. Primary, adaptive and acquired resistance to cancer immunotherapy. Cell. 2017 Feb 09;168(4):707–723.
  • Liu S, Tetzlaff MT, Wang T, et al. miR-200c/Bmi1 axis and epithelial-mesenchymal transition contribute to acquired resistance to BRAF inhibitor treatment. Pigment Cell Melanoma Res. 2015 May 16;28(4):431–441.
  • Sun X, Li J, Sun Y, et al. miR-7 reverses the resistance to BRAFi in melanoma by targeting EGFR/IGF-1R/CRAF and inhibiting the MAPK and PI3K/AKT signaling pathways. Oncotarget. 2016 Jun 29;7(33):53558–53570.
  • Kim J, Ahn J, Lee M. Upregulation of MicroRNA-1246 is associated with BRAF inhibitor resistance in melanoma cells with mutant BRAF. Cancer Res Treat. 2016 Dec 19;49(4):947–959.
  • DÃaz-MartÃnez M, Benito-JardÃ3n L, Alonso L, et al. miR-204-5p and miR-211-5p contribute to BRAF inhibitor resistance in melanoma. Cancer Res. 2018 Feb 15;78(4):1017.
  • Fattore L, Ruggiero CF, Pisanu ME, et al. Reprogramming miRNAs global expression orchestrates development of drug resistance in BRAF mutated melanoma. Cell Death Differ. 2018 Sep 25.
  • Kozar I, Cesi G, Margue C, et al. Impact of BRAF kinase inhibitors on the miRNomes and transcriptomes of melanoma cells. Biochim Biophys Acta Gen Subj. 2017;1861(11):2980–2992.
  • Chen L, Gibbons DL, Goswami S, et al. Metastasis is regulated via microRNA-200/ZEB1 axis control of tumour cell PD-L1 expression and intratumoral immunosuppression. Nat Commun. 2014 Oct 28;5:5241.
  • Li Q, Johnston N, Zheng X, et al. miR-28 modulates exhaustive differentiation of T cells through silencing programmed cell death-1 and regulating cytokine secretion. Oncotarget. 2016 Jun 13;7(33):53735–53750.
  • Audrito V, Serra S, Stingi A, et al. PD-L1 up-regulation in melanoma increases disease aggressiveness and is mediated through miR-17-5p. Oncotarget. 2017 Jan 06;8(9):15894–15911.
  • Wang J, Yu F, Jia X, et al. microRNA-155 deficiency enhances the recruitment and functions of myeloid-derived suppressor cells in tumor microenvironment and promotes solid tumor growth. Int J Cancer. 2014 Aug 30;136(6):E602–13.
  • Heinemann A, Zhao F, Pechlivanis S, et al. Tumor suppressive MicroRNAs miR-34a/c control cancer cell expression of ULBP2, a stress-induced ligand of the natural killer cell receptor NKG2D. Cancer Res. 2012 Jan 15;72(2):460.
  • Joung J, Engreitz JM, Konermann S, et al. Genome-scale activation screen identifies a LncRNA locus that regulates a gene neighborhood. Nature. 2017 Aug 09;548(7667):343–346.
  • Mumford SL, Towler BP, Pashler AL, et al. Circulating MicroRNA biomarkers in melanoma: tools and challenges in personalised medicine. Biomolecules. 2018 Apr 23;8(2):21.
  • Smolle MA, Calin HN, Martin P, et al. Noncoding RNAs and immune checkpoints-clinical implications as cancer therapeutics. FEBS J. 2017 Jul 01; 2018/07;284(13):1952–1966.
  • Van Laar R, Lincoln M, Van Laar B. Development and validation of a plasma-based melanoma biomarker suitable for clinical use. Br J Cancer. 2018 Jan 23;118:857.
  • Margue C, Reinsbach S, Philippidou D, et al. Comparison of a healthy miRNome with melanoma patient miRNomes: are microRNAs suitable serum biomarkers for cancer? Oncotarget. 2015 Feb 28;6(14):12110–12127.
  • Fogli S, Polini B, Carpi S, et al. Identification of plasma microRNAs as new potential biomarkers with high diagnostic power in human cutaneous melanoma. Tumour Biol. 2017 May 01; 2018/04;39(5):1010428317701646.
  • Stark MS, Klein K, Weide B, et al. The prognostic and predictive value of melanoma-related MicroRNAs using tissue and serum: a MicroRNA expression analysis. EBioMedicine. 2015 May 09;2(7):671–680.
  • Alegre E, Sanmamed MF, Rodriguez C, et al. Study of circulating MicroRNA-125b levels in serum exosomes in advanced melanoma. Arch Pathol Lab Med. 2014 Jun 01; 2018/07;138(6):828–832.
  • Vergani E, Di Guardo L, Dugo M, et al. Overcoming melanoma resistance to vemurafenib by targeting CCL2-induced miR-34a, miR-100 and miR-125b. Oncotarget. 2016 Jan 26;7(4):4428–4441.
  • Hu X, Bao J, Wang Z, et al. The plasma lncRNA acting as fingerprint in non-small-cell lung cancer. Tumor Biol. 2016 Mar 01;37(3):3497–3504.
  • Ichigozaki Y, Fukushima S, Jinnin M, et al. Serum long non-coding RNA, snoRNA host gene 5 level as a new tumor marker of malignant melanoma. Exp Dermatol. 2016 Jan 01; 2018/10;25(1):67–69.
  • Fleming NH, Zhong J, Da Silva IP, et al. Serum-based miRNAs in the prediction and detection of recurrence in melanoma patients. Cancer. 2015 Jan 01;121(1):51–59.
  • Friedman EB, Shang S, de Miera EV, et al. Serum microRNAs as biomarkers for recurrence in melanoma. J Transl Med. 2012 Aug 02;10:155.
  • Xi J, Huang Q, Wang L, et al. miR-21 depletion in macrophages promotes tumoricidal polarization and enhances PD-1 immunotherapy. Oncogene. 2018 Jun 01;37(23):3151–3165.
  • Monica C, Scognamiglio G, Laura M, et al. HOTAIR role in melanoma progression and its identification in the blood of patients with advanced disease. J Cell Physiol. 2017 Dec 01; 2018/07;232(12):3422–3432.
  • Liu T, Shen S, Xiong J, et al. Clinical significance of long noncoding RNA SPRY4-IT1 in melanoma patients. FEBS Open Bio. 2016 Jan 08;6(2):147–154.
  • Acunzo M, Romano G, Nigita G, et al. Selective targeting of point-mutated KRAS through artificial microRNAs. Proc Natl Acad Sci USA. 2017 May 23;114(21):E4203–12.
  • Di Martino MT, Campani V, Misso G, et al. In vivo activity of MiR-34a mimics delivered by stable nucleic acid lipid particles (SNALPs) against multiple myeloma. PLoS ONE. 2014 Jan 24;9(2):e90005.
  • Martin Del Campo SE, Latchana N, Levine KM, et al. MiR-21 enhances melanoma invasiveness via inhibition of tissue inhibitor of metalloproteinases 3 expression: in vivo effects of MiR-21 inhibitor. PLoS ONE. 2014 Dec 02;10(1):e0115919.
  • Huynh C, Segura MF, Gaziel-Sovran A, et al. Efficient in vivo microRNA targeting of liver metastasis. Oncogene. 2010 Nov 22;30:1481.
  • Wu C, Tan G, Ma C, et al. The non-coding RNA Llme23 drives the malignant property of human melanoma cells. J Genet Genomics. 2013 Apr 20;40(4):179–188.
  • Johnson DB, Menzies AM, Zimmer L, et al. Acquired BRAF inhibitor resistance: A multicenter meta-analysis of the spectrum and frequencies, clinical behaviour, and phenotypic associations of resistance mechanisms. Eur j cancer. 2015 Dec;51(18):2792–2799.
  • Parasramka MA, Maji S, Matsuda A, et al. Long non-coding RNAs as novel targets for therapy in hepatocellular carcinoma. Pharmacol Ther. 2016 May 01;161:67–78.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.