637
Views
30
CrossRef citations to date
0
Altmetric
Review

Mitochondrial-derived peptide humanin as therapeutic target in cancer and degenerative diseases

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , , ORCID Icon & show all
Pages 117-126 | Received 11 Sep 2018, Accepted 11 Dec 2018, Published online: 24 Dec 2018

References

  • Hashimoto Y, Niikura T, Tajima H, et al. A rescue factor abolishing neuronal cell death by a wide spectrum of familial Alzheimer’s disease genes and Abeta. Proc Natl Acad Sci USA. 2001;98(11):6336–6341.
  • Lee C, Yen K, Cohen P. Humanin: a harbinger of mitochondrial-derived peptides? Trends Endocrinol Metab. 2013;24(5):222–228.
  • Yamagishi Y, Hashimoto Y, Niikura T, et al. Identification of essential amino acids in humanin, a neuroprotective factor against Alzheimer’s disease-relevant insults. Peptides. 2003;24(4):585–595.
  • Charununtakorn ST, Shinlapawittayatorn K, Chattipakorn SC, et al. potential roles of humanin on apoptosis in the heart. Cardiovasc Ther. 2016;34(2):107–114.
  • Muzumdar RH, Huffman DM, Calvert JW, et al. Acute humanin therapy attenuates myocardial ischemia and reperfusion injury in mice. Arterioscler Thromb Vasc Biol. 2010;30(10):1940–1948.
  • Tajima H, Niikura T, Hashimoto Y, et al. Evidence for in vivo production of humanin peptide, a neuroprotective factor against Alzheimer’s disease-related insults. Neurosci Lett. 2002;324(3):227–231.
  • Hashimoto Y, Niikura T, Ito Y, et al. Detailed characterization of neuroprotection by a rescue factor humanin against various Alzheimer’s disease-relevant insults. J Neurosci. 2001;21(23):9235–9245.
  • Hashimoto Y, Kurita M, Aiso S, et al. Humanin inhibits neuronal cell death by interacting with a cytokine receptor complex or complexes involving CNTF receptor alpha/WSX-1/gp130. Mol Biol Cell. 2009;20(12):2864–2873.
  • Bodzioch M, Lapicka-Bodzioch K, Zapala B, et al. Evidence for potential functionality of nuclearly-encoded humanin isoforms. Genomics. 2009;94(4):247–256.
  • Ikonen M, Liu B, Hashimoto Y, et al. Interaction between the Alzheimer’s survival peptide humanin and insulin-like growth factor-binding protein 3 regulates cell survival and apoptosis. Proc Natl Acad Sci USA. 2003;100(22):13042–13047.
  • Terashita K, Hashimoto Y, Niikura T, et al. Two serine residues distinctly regulate the rescue function of Humanin, an inhibiting factor of Alzheimer’s disease-related neurotoxicity: functional potentiation by isomerization and dimerization. J Neurochem. 2003;85(6):1521–1538.
  • Benaki D, Zikos C, Evangelou A, et al. Solution structure of humanin, a peptide against Alzheimer’s disease-related neurotoxicity. Biochem Biophys Res Commun. 2005;329(1):152–160.
  • Cobb LJ, Lee C, Xiao J, et al. Naturally occurring mitochondrial-derived peptides are age-dependent regulators of apoptosis, insulin sensitivity, and inflammatory markers. Aging (Albany NY). 2016;8(4):796–809.
  • Bachar AR, Scheffer L, Schroeder AS, et al. Humanin is expressed in human vascular walls and has a cytoprotective effect against oxidized LDL-induced oxidative stress. Cardiovasc Res. 2010;88(2):360–366.
  • Muzumdar RH, Huffman DM, Atzmon G, et al. Humanin: a novel central regulator of peripheral insulin action. PloS one. 2009;4(7):e6334.
  • Conte M, Ostan R, Fabbri C, et al. Human aging and longevity are characterized by high levels of mitokines. J Gerontol A Biol Sci Med Sci. 2018.
  • Gong Z, Tas E, Muzumdar R. Humanin and age-related diseases: a new link? Front Endocrinol (Lausanne). 2014;5:210.
  • Rossini L, Hashimoto Y, Suzuki H, et al. VSTM2L is a novel secreted antagonist of the neuroprotective peptide Humanin. FASEB J. 2011;25(6):1983–2000.
  • Santer FR, Bacher N, Moser B, et al. Nuclear insulin-like growth factor binding protein-3 induces apoptosis and is targeted to ubiquitin/proteasome-dependent proteolysis. Cancer Res. 2006;66(6):3024–3033.
  • Xiao J, Kim S-J, Cohen P, et al. Humanin: functional interfaces with IGF-I. Growth Hormone IGF Res. 2016;29:21–27.
  • Niikura T, Hashimoto Y, Tajima H, et al. A tripartite motif protein TRIM11 binds and destabilizes Humanin, a neuroprotective peptide against Alzheimer’s disease‐relevant insults. Eur J Neurosci. 2003;17(6):1150–1158.
  • Lee C, Wan J, Miyazaki B, et al. IGF-I regulates the age-dependent signaling peptide humanin. Aging Cell. 2014;13(5):958–961.
  • Gottardo MF, Jaita G, Magri ML, et al. Antiapoptotic factor humanin is expressed in normal and tumoral pituitary cells and protects them from TNF-alpha-induced apoptosis. PloS one. 2014;9(10):e111548.
  • Guo B, Zhai D, Cabezas E, et al. Humanin peptide suppresses apoptosis by interfering with Bax activation. Nature. 2003;423(6938):456–461.
  • Jia Y, Lue YH, Swerdloff R, et al. The cytoprotective peptide humanin is induced and neutralizes Bax after pro-apoptotic stress in the rat testis. Andrology. 2013;1(4):651–659.
  • Gottardo MF, Pidre ML, Zuccato C, et al. Baculovirus-based gene silencing of Humanin for the treatment of pituitary tumors. Apoptosis. 2018;23(2):143–151.
  • Zhai D, Luciano F, Zhu X, et al. Humanin binds and nullifies bid activity by blocking its activation of bax and bak. J Biol Chem. 2005;280(16):15815–15824.
  • Ma ZW, Liu DX. Humanin decreases mitochondrial membrane permeability by inhibiting the membrane association and oligomerization of Bax and Bid proteins. Acta Pharmacol Sin. 2018;39(6):1012–1021.
  • Xie Y, Liu ZH, Li XY, et al. Protection effect of [Gly14]-humanin from apoptosis induced by high glucose in human umbilical vein endothelial cells. Diabetes Res Clin Pract. 2014;106(3):560–566.
  • Gottardo MF, Moreno Ayala M, Ferraris J, et al. Humanin inhibits apoptosis in pituitary tumor cells through several signaling pathways including NF-kappaB activation. J Cell Commun Signal. 2017;11(4):329–340.
  • Sreekumar PG, Ishikawa K, Spee C, et al. The mitochondrial-derived peptide humanin protects RPE cells from oxidative stress, senescence, and mitochondrial dysfunction. Invest Ophthalmol Vis Sci. 2016;57(3):1238–1253.
  • Matsuoka M, Hashimoto Y. Humanin and the receptors for humanin. Mol Neurobiol. 2010;41(1):22–28.
  • Hashimoto Y, Kurita M, Matsuoka M. Identification of soluble WSX-1 not as a dominant-negative but as an alternative functional subunit of a receptor for an anti-Alzheimer’s disease rescue factor Humanin. Biochem Biophys Res Commun. 2009;389(1):95–99.
  • Hoang PT, Park P, Cobb LJ, et al. The neurosurvival factor Humanin inhibits beta-cell apoptosis via signal transducer and activator of transcription 3 activation and delays and ameliorates diabetes in nonobese diabetic mice. Metabolism. 2010;59(3):343–349.
  • Hashimoto Y, Suzuki H, Aiso S, et al. Involvement of tyrosine kinases and STAT3 in humanin-mediated neuroprotection. Life Sci. 2005;77(24):3092–3104.
  • Kim SJ, Guerrero N, Wassef G, et al. The mitochondrial-derived peptide humanin activates the ERK1/2, AKT, and STAT3 signaling pathways and has age-dependent signaling differences in the hippocampus. Oncotarget. 2016;7(30):46899–46912.
  • Ying G, Iribarren P, Zhou Y, et al. Humanin, a newly identified neuroprotective factor, uses the G protein-coupled formylpeptide receptor-like-1 as a functional receptor. J Immunol. 2004;172(11):7078–7085.
  • Hashimoto Y, Takeshita Y, Naito M, et al. Apollon/bruce is upregulated by humanin. Mol Cell Biochem. 2014;397(1–2):147–155.
  • Gong Z, Tasset I. Humanin enhances the cellular response to stress by activation of chaperone-mediated autophagy. Oncotarget. 2018;9(13):10832–10833.
  • Scheltens P, Blennow K, Breteler MM, et al. Alzheimer’s disease. Lancet. 2016;388(10043):505–517.
  • Hashimoto Y, Ito Y, Niikura T, et al. Mechanisms of neuroprotection by a novel rescue factor humanin from Swedish mutant amyloid precursor protein. Biochem Biophys Res Commun. 2001;283(2):460–468.
  • Mamiya T, Ukai M. [Gly(14)]-Humanin improved the learning and memory impairment induced by scopolamine in vivo. Br J Pharmacol. 2001;134(8):1597–1599.
  • Niikura T, Sidahmed E, Hirata-Fukae C, et al. A humanin derivative reduces amyloid beta accumulation and ameliorates memory deficit in triple transgenic mice. PLoS One. 2011;6(1):e16259.
  • Zhang W, Zhang W, Li Z, et al. S14G-humanin improves cognitive deficits and reduces amyloid pathology in the middle-aged APPswe/PS1dE9 mice. Pharmacol Biochem Behav. 2012;100(3):361–369.
  • Zhao ST, Zhao L, Li JH. Neuroprotective peptide humanin inhibits inflammatory response in astrocytes induced by lipopolysaccharide. Neurochem Res. 2013;38(3):581–588.
  • Peng T, Wan W, Wang J, et al. The neurovascular protective effect of S14G-humanin in a murine MCAO model and brain endothelial cells. IUBMB Life. 2018;70(7):691–699.
  • Yuan L, Liu XJ, Han WN, et al. [Gly14]-Humanin protects against amyloid beta peptide-induced impairment of spatial learning and memory in rats. Neurosci Bull. 2016;32(4):374–382.
  • Chiba T, Yamada M, Hashimoto Y, et al. Development of a femtomolar-acting humanin derivative named colivelin by attaching activity-dependent neurotrophic factor to its N terminus: characterization of colivelin-mediated neuroprotection against Alzheimer’s disease-relevant insults in vitro and in vivo. J Neurosci. 2005;25(44):10252–10261.
  • Yin R, Yin K, Guo Z, et al. Protective effects of colivelin against Alzheimer’s disease in a PDAPP mouse model. Cell Physiol Biochem. 2016;38(3):1138–1146.
  • Cui AL, Zhang YH, Li JZ, et al. Humanin rescues cultured rat cortical neurons from NMDA-induced toxicity through the alleviation of mitochondrial dysfunction. Drug Des Devel Ther. 2017;11:1243–1253.
  • Alam MP, Bilousova T, Spilman P, et al. A small molecule mimetic of the humanin peptide as a candidate for modulating NMDA-induced neurotoxicity. ACS Chem Neurosci. 2018;9(3):462–468.
  • Gao GS, Li Y, Zhai H, et al. Humanin analogue, S14G-humanin, has neuroprotective effects against oxygen glucose deprivation/reoxygenation by reactivating Jak2/Stat3 signaling through the PI3K/AKT pathway. Exp Ther Med. 2017;14(4):3926–3934.
  • Ambati J, Fowler BJ. Mechanisms of age-related macular degeneration. Neuron. 2012;75(1):26–39.
  • Matsunaga D, Sreekumar PG, Ishikawa K, et al. Humanin protects RPE cells from endoplasmic reticulum stress-induced apoptosis by upregulation of mitochondrial glutathione. PLoS One. 2016;11(10):E0165150.
  • Cerf ME. Beta cell dysfunction and insulin resistance. Front Endocrinol (Lausanne). 2013;4:37.
  • Cerasi E, Kaiser N, Leibowitz G. Type 2 diabetes and beta cell apoptosis. Diabetes Metab. 2000;26(3):13–16.
  • Mauricio D, Mandrup-Poulsen T. Apoptosis and the pathogenesis of IDDM: a question of life and death. Diabetes. 1998;47(10):1537–1543.
  • Eizirik DL, Mandrup-Poulsen T. A choice of death – the signal-transduction of immune-mediated beta-cell apoptosis. Diabetologia. 2001;44(12):2115–2133.
  • Okada AK, Teranishi K, Lobo F, et al. The mitochondrial-derived peptides, humanin S14G and small humanin-like peptide 2, exhibit chaperone-like activity. Sci Rep. 2017;7(1):7802.
  • Voigt A, Jelinek HF. Humanin: a mitochondrial signaling peptide as a biomarker for impaired fasting glucose-related oxidative stress. Physiol Rep. 2016;4(9): E12796.
  • Kuliawat R, Klein L, Gong Z, et al. Potent humanin analog increases glucose-stimulated insulin secretion through enhanced metabolism in the beta cell. FASEB J. 2013;27(12):4890–4898.
  • Elahi MM, Kong YX, Matata BM. Oxidative stress as a mediator of cardiovascular disease. Oxid Med Cell Longev. 2009;2(5):259–269.
  • Sucher R, Gehwolf P, Kaier T, et al. Intracellular signaling pathways control mitochondrial events associated with the development of ischemia/reperfusion-associated damage. Transpl Int. 2009;22(9):922–930.
  • Klein LE, Cui L, Gong Z, et al. A humanin analog decreases oxidative stress and preserves mitochondrial integrity in cardiac myoblasts. Biochem Biophys Res Commun. 2013;440(2):197–203.
  • Thummasorn S, Apaijai N, Kerdphoo S, et al. Humanin exerts cardioprotection against cardiac ischemia/reperfusion injury through attenuation of mitochondrial dysfunction. Cardiovasc Ther. 2016;34(6):404–414.
  • Oh YK, Bachar AR, Zacharias DG, et al. Humanin preserves endothelial function and prevents atherosclerotic plaque progression in hypercholesterolemic ApoE deficient mice. Atherosclerosis. 2011;219(1):65–73.
  • Qin Q, Mehta H, Yen K, et al. Chronic treatment with the mitochondrial peptide humanin prevents age-related myocardial fibrosis in mice. Am J Physiol Heart Circ Physiol. 2018;315:H1127–H1136.
  • Zacharias DG, Kim SG, Massat AE, et al. Humanin, a cytoprotective peptide, is expressed in carotid atherosclerotic [corrected] plaques in humans. PLoS One. 2012;7(2):e31065.
  • Widmer RJ, Flammer AJ, Herrmann J, et al. Circulating humanin levels are associated with preserved coronary endothelial function. Am J Physiol Heart Circ Physiol. 2013;304(3):H393–H397.
  • Oatley MJ, Racicot KE, Oatley JM. Sertoli cells dictate spermatogonial stem cell niches in the mouse testis. Biol Reprod. 2011;84(4):639–645.
  • Theas MS. Germ cell apoptosis and survival in testicular inflammation. Andrologia  in the Special Issue on Inflammation. Forthcoming 2019;50(11):e13083.
  • Surampudi P, Chang I, Lue Y, et al. Humanin protects against chemotherapy-induced stage-specific male germ cell apoptosis in rats. Andrology. 2015;3(3):582–589.
  • Colon E, Strand ML, Carlsson-Skwirut C, et al. Anti-apoptotic factor humanin is expressed in the testis and prevents cell-death in leydig cells during the first wave of spermatogenesis. J Cell Physiol. 2006;208(2):373–385.
  • Sokanovic SJ, Janjic MM, Stojkov NJ, et al. Age related changes of cAMP and MAPK signaling in leydig cells of Wistar rats. Exp Gerontol. 2014;58:19–29.
  • Liang G, Zhang XD, Wang LJ, et al. Identification of differentially expressed genes of primary spermatocyte against round spermatid isolated from human testis using the laser capture microdissection technique. Cell Res. 2004;14(6):507–512.
  • Moretti E, Giannerini V, Rossini L, et al. Immunolocalization of humanin in human sperm and testis. Fertil Steril. 2010;94(7):2888–2890.
  • Hashimoto Y, Terashita K, Niikura T, et al. Humanin antagonists: mutants that interfere with dimerization inhibit neuroprotection by humanin. Eur J Neurosci. 2004;19(9):2356–2364.
  • Jia Y, Ohanyan A, Lue YH, et al. The effects of humanin and its analogues on male germ cell apoptosis induced by chemotherapeutic drugs. Apoptosis. 2015;20(4):551–561.
  • Lue Y, Swerdloff R, Liu Q, et al. Opposing roles of insulin-like growth factor binding protein 3 and humanin in the regulation of testicular germ cell apoptosis. Endocrinology. 2010;151(1):350–357.
  • Jenab S, Morris PL. Differential activation of signal transducer and activator of transcription (STAT)-3 and STAT-1 transcription factors and c-fos messenger ribonucleic acid by interleukin-6 and interferon-gamma in Sertoli cells. Endocrinology. 1996;137(11):4738–4743.
  • Maximov V, Martynenko A, Hunsmann G, et al. Mitochondrial 16S rRNA gene encodes a functional peptide, a potential drug for Alzheimer’s disease and target for cancer therapy. Med Hypotheses. 2002;59(6):670–673.
  • Mottaghi-Dastjerdi N, Soltany-Rezaee-Rad M, Sepehrizadeh Z, et al. Genome expression analysis by suppression subtractive hybridization identified overexpression of humanin, a target gene in gastric cancer chemoresistance. Daru. 2014;22(1):14.
  • Omar NN, Tash RF, Shoukry Y, et al. Breaking the ritual metabolic cycle in order to save acetyl CoA: a potential role for mitochondrial humanin in T2 bladder cancer aggressiveness. J Egypt Natl Canc Inst. 2017;29(2):69–76.
  • Eriksson E, Wickstrom M, Perup LS, et al. Protective role of humanin on bortezomib-induced bone growth impairment in anticancer treatment. J Natl Cancer Inst. 2014;106(3):djt459.
  • Cohen P. New role for the mitochondrial peptide humanin: protective agent against chemotherapy-induced side effects. J Natl Cancer Inst. 2014;106(3):dju006.
  • Zuccato C, Moreno Ayala M, Gottardo M, et al. Role of mitochondrial peptide humanin in the response of experimental breast cancer to chemotherapy. Proceedings of the American association for cancer research annual meeting. Cancer Res. 2018;78(12):1951.
  • Gray GK, McFarland BC, Nozell SE, et al. NF-kappaB and STAT3 in glioblastoma: therapeutic targets coming of age. Expert Rev Neurother. 2014;14(11):1293–1306.
  • Elizalde PV, Cordo Russo RI, Chervo MF, et al. ErbB-2 nuclear function in breast cancer growth, metastasis and resistance to therapy. Endocr Relat Cancer. 2016;23(12):T243–T257.
  • Banerjee K, Resat H. Constitutive activation of STAT3 in breast cancer cells: a review. Int J Cancer. 2016;138(11):2570–2578.
  • Li S, Tian J, Zhang H, et al. Down-regulating IL-6/GP130 targets improved the anti-tumor effects of 5-fluorouracil in colon cancer. Apoptosis. 2018;23(5–6):356–374.
  • Xiao J, Howard L, Wan J, et al. Low circulating levels of the mitochondrial-peptide hormone SHLP2: novel biomarker for prostate cancer risk. Oncotarget. 2017;8(55):94900–94909.
  • Kim SJ, Mehta HH, Wan J, et al. Mitochondrial peptides modulate mitochondrial function during cellular senescence. Aging (Albany NY). 2018;10(6):1239–1256.
  • Schosserer M, Grillari J, Breitenbach M. The dual role of cellular senescence in developing tumors and their response to cancer therapy. Front Oncol. 2017;7:278.
  • Lasry A, Ben-Neriah Y. Senescence-associated inflammatory responses: aging and cancer perspectives. Trends Immunol. 2015;36(4):217–228.
  • Campisi J, Andersen JK, Kapahi P, et al. Cellular senescence: a link between cancer and age-related degenerative disease? Semin Cancer Biol. 2011;21(6):354–359.
  • Freund A, Orjalo AV, Desprez PY, et al. Inflammatory networks during cellular senescence: causes and consequences. Trends Mol Med. 2010;16(5):238–246.
  • Chin YP, Keni J, Wan J, et al. Pharmacokinetics and tissue distribution of humanin and its analogues in male rodents. Endocrinology. 2013;154(10):3739–3744.
  • Sari Y, Chiba T, Yamada M, et al. A novel peptide, colivelin, prevents alcohol-induced apoptosis in fetal brain of C57BL/6 mice: signaling pathway investigations. Neuroscience. 2009;164(4):1653–1664.
  • Lalatsa A, Schatzlein AG, Uchegbu IF. Strategies to deliver peptide drugs to the brain. Mol Pharm. 2014;11(4):1081–1093.
  • Yamada M, Chiba T, Sasabe J, et al. Nasal Colivelin treatment ameliorates memory impairment related to Alzheimer’s disease. Neuropsychopharmacology. 2008;33(8):2020–2032.
  • Wu H, Li J, Zhang Q, et al. A novel small Odorranalectin-bearing cubosomes: preparation, brain delivery and pharmacodynamic study on amyloid-beta(2)(5)(-)(3)(5)-treated rats following intranasal administration. Eur J Pharm Biopharm. 2012;80(2):368–378.
  • Jacobo PV, Fass M, Perez CV, et al. Involvement of soluble fas ligand in germ cell apoptosis in testis of rats undergoing autoimmune orchitis. Cytokine. 2012;60(2):385–392.
  • Logan IS. Pseudogenization of the humanin gene is common in the mitochondrial DNA of many vertebrates. Zool Res. 2017;38(4):198–202.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.