458
Views
22
CrossRef citations to date
0
Altmetric
Review

Targeting mitochondrial quality control for treating sarcopenia: lessons from physical exercise

, , , , , & show all
Pages 153-160 | Received 21 Sep 2018, Accepted 10 Dec 2018, Published online: 22 Dec 2018

References

  • Landi F, Calvani R, Cesari M, et al. Sarcopenia: an overview on current definitions, diagnosis and treatment. Curr Protein Pept Sci. 2018 May;19:633–638. PubMed: 28595526.
  • Marzetti E, Calvani R, Cesari M, et al. Mitochondrial dysfunction and sarcopenia of aging: from signaling pathways to clinical trials. Int J Biochem Cell Biol. 2013 Oct;45:2288–2291. PubMed: 23845738.
  • Picca A, Calvani R, Bossola M, et al. Update on mitochondria and muscle aging: all wrong roads lead to sarcopenia. Biol Chem. 2018 Apr;399:421–426. PubMed: 29384724.
  • Romanello V, Sandri M. Mitochondrial quality control and muscle mass maintenance. Front Physiol. 2016 Jan 12;6:422. PubMed: 26793123.
  • Nunnari J, Suomalainen A. Mitochondria: in sickness and in health. Cell. 2012 Mar 16;148:1145–1149. PubMed: 22424226.
  • Calvani R, Joseph AM, Adhihetty PJ, et al. Mitochondrial pathways in sarcopenia of aging and disuse muscle atrophy. Biol Chem. 2013 Mar;394:393–414. PubMed: 23154422.
  • Pesce V, Cormio A, Fracasso F, et al. Age-related changes of mitochondrial DNA content and mitochondrial genotypic and phenotypic alterations in rat hind-limb skeletal muscles. J Gerontol A Biol Sci Med Sci. 2005 Jun;60:715–723. PubMed: 15983173.
  • Alway SE, Mohamed JS, Myers MJ. Mitochondria initiate and regulate sarcopenia. PubMed: 28098577. Exerc Sport Sci Rev. 2017 Apr;45:58–69
  • Picard M, Ritchie D, Thomas MM, et al. Alterations in intrinsic mitochondrial function with aging are fiber type-specific and do not explain differential atrophy between muscles. Aging Cell. 2011 Dec;10:1047–1055. PubMed: 21933339.
  • Joseph AM, Adhihetty PJ, Buford TW, et al. The impact of aging on mitochondrial function and biogenesis pathways in skeletal muscle of sedentary high- and low-functioning elderly individuals. Aging Cell. 2012 Oct;11:801–809. PubMed: 22681576.
  • St-Jean-Pelletier F, Pion CH, Leduc-Gaudet JP, et al. The impact of ageing, physical activity, and pre-frailty on skeletal muscle phenotype, mitochondrial content, and intramyocellular lipids in men. J Cachexia Sarcopenia Muscle. 2017 Apr;8:213–228. PubMed: 27897402.
  • Willingham TB, McCully KK. In vivo assessment of mitochondrial dysfunction in clinical populations using near-infrared spectroscopy. PubMed: 28959210. Front Physiol. 2017 Sep;8:689
  • Landi F, Calvani R, Tosato M, et al. Animal-derived protein consumption is associated with muscle mass and strength in community-dwellers: results from the Milan EXPO survey. J Nutr Health Aging. 2017;21(Sep):1050–1056. PubMed: 29083447.
  • Landi F, Calvani R, Picca A, et al. Impact of habitual physical activity and type of exercise on physical performance across ages in community-living people. PLoS One. 2018;13(Jan):e0191820. PubMed: 29370306.
  • Dodds RM, Davies K, Granic A, et al. Mitochondrial respiratory chain function and content are preserved in the skeletal muscle of active very old men and women. Exp Gerontol. 2018 Nov;113:80–85. PubMed: 30266472.
  • Konopka AR, Suer MK, Wolff CA, et al. Markers of human skeletal muscle mitochondrial biogenesis and quality control: effects of age and aerobic exercise training. PubMed: 23873965. J Gerontol A Biol Sci Med Sci. 2014 Apr;69:371–378
  • Twig G, Hyde B, Shirihai OS, Mitochondrial fusion, fission and autophagy as a quality control axis: the bioenergetic view. PubMed: 18519024. Biochim Biophys Acta 2008 Sep;1777:1092–1097.
  • Picca A, Lezza A. Regulation of mitochondrial biogenesis through TFAM-mitochondrial DNA interactions: useful insights from aging and calorie restriction studies. PubMed: 26437364. Mitochondrion. 2015 Nov;25:67–75
  • Ohgaki K, Kanki T, Fukuoh A, et al. The C-terminal tail of mitochondrial transcription factor a markedly strengthens its general binding to DNA. J Biochem. 2007 Feb;141:201–211. PubMed: 17167045.
  • Picca A, Pesce V, Fracasso F, et al. A comparison among the tissue-specific effects of aging and calorie restriction on TFAM amount and TFAM-binding activity to mtDNA in rat. Biochim Biophys Acta. 2014 Jul;1840:2184–2191. PubMed: 24631828.
  • Chimienti G, Picca A, Sirago G, et al. Increased TFAM binding to mtDNA damage hot spots is associated with mtDNA loss in aged rat heart. Free Radic Biol Med. 2018 Aug;124:447–453. PubMed: 29969715.
  • Wright DC, Han D-H, Garcia-Roves PM, et al. Exercise-induced mitochondrial biogenesis begins before the increase in muscle PGC-1alpha expression. J Biol Chem. 2007 Jan 5;282:194–199. PubMed: 17099248.
  • Safdar A, Saleem A, Tarnopolsky M. The potential of endurance exercise-derived exosomes to treat metabolic diseases. Nat Rev Endocrinol. 2016;12(Sep):504–517. PubMed: 27230949.
  • Ljubicic V, Joseph A-M, Adhihetty PJ, et al. Molecular basis for an attenuated mitochondrial adaptive plasticity in aged skeletal muscle. Aging (Albany NY). 2009 Sep;1:818–830. PubMed: 20157569.
  • Cannavino J, Brocca L, Sandri M, et al. The role of alterations in mitochondrial dynamics and PGC-1α over-expression in fast muscle atrophy following hindlimb unloading. J Physiol. 2015 Apr;593:1981–1995. PubMed: 25565653.
  • Sandri M, Lin J, Handschin C, et al. PGC-1alpha protects skeletal muscle from atrophy by suppressing FoxO3 action and atrophy-specific gene transcription. Proc Natl Acad Sci U S A. 2006 Oct;103:16260–16265. PubMed: 17053067.
  • Brault JJ, Jespersen JG, Goldberg AL. Peroxisome proliferator-activated receptor gamma coactivator 1alpha or 1beta overexpression inhibits muscle protein degradation, induction of ubiquitin ligases, and disuse atrophy. PubMed: 20404331. J Biol Chem. 2010 Jun;285:19460–19471
  • Romanello V, Sandri M. Mitochondrial quality control and muscle mass maintenance. PubMed: 26793123. Front Physiol. 2015 Jan;6:422
  • Garcia S, Nissanka N, Mareco EA, et al. Overexpression of PGC-1α in aging muscle enhances a subset of young-like molecular patterns. Aging Cell. 2018 Apr;17:E12707. PubMed: 29427317.
  • Zhang Y, Huypens P, Adamson AW, et al. Alternative mRNA splicing produces a novel biologically active short isoform of PGC-1alpha. J Biol Chem. 2009 Nov;284:32813–32826. PubMed: 19773550.
  • Millay DP, Olson EN. Making muscle or mitochondria by selective splicing of PGC-1α. PubMed: 23312277. Cell Metab. 2013 Jan;17:3–4
  • Silvennoinen M, Ahtiainen JP, Hulmi JJ, et al. PGC-1 isoforms and their target genes are expressed differently in human skeletal muscle following resistance and endurance exercise. Physiol Rep. 2015 Oct;3:E12563. PubMed: 26438733.
  • Ruas JL, White JP, Rao RR, et al. A PGC-1α isoform induced by resistance training regulates skeletal muscle hypertrophy. Cell. 2012 Dec;151:1319–1331. PubMed: 23217713.
  • Lanza IR, Short DK, Short KR, et al. Endurance exercise as a countermeasure for aging. Diabetes. 2008 Nov;57:2933–2942. PubMed: 18716044.
  • Kong X, Wang R, Xue Y, et al. Sirtuin 3, a new target of PGC-1alpha, plays an important role in the suppression of ROS and mitochondrial biogenesis. PLoS One. 2010 Jul;5:e11707. PubMed: 20661474.
  • Gomes AP, Price NL, Ling A, et al. Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell. 2013 Dec;155:1624–1638. PubMed: 24360282.
  • Pirinen E, Cantó C, Jo YS, et al. Pharmacological inhibition of poly(ADP-ribose) polymerases improves fitness and mitochondrial function in skeletal muscle. Cell Metab. 2014 Jun;19:1034–1041. PubMed: 24814482.
  • Sebastián D, Sorianello E, Segalés J, et al. Mfn2 deficiency links age-related sarcopenia and impaired autophagy to activation of an adaptive mitophagy pathway. Embo J. 2016 Aug;35:1677–1693. PubMed: 27334614.
  • Picca A, Lezza A, Leeuwenburgh C, et al. Fueling inflamm-aging through mitochondrial dysfunction: mechanisms and molecular targets. Int J Mol Sci. 2017 Apr;18:933. PubMed: 28452964.
  • Picca A, Calvani R, Lorenzi M, et al. Mitochondrial dynamics signaling is shifted toward fusion in muscles of very old hip-fractured patients: results from the Sarcopenia in HIp FracTure (SHIFT) exploratory study. Exp Gerontol. 2017 Oct;96:63–67. PubMed: 28602957.
  • Gomes LC, Scorrano L. High levels of Fis1, a pro-fission mitochondrial protein, trigger autophagy. PubMed: 18515060. Biochim Biophys Acta. 2008 Jul;1777:860–866
  • Joseph A-M, Adhihetty PJ, Wawrzyniak NR, et al. Dysregulation of mitochondrial quality control processes contribute to sarcopenia in a mouse model of premature aging. PLoS One. 2013;8(Jul):e69327. PubMed: 23935986.
  • Marzetti E, Calvani R, Lorenzi M, et al. Association between myocyte quality control signaling and sarcopenia in old hip-fractured patients: results from the sarcopenia in HIp FracTure (SHIFT) exploratory study. Exp Gerontol. 2016 Jul;80:1–5. PubMed: 27064052.
  • Iqbal S, Ostojic O, Singh K, et al. Expression of mitochondrial fission and fusion regulatory proteins in skeletal muscle during chronic use and disuse. Muscle Nerve. 2013 Dec;48:963–970. PubMed: 23494933.
  • Romanello V, Guadagnin E, Gomes L, et al. Mitochondrial fission and remodelling contributes to muscle atrophy. Embo J. 2010 May;29:1774–1785. PubMed: 20400940.
  • Tezze C, Romanello V, Desbats MA, et al. Age-associated loss of OPA1 in muscle impacts muscle mass, metabolic homeostasis, systemic inflammation, and epithelial senescence. Cell Metab. 2017 Jun;25:1374–1389. PubMed: 28552492.
  • Chen H, Vermulst M, Wang YE, et al. Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutations. Cell. 2010 Apr;141:280–289. PubMed: 20403324.
  • Rana A, Oliveira MP, Khamoui AV, et al. Promoting Drp1-mediated mitochondrial fission in midlife prolongs healthy lifespan of Drosophila melanogaster. Nat Commun. 2017 Sep;8:448. PubMed: 28878259.
  • Liu W, Yamashita T, Tian F, et al. Mitochondrial fusion and fission proteins expression dynamically change in a murine model of amyotrophic lateral sclerosis. Curr Neurovasc Res. 2013 Aug;10:222–230. PubMed: 23713734.
  • Wang W, Zhang F, Li L, et al. MFN2 couples glutamate excitotoxicity and mitochondrial dysfunction in motor neurons. J Biol Chem. 2015 Jan;290:168–182. PubMed: 25416777.
  • Quirós PM, Langer T, López-Otín C. New roles for mitochondrial proteases in health, ageing and disease. PubMed: 25970558. Nat Rev Mol Cell Biol. 2015 Jun;16:345–359
  • Voos W. Chaperone-protease networks in mitochondrial protein homeostasis. PubMed: 22705353. Biochim Biophys Acta. 2013 Feb;1833:388–399
  • Ngo JK, Davies K. Importance of the lon protease in mitochondrial maintenance and the significance of declining lon in aging. PubMed: 18056957. Ann N Y Acad Sci. 2007 Nov;1119:78–87
  • Ngo JK, Pomatto L, Davies K. Upregulation of the mitochondrial lon protease allows adaptation to acute oxidative stress but dysregulation is associated with chronic stress, disease, and aging. PubMed: 24024159. Redox Biol. 2013 Feb;1:258–264
  • Sandri M, Sandri C, Gilbert A, et al. Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. PubMed: 15109499. Cell. 2004 Apr;117:399-412.
  • Tang H, Inoki K, Lee M, et al. mTORC1 promotes denervation-induced muscle atrophy through a mechanism involving the activation of FoxO and E3 ubiquitin ligases. PubMed: 24570486. Sci Signal. 2014 Feb;7:ra18.
  • Castets P, Rüegg MA. MTORC1 determines autophagy through ULK1 regulation in skeletal muscle. PubMed: 23896646. Autophagy. 2013 Sep;9:1435–1437
  • Rom O, Reznick AZ. The role of E3 ubiquitin-ligases MuRF-1 and MAFbx in loss of skeletal muscle mass. PubMed: 26738803. Free Radic Biol Med. 2016 Sep;98:218–230
  • Cai D, Kkh L, Li M, et al. Ubiquitin expression is up-regulated in human and rat skeletal muscles during aging. Arch Biochem Biophys. 2004 May;425:42–50. PubMed: 15081892.
  • Altun M, Besche HC, Overkleeft HS, et al. Muscle wasting in aged, sarcopenic rats is associated with enhanced activity of the ubiquitin proteasome pathway. J Biol Chem. 2010 Dec;285:39597–39608. PubMed: 20940294.
  • Clavel S, Coldefy A-S, Kurkdjian E, et al. Atrophy-related ubiquitin ligases, atrogin-1 and MuRF1 are up-regulated in aged rat tibialis anterior muscle. Mech Ageing Dev. 2006 Oct;127:794–801. PubMed: 16949134.
  • Edström E, Altun M, Hägglund M, et al. Atrogin-1/MAFbx and MuRF1 are downregulated in aging-related loss of skeletal muscle. J Gerontol A Biol Sci Med Sci. 2006 Jul;61:663–674. PubMed: 16870627.
  • Whitman SA, Wacker MJ, Richmond SR, et al. Contributions of the ubiquitin-proteasome pathway and apoptosis to human skeletal muscle wasting with age. Pflugers Arch. 2005 Sep;450:437–446. PubMed: 15952031.
  • Jeon HB, Choi ES, Yoon JH, et al. A proteomics approach to identify the ubiquitinated proteins in mouse heart. Biochem Biophys Res Commun. 2007 Jun;357:731–736. PubMed: 17451654.
  • Martínez-Redondo V, Jannig PR, Correia JC, et al. Peroxisome proliferator-activated receptor γ coactivator-1 α isoforms selectively regulate multiple splicing events on target genes. J Biol Chem. 2016 Jul;291:15169–15184. PubMed: 27231350.
  • Zhao Q, Wang J, Levichkin IV, et al. A mitochondrial specific stress response in mammalian cells. Embo J. 2002 Sep;21:4411–4419. PubMed: 12198143.
  • Heo J-M, Livnat-Levanon N, Taylor EB, et al. A stress-responsive system for mitochondrial protein degradation. Mol Cell. 2010 Nov;40:465–480. PubMed: 21070972.
  • Drake JC, Yan Z. Mitophagy in maintaining skeletal muscle mitochondrial proteostasis and metabolic health with ageing. PubMed: 28795394. J Physiol. 2017 Oct;595:6391–6399
  • Terman A, Kurz T, Navratil M, et al. Mitochondrial turnover and aging of long-lived postmitotic cells: the mitochondrial-lysosomal axis theory of aging. PubMed: 19650712. Antioxid Redox Signal. 2010 Apr;12:503–535
  • Masiero E, Agatea L, Mammucari C, et al. Autophagy is required to maintain muscle mass. Cell Metab. 2009 Dec;10:507–515. PubMed: 19945408.
  • Masiero E, Sandri M. Autophagy inhibition induces atrophy and myopathy in adult skeletal muscles. PubMed: 20104028. Autophagy. 2010 Feb;6:307–309
  • Pyo JO, Yoo SM, Ahn HH, et al. Overexpression of Atg5 in mice activates autophagy and extends lifespan. Nat Commun. 2013;4:2300, PubMed: 23939249
  • Carnio S, LoVerso F, Baraibar MA, et al. Autophagy impairment in muscle induces neuromuscular junction degeneration and precocious aging. Cell Rep. 2014 Sep;8:1509–1521. PubMed: 25176656.
  • O’Leary M, Vainshtein A, Iqbal S, et al. Adaptive plasticity of autophagic proteins to denervation in aging skeletal muscle. Am J Physiol Cell Physiol. 2013 Mar;304:C422–30. PubMed: 23220115.
  • Wohlgemuth SE, Lees HA, Marzetti E, et al. An exploratory analysis of the effects of a weight loss plus exercise program on cellular quality control mechanisms in older overweight women. Rejuvenation Res. 2011;14:315–324, PubMed: 21631380
  • Klionsky DJ, Abdelmohsen K, Abe A, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy. 2016 Jan;12:1–222. PubMed: 26799652.
  • Yoshii SR, Mizushima N. Monitoring and measuring autophagy. Int J Mol Sci. 2017 Aug 28;18:1865. PubMed: 28846632.
  • Fiatarone MA, Marks EC, Ryan ND, et al. High-intensity strength training in nonagenarians. effects on skeletal muscle. JAMA. 1990 Jun;263:3029–3034. PubMed: 2342214.
  • Groennebaek T, Vissing K. Impact of resistance training on skeletal muscle mitochondrial biogenesis, content, and function. PubMed: 28966596. Front Physiol. 2017 Sep;8:713
  • Russell OM, Fruh I, Rai PK, et al. Preferential amplification of a human mitochondrial DNA deletion in vitro and in vivo. Sci Rep. 2018;8(Jan):1799. PubMed: 29379065.
  • Kim Y, Triolo M, Hood DA. Impact of aging and exercise on mitochondrial quality control in skeletal muscle. Oxid Med Cell Longev. 2017;2017: 3165396. PubMed: 28656072.
  • Carter HN, Kim Y, Erlich AT, et al. and mitophagy flux in young and aged skeletal muscle following chronic contractile activity. J Physiol. 2018 Aug;596:3567–3584. PubMed: 29781176.
  • Dethlefsen MM, Halling JF, Møller HD, et al. Regulation of apoptosis and autophagy in mouse and human skeletal muscle with aging and lifelong exercise training. Exp Gerontol. 2018 Oct;111:141–153. PubMed: 30030137.
  • Chen CCW, Erlich AT, Crilly MJ, et al. Parkin is required for exercise-induced mitophagy in muscle: impact of aging. Am J Physiol Endocrinol Metab. 2018 Sep;315:E404–15. PubMed: 29812989.
  • Sanchez AM, Bernardi H, Py G, et al. Autophagy is essential to support skeletal muscle plasticity in response to endurance exercise. Am J Physiol Regul Integr Comp Physiol. 2014 Oct;307:R956–69. PubMed: 25121614.
  • Jung CH, Ro SH, Cao J, et al. mTOR regulation of autophagy. FEBS Lett. 2010 Apr;584:1287–1295. PubMed: 20083114.
  • Song Z, Moore DR, Hodson N, et al. Resistance exercise initiates mechanistic target of rapamycin (mTOR) translocation and protein complex co-localisation in human skeletal muscle. Sci Rep. 2017 Jul;7:5028. PubMed: 28694500.
  • Atherton PJ, Babraj J, Smith K, et al. Selective activation of AMPK-PGC-1alpha or PKB-TSC2-mTOR signaling can explain specific adaptive responses to endurance or resistance training-like electrical muscle stimulation. FASEB J. 2005 May;19:786–788. PubMed: 15716393.
  • Sanchez A, Csibi A, Raibon A, et al. AMPK promotes skeletal muscle autophagy through activation of forkhead FoxO3a and interaction with Ulk1. J Cell Biochem. 2012 Feb;113:695–710. PubMed: 22006269.
  • Zhao J, Brault JJ, Schild A, et al. Coordinate activation of autophagy and the proteasome pathway by FoxO transcription factor. Autophagy. 2008 Apr;4:378–380. PubMed: 18227643.
  • Jamart C, Francaux M, Gy M, et al. Modulation of autophagy and ubiquitin-proteasome pathways during ultra-endurance running. J Appl Physiol (1985). 2012 May;112:1529–1537. PubMed: 22345427.
  • Laker RC, Drake JC, Wilson RJ, et al. Ampk phosphorylation of Ulk1 is required for targeting of mitochondria to lysosomes in exercise-induced mitophagy. Nat Commun. 2017 Sep;8:548. PubMed: 28916822.
  • Jäger S, Handschin C, St-Pierre J, et al. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc Natl Acad Sci U S A. 2007 Jul;104:12017–12022. PubMed: 17609368.
  • Wohlgemuth SE, Seo AY, Marzetti E, et al. Skeletal muscle autophagy and apoptosis during aging: effects of calorie restriction and life-long exercise. Exp Gerontol. 2010 Feb;45:138–148. PubMed: 19903516.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.