577
Views
35
CrossRef citations to date
0
Altmetric
Review

The apelin/APJ system as a therapeutic target in metabolic diseases

, &
Pages 215-225 | Received 07 Sep 2018, Accepted 18 Dec 2018, Published online: 10 Jan 2019

References

  • O’Dowd BF, Heiber M, Chan A, et al. A human gene that shows identity with the gene encoding the angiotensin receptor is located on chromosome 11. Gene. 1993;136:355–360.
  • Tatemoto K, Hosoya M, Habata Y, et al. Isolation and characterization of a novel endogenous peptide ligand for the human APJ receptor. Biochem Biophys Res Commun. 1998;251:471–476.
  • Chng SC, Ho L, Tian J, et al. ELABELA: a hormone essential for heart development signals via the apelin receptor. Dev Cell. 2013;27:672–680.
  • Pauli A, Norris ML, Valen E, et al. Toddler: an embryonic signal that promotes cell movement via apelin receptors. Science. 2014;343:1248636.
  • Shin K, Kenward C, Rainey JK. Apelinergic system structure and function. Compr Physiol. 2017;8:407–450.
  • Xu J, Chen L, Jiang Z, et al. Biological functions of Elabela, a novel endogenous ligand of APJ receptor. J Cell Physiol. 2018;233:6472–6482.
  • Pitkin SL, Maguire JJ, Bonner TI, et al. International union of basic and clinical pharmacology. LXXIV. Apelin receptor nomenclature, distribution, pharmacology, and function. Pharmacol Rev. 2010;62:331–342.
  • Zhen EY, Higgs RE, Gutierrez JA. Pyroglutamyl apelin-13 identified as the major apelin isoform in human plasma. Anal Biochem. 2013;442:1–9.
  • Maguire JJ, Kleinz MJ, Pitkin SL, et al. [Pyr1]apelin-13 identified as the predominant apelin isoform in the human heart: vasoactive mechanisms and inotropic action in disease. Hypertension. 2009;54:598–604.
  • Azizi M, Iturrioz X, Blanchard A, et al. Reciprocal regulation of plasma apelin and vasopressin by osmotic stimuli. J Am Soc Nephrol. 2008;19:1015–1024.
  • De Mota N, Reaux-Le Goazigo A, El Messari S, et al. Apelin, a potent diuretic neuropeptide counteracting vasopressin actions through inhibition of vasopressin neuron activity and vasopressin release. Proc Natl Acad Sci U S A. 2004;101:10464–10469.
  • Kleinz MJ, Skepper JN, Davenport AP. Immunocytochemical localisation of the apelin receptor, APJ, to human cardiomyocytes, vascular smooth muscle and endothelial cells. Regul Pept. 2005;126:233–240.
  • Boucher J, Masri B, Daviaud D, et al. Apelin, a newly identified adipokine up-regulated by insulin and obesity. Endocrinology. 2005;146:1764–1771.
  • Ronkainen VP, Ronkainen JJ, Hanninen SL, et al. Hypoxia inducible factor regulates the cardiac expression and secretion of apelin. FASEB J. 2007;21:1821–1830.
  • Vinel C, Lukjanenko L, Batut A, et al. The exerkine apelin reverses age-associated sarcopenia. Nat Med. 2018.
  • O’Carroll AM, Lolait SJ, Harris LE, et al. The apelin receptor APJ: journey from an orphan to a multifaceted regulator of homeostasis. J Endocrinol. 2013;219:R13–35.
  • Chaves-Almagro C, Castan-Laurell I, Dray C, et al. Apelin receptors: from signaling to antidiabetic strategy. Eur J Pharmacol. 2015;763:149–159.
  • Rochlani Y, Pothineni NV, Kovelamudi S, et al. Metabolic syndrome: pathophysiology, management, and modulation by natural compounds. Ther Adv Cardiovasc Dis. 2017;11:215–225.
  • Marin-Penalver JJ, Martin-Timon I, Sevillano-Collantes C, et al. Update on the treatment of type 2 diabetes mellitus. World J Diabetes. 2016;7:354–395.
  • Sorhede Winzell M, Magnusson C, Ahren B. The apj receptor is expressed in pancreatic islets and its ligand, apelin, inhibits insulin secretion in mice. Regul Pept. 2005;131:12–17.
  • Guo L, Li Q, Wang W, et al. Apelin inhibits insulin secretion in pancreatic beta-cells by activation of PI3-kinase-phosphodiesterase 3B. Endocr Res. 2009;34:142–154.
  • Ringstrom C, Nitert MD, Bennet H, et al. Apelin is a novel islet peptide. Regul Pept. 2010;162:44–51.
  • O’Harte FPM, Parthsarathy V, Hogg C, et al. Acylated apelin-13 amide analogues exhibit enzyme resistance and prolonged insulin releasing, glucose lowering and anorexic properties. Biochem Pharmacol. 2017;146:165–173.
  • O’Harte FPM, Parthsarathy V, Hogg C, et al. Apelin-13 analogues show potent in vitro and in vivo insulinotropic and glucose lowering actions. Peptides. 2018;100:219–228.
  • Han S, Englander EW, Gomez GA, et al. Pancreatic islet APJ deletion reduces islet density and glucose tolerance in mice. Endocrinology. 2015;156:2451–2460.
  • Dray C, Knauf C, Daviaud D, et al. Apelin stimulates glucose utilization in normal and obese insulin-resistant mice. Cell Metab. 2008;8:437–445.
  • Yue P, Jin H, Aillaud M, et al. Apelin is necessary for the maintenance of insulin sensitivity. Am J Physiol Endocrinol Metab. 2010;298:E59–67.
  • Hwangbo C, Wu J, Papangeli I, et al. Endothelial APLNR regulates tissue fatty acid uptake and is essential for apelin’s glucose-lowering effects. Sci Transl Med. 2017;9:407.
  • Ceylan-Isik AF, Kandadi MR, Xu X, et al. Apelin administration ameliorates high fat diet-induced cardiac hypertrophy and contractile dysfunction. J Mol Cell Cardiol. 2013;63:4–13.
  • Alfarano C, Foussal C, Lairez O, et al. Transition from metabolic adaptation to maladaptation of the heart in obesity: role of apelin. Int J Obes (Lond). 2015;39:312–320.
  • Ahn BH, Kim HS, Song S, et al. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc Natl Acad Sci U S A. 2008;105:14447–14452.
  • Xu S, Han P, Huang M, et al. In vivo, ex vivo, and in vitro studies on apelin’s effect on myocardial glucose uptake. Peptides. 2012;37:320–326.
  • Jakobsen SN, Hardie DG, Morrice N, et al. 5ʹ-AMP-activated protein kinase phosphorylates IRS-1 on Ser-789 in mouse C2C12 myotubes in response to 5-aminoimidazole-4-carboxamide riboside. J Biol Chem. 2001;276:46912–46916.
  • Villarroya J, Cereijo R, Villarroya F. An endocrine role for brown adipose tissue? Am J Physiol Endocrinol Metab. 2013;305:E567–572.
  • Than A, Cheng Y, Foh LC, et al. Apelin inhibits adipogenesis and lipolysis through distinct molecular pathways. Mol Cell Endocrinol. 2012;362:227–241.
  • Shin K, Pandey A, Liu XQ, et al. Preferential apelin-13 production by the proprotein convertase PCSK3 is implicated in obesity. FEBS Open Bio. 2013;3:328–333.
  • Zhu S, Cheng G, Zhu H, et al. A study of genes involved in adipocyte differentiation. J Pediatr Endocrinol Metab. 2015;28:93–99.
  • Than A, He HL, Chua SH, et al. Apelin enhances brown adipogenesis and browning of white adipocytes. J Biol Chem. 2015;290:14679–14691.
  • Than A, Zhang X, Leow MK, et al. Apelin attenuates oxidative stress in human adipocytes. J Biol Chem. 2014;289:3763–3774.
  • Yue P, Jin H, Xu S, et al. Apelin decreases lipolysis via G(q), G(i), and AMPK-dependent mechanisms. Endocrinology. 2011;152:59–68.
  • Guo M, Chen F, Lin T, et al. Apelin-13 decreases lipid storage in hypertrophic adipocytes in vitro through the upregulation of AQP7 expression by the PI3K signaling pathway. Med Sci Monit. 2014;20:1345–1352.
  • Attane C, Daviaud D, Dray C, et al. Apelin stimulates glucose uptake but not lipolysis in human adipose tissue ex vivo. J Mol Endocrinol. 2011;46:21–28.
  • Zhang X, Ye Q, Gong D, et al. Apelin-13 inhibits lipoprotein lipase expression via the APJ/PKCalpha/miR-361-5p signaling pathway in THP-1 macrophage-derived foam cells. Acta Biochim Biophys Sin (Shanghai). 2017;49:530–540.
  • Zhu S, Sun F, Li W, et al. Apelin stimulates glucose uptake through the PI3K/Akt pathway and improves insulin resistance in 3T3-L1 adipocytes. Mol Cell Biochem. 2011;353:305–313.
  • Zheng XT, Than A, Ananthanaraya A, et al. Graphene quantum dots as universal fluorophores and their use in revealing regulated trafficking of insulin receptors in adipocytes. ACS Nano. 2013;7:6278–6286.
  • Ando W, Yokomori H, Otori K, et al. The apelin receptor APJ in hematopoietic stem cells/progenitor cells in the early stage of non-alcoholic steatohepatitis. J Clin Med Res. 2017;9:809–811.
  • Yasuzaki H, Yoshida S, Hashimoto T, et al. Involvement of the apelin receptor APJ in Fas-induced liver injury. Liver Int. 2013;33:118–126.
  • Bertrand C, Pradere JP, Geoffre N, et al. Chronic apelin treatment improves hepatic lipid metabolism in obese and insulin-resistant mice by an indirect mechanism. Endocrine. 2018;60:112–121.
  • Chu J, Zhang H, Huang X, et al. Apelin ameliorates TNF-alpha-induced reduction of glycogen synthesis in the hepatocytes through G protein-coupled receptor APJ. PLoS One. 2013;8:e57231.
  • Huang J, Kang S, Park SJ, et al. Apelin protects against liver X receptor-mediated steatosis through AMPK and PPARalpha in human and mouse hepatocytes. Cell Signal. 2017;39:84–94.
  • Higuchi K, Masaki T, Gotoh K, et al. Apelin, an APJ receptor ligand, regulates body adiposity and favors the messenger ribonucleic acid expression of uncoupling proteins in mice. Endocrinology. 2007;148:2690–2697.
  • Yamamoto T, Habata Y, Matsumoto Y, et al. Apelin-transgenic mice exhibit a resistance against diet-induced obesity by increasing vascular mass and mitochondrial biogenesis in skeletal muscle. Biochim Biophys Acta. 2011;1810:853–862.
  • Dray C, Debard C, Jager J, et al. Apelin and APJ regulation in adipose tissue and skeletal muscle of type 2 diabetic mice and humans. Am J Physiol Endocrinol Metab. 2010;298:E1161–1169.
  • Galon-Tilleman H, Yang H, Bednarek MA, et al. Apelin-36 modulates blood glucose and body weight independently of canonical APJ receptor signaling. J Biol Chem. 2017;292:1925–1933.
  • Sawane M, Kajiya K, Kidoya H, et al. Apelin inhibits diet-induced obesity by enhancing lymphatic and blood vessel integrity. Diabetes. 2013;62:1970–1980.
  • Roberts EM, Newson MJ, Pope GR, et al. Abnormal fluid homeostasis in apelin receptor knockout mice. J Endocrinol. 2009;202:453–462.
  • Fournel A, Drougard A, Duparc T, et al. Apelin targets gut contraction to control glucose metabolism via the brain. Gut. 2017;66:258–269.
  • Zhong JC, Zhang ZZ, Wang W, et al. Targeting the apelin pathway as a novel therapeutic approach for cardiovascular diseases. Biochim Biophys Acta Mol Basis Dis. 2017;1863:1942–1950.
  • Zeng H, He X, Hou X, et al. Apelin gene therapy increases myocardial vascular density and ameliorates diabetic cardiomyopathy via upregulation of sirtuin 3. Am J Physiol Heart Circulatory Physiol. 2014;306:H585–597.
  • Day RT, Cavaglieri RC, Feliers D. Apelin retards the progression of diabetic nephropathy. Am J Physiol Renal Physiol. 2013;304:F788–800.
  • Chen H, Li J, Jiao L, et al. Apelin inhibits the development of diabetic nephropathy by regulating histone acetylation in Akita mouse. J Physiol. 2014;592:505–521.
  • Pope GR, Roberts EM, Lolait SJ, et al. Central and peripheral apelin receptor distribution in the mouse: species differences with rat. Peptides. 2012;33:139–148.
  • Clarke KJ, Whitaker KW, Reyes TM. Diminished metabolic responses to centrally-administered apelin-13 in diet-induced obese rats fed a high-fat diet. J Neuroendocrinol. 2009;21:83–89.
  • Reaux-Le Goazigo A, Bodineau L, De Mota N, et al. Apelin and the proopiomelanocortin system: a new regulatory pathway of hypothalamic alpha-MSH release. Am J Physiol Endocrinol Metab. 2011;301:E955–966.
  • Ferrante C, Orlando G, Recinella L, et al. Central apelin-13 administration modulates hypothalamic control of feeding. J Biol Regul Homeost Agents. 2016;30:883–888.
  • Lv SY, Yang YJ, Qin YJ, et al. Central apelin-13 inhibits food intake via the CRF receptor in mice. Peptides. 2012;33:132–138.
  • Lee DK, Jeong JH, Oh S, et al. Apelin-13 enhances arcuate POMC neuron activity via inhibiting M-current. PLoS One. 2015;10:e0119457.
  • Duparc T, Colom A, Cani PD, et al. Central apelin controls glucose homeostasis via a nitric oxide-dependent pathway in mice. Antioxid Redox Signal. 2011;15:1477–1496.
  • Drougard A, Duparc T, Brenachot X, et al. Hypothalamic apelin/reactive oxygen species signaling controls hepatic glucose metabolism in the onset of diabetes. Antioxid Redox Signal. 2014;20:557–573.
  • Drougard A, Fournel A, Marlin A, et al. Central chronic apelin infusion decreases energy expenditure and thermogenesis in mice. Sci Rep. 2016;6:31849.
  • Tasci I, Dogru T, Naharci I, et al. Plasma apelin is lower in patients with elevated LDL-cholesterol. Exp Clin Endocrinol Diabetes. 2007;115:428–432.
  • Rittig K, Hildebrandt U, Thamer C, et al. Apelin serum levels are not associated with early atherosclerosis or fat distribution in young subjects with increased risk for type 2 diabetes. Exp Clin Endocrinol Diabetes. 2011;119:358–361.
  • Ma WY, Yu TY, Wei JN, et al. Plasma apelin: a novel biomarker for predicting diabetes. Clin Chim Acta. 2014;435:18–23.
  • Zhang R, Hu C, Wang CR, et al. Association of apelin genetic variants with type 2 diabetes and related clinical features in Chinese Hans. Chin Med J (Engl). 2009;122:1273–1276.
  • Sentinelli F, Capoccia D, Bertoccini L, et al. Search for genetic variant in the apelin gene by resequencing and association study in European subjects. Genet Test Mol Biomarkers. 2016;20:98–102.
  • Cavallo MG, Sentinelli F, Barchetta I, et al. Altered glucose homeostasis is associated with increased serum apelin levels in type 2 diabetes mellitus. PLoS One. 2012;7:e51236.
  • Habchi M, Duvillard L, Cottet V, et al. Circulating apelin is increased in patients with type 1 or type 2 diabetes and is associated with better glycaemic control. Clin Endocrinol (Oxf). 2014;81:696–701.
  • Bertrand C, Valet P, Castan-Laurell I. Apelin and energy metabolism. Front Physiol. 2015;6:115.
  • Kadoglou NP, Tsanikidis H, Kapelouzou A, et al. Effects of rosiglitazone and metformin treatment on apelin, visfatin, and ghrelin levels in patients with type 2 diabetes mellitus. Metabolism. 2010;59:373–379.
  • Fan Y, Zhang Y, Li X, et al. Treatment with metformin and a dipeptidyl peptidase-4 inhibitor elevates apelin levels in patients with type 2 diabetes mellitus. Drug Des Devel Ther. 2015;9:4679–4683.
  • Wattez JS, Ravallec R, Cudennec B, et al. Apelin stimulates both cholecystokinin and glucagon-like peptide 1 secretions in vitro and in vivo in rodents. Peptides. 2013;48:134–136.
  • Castan-Laurell I, Vitkova M, Daviaud D, et al. Effect of hypocaloric diet-induced weight loss in obese women on plasma apelin and adipose tissue expression of apelin and APJ. Eur J Endocrinol. 2008;158:905–910.
  • Krist J, Wieder K, Kloting N, et al. Effects of weight loss and exercise on apelin serum concentrations and adipose tissue expression in human obesity. Obes Facts. 2013;6:57–69.
  • Rancoule C, Dusaulcy R, Treguer K, et al. Depot-specific regulation of autotaxin with obesity in human adipose tissue. J Physiol Biochem. 2012;68:635–644.
  • Japp AG, Cruden NL, Amer DA, et al. Vascular effects of apelin in vivo in man. J Am Coll Cardiol. 2008;52:908–913.
  • Japp AG, Cruden NL, Barnes G, et al. Acute cardiovascular effects of apelin in humans: potential role in patients with chronic heart failure. Circulation. 2010;121:1818–1827.
  • Barnes GD, Alam S, Carter G, et al. Sustained cardiovascular actions of APJ agonism during renin-angiotensin system activation and in patients with heart failure. Circulation Heart Fail. 2013;6:482–491.
  • Schinzari F, Veneziani A, Mores N, et al. Beneficial effects of apelin on vascular function in patients with central obesity. Hypertension. 2017;69:942–949.
  • Gourdy P, Cazals L, Thalamas C, et al. Apelin administration improves insulin sensitivity in overweight men during hyperinsulinaemic-euglycaemic clamp. Diabetes Obes Metab. 2018;20:157–164.
  • Vickers C, Hales P, Kaushik V, et al. Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. J Biol Chem. 2002;277:14838–14843.
  • Wang W, McKinnie SM, Farhan M, et al. Angiotensin-converting enzyme 2 metabolizes and partially inactivates Pyr-apelin-13 and apelin-17: physiological effects in the cardiovascular system. Hypertension. 2016;68:365–377.
  • Yang P, Kuc RE, Brame AL, et al. [Pyr(1)]apelin-13(1-12)is a biologically active ACE2 metabolite of the endogenous cardiovascular peptide [Pyr(1)]apelin-13. Front Neurosci. 2017;11:92.
  • McKinnie SM, Fischer C, Tran KM, et al. The metalloprotease neprilysin degrades and inactivates apelin peptides. Chembiochem Eur J Chem Biol. 2016;17:1495–1498.
  • McKinnie SMK, Wang W, Fischer C, et al. Synthetic modification within the “RPRL” region of apelin peptides: impact on cardiovascular activity and stability to neprilysin and plasma degradation. J Med Chem. 2017;60:6408–6427.
  • Brame AL, Maguire JJ, Yang P, et al. Design, characterization, and first-in-human study of the vascular actions of a novel biased apelin receptor agonist. Hypertension. 2015;65:834–840.
  • Murza A, Belleville K, Longpre JM, et al. Stability and degradation patterns of chemically modified analogs of apelin-13 in plasma and cerebrospinal fluid. Biopolymers. 2014;102:297–303.
  • Gerbier R, Alvear-Perez R, Margathe JF, et al. Development of original metabolically stable apelin-17 analogs with diuretic and cardiovascular effects. FASEB J. 2017;31:687–700.
  • Murza A, Besserer-Offroy E, Cote J, et al. C-Terminal modifications of apelin-13 significantly change ligand binding, receptor signaling, and hypotensive action. J Med Chem. 2015;58:2431–2440.
  • Murza A, Parent A, Besserer-Offroy E, et al. Elucidation of the structure-activity relationships of apelin: influence of unnatural amino acids on binding, signaling, and plasma stability. ChemMedChem. 2012;7:318–325.
  • Jia ZQ, Hou L, Leger A, et al. Cardiovascular effects of a PEGylated apelin. Peptides. 2012;38:181–188.
  • Juhl C, Els-Heindl S, Schonauer R, et al. Development of potent and metabolically stable APJ ligands with high therapeutic potential. ChemMedChem. 2016;11:2378-2384.
  • Hamada J, Kimura J, Ishida J, et al. Evaluation of novel cyclic analogues of apelin. Int J Mol Med. 2008;22:547–552.
  • Murza A, Sainsily X, Cote J, et al. Structure-activity relationship of novel macrocyclic biased apelin receptor agonists. Org Biomol Chem. 2017;15:449–458.
  • Huang Z, He L, Chen Z, et al. Targeting drugs to APJ receptor: from signaling to pathophysiological effects. J Cell Physiol. 2018;234:61-74.
  • Wang W, Zhang D, Yang R, et al. Hepatic and cardiac beneficial effects of a long-acting Fc-apelin fusion protein in diet-induced obese mice. Diabetes Metab Res Rev. 2018;34:e2997.
  • O’Harte FPM, Parthsarathy V, Hogg C, et al. Long-term treatment with acylated analogues of apelin-13 amide ameliorates diabetes and improves lipid profile of high-fat fed mice. PLoS One. 2018;13:e0202350.
  • Iturrioz X, Alvear-Perez R, De Mota N, et al. Identification and pharmacological properties of E339-3D6, the first nonpeptidic apelin receptor agonist. FASEB J. 2010;1506–1517.
  • Khan P, Maloney PR, Hedrick M, et al. Functional agonists of the apelin (APJ) receptor. Probe reports from the NIH molecular libraries program. Bethesda (MD): National Center for Biotechnology Information (US); 2011.
  • Narayanan S, Maitra R, Deschamps JR, et al. Discovery of a novel small molecule agonist scaffold for the APJ receptor. Bioorg Med Chem. 2016;24:3758–3770.
  • Dray C, Sakar Y, Vinel C, et al. The intestinal glucose-apelin cycle controls carbohydrate absorption in mice. Gastroenterology. 2013;144:771–780.
  • Macaluso NJ, Pitkin SL, Maguire JJ, et al. Discovery of a competitive apelin receptor (APJ) antagonist. ChemMedChem. 2011;6:1017–1023.
  • Berta J, Hoda MA, Laszlo V, et al. Apelin promotes lymphangiogenesis and lymph node metastasis. Oncotarget. 2014. In Press.
  • Picault FX, Chaves-Almagro C, Projetti F, et al. Tumour co-expression of apelin and its receptor is the basis of an autocrine loop involved in the growth of colon adenocarcinomas. Eur J Cancer. 2014;50:663–674.
  • Lee DK, Saldivia VR, Nguyen T, et al. Modification of the terminal residue of apelin-13 antagonizes its hypotensive action. Endocrinology. 2005;146:231–236.
  • Tiani C, Garcia-Pras E, Mejias M, et al. Apelin signaling modulates splanchnic angiogenesis and portosystemic collateral vessel formation in rats with portal hypertension. J Hepatol. 2008;50:296-305.
  • Zhou N, Fang J, Acheampong E, et al. Binding of ALX40-4C to APJ, a CNS-based receptor, inhibits its utilization as a co-receptor by HIV-1. Virology. 2003;312:196–203.
  • Le Gonidec S, Chaves-Almagro C, Bai Y, et al. Protamine is an antagonist of apelin receptor, and its activity is reversed by heparin. FASEB J. 2017;31:2507–2519.
  • Maloney PR, Khan P, Hedrick M, et al. Discovery of 4-oxo-6-((pyrimidin-2-ylthio)methyl)-4H-pyran-3-yl 4-nitrobenzoate (ML221) as a functional antagonist of the apelin (APJ) receptor. Bioorg Med Chem Lett. 2012;22:6656–6660.
  • Soccio RE. Chen ER and Lazar MA. Thiazolidinediones and the promise of insulin sensitization in type 2 diabetes. Cell Metab. 2014;20:573–591.
  • Zhou T, Xu X, Du M, et al. A preclinical overview of metformin for the treatment of type 2 diabetes. Biomed Pharmacothe. 2018;106:1227–1235.
  • Serpooshan V, Sivanesan S, Huang X, et al. [Pyr1]-apelin-13 delivery via nano-liposomal encapsulation attenuates pressure overload-induced cardiac dysfunction. Biomaterials. 2015;37:289–298.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.