520
Views
18
CrossRef citations to date
0
Altmetric
Original Research

Genome-wide bioinformatics analysis of FMN, SAM-I, glmS, TPP, lysine, purine, cobalamin, and SAH riboswitches for their applications as allosteric antibacterial drug targets in human pathogenic bacteria

&
Pages 631-643 | Received 15 Jan 2019, Accepted 09 May 2019, Published online: 14 May 2019

References

  • Penchovsky R, Traykovska M. Designing drugs that overcome antibacterial resistance: where do we stand and what should we do? Expert Opin Drug Discov. 2015 Jun;10(6):631–650. PubMed PMID: 25981754.
  • Perez-Gonzalez C, Grondin JP, Lafontaine DA, et al. Biophysical approaches to bacterial gene regulation by riboswitches. Adv Exp Med Biol. 2016;915:157–191. PubMed PMID: 27193543
  • Batey RT. Riboswitches: still a lot of undiscovered country. Rna. 2015 Apr;21(4):560–563. PubMed PMID: 25780138; PubMed Central PMCID: PMCPMC4371280
  • Nudler E, Mironov AS. The riboswitch control of bacterial metabolism. Trends Biochem Sci. 2004 Jan;29(1):11–17. PubMed PMID: 14729327
  • Tucker BJ, Breaker RR. Riboswitches as versatile gene control elements. Curr Opin Struct Biol. 2005 Jun;15(3):342–348. PubMed PMID: 15919195
  • Mehta NB, Balaji P. Riboswitches: classification, function and insilico approach. Int J. 2010;1:409–420.
  • Winkler WC, Breaker RR. Genetic control by metabolite-binding riboswitches. Chembiochem Eur J Chem Biol. 2003 Oct 6;4(10):1024–1032. PubMed PMID: 14523920.
  • Nahvi A, Sudarsan N, Ebert MS, et al. Genetic control by a metabolite binding mRNA. Chem Biol. 2002 9;Sep(9):1043. PubMed PMID: 12323379.
  • Regulski EE, Breaker RR. In-line probing analysis of riboswitches. post-transcriptional gene regulation. New York, USA: Springer; 2008. p. 53–67.
  • McCown PJ, Corbino KA, Stav S, et al. Riboswitch diversity and distribution. Rna. 2017 Jul;23(7):995–1011. PubMed PMID: 28396576; PubMed Central PMCID: PMCPMC5473149.
  • Penchovsky R. Computational design and biosensor applications of small molecule-sensing allosteric ribozymes. Biomacromolecules. 2013 Apr 8;14(4):1240–1249. PubMed PMID: 23452219.
  • Mandal M, Breaker RR. Gene regulation by riboswitches. Nat Rev Mol Cell Biol. 2004;5(6):451–463.
  • Mandal M, Breaker RR. Adenine riboswitches and gene activation by disruption of a transcription terminator. Nat Struct Mol Biol. 2004;11(1):29–35.
  • Bastet L, Chauvier A, Singh N, et al. Translational control and Rho-dependent transcription termination are intimately linked in riboswitch regulation. Nucleic Acids Res. 2017 Jul 7;45(12):7474–7486. PubMed PMID: 28520932; PubMed Central PMCID: PMCPMC5499598.
  • Hollands K, Proshkin S, Sklyarova S, et al. Riboswitch control of Rho-dependent transcription termination. Proc Natl Acad Sci USA. 2012 Apr 3;109(14):5376–5381. PubMed PMID: 22431636; PubMed Central PMCID: PMCPMC3325659.
  • Penchovsky R, Stoilova CC. Riboswitch-based antibacterial drug discovery using high-throughput screening methods. Expert Opin Drug Discov. 2013 Jan;8(1):65–82. PubMed PMID: 23163232
  • Soukup GA, Breaker RR. Engineering precision RNA molecular switches. Proc Natl Acad Sci USA. 1999 Mar 30;96(7):3584–3589. PubMed PMID: 10097080; PubMed Central PMCID: PMCPMC22337.
  • Loh E, Dussurget O, Gripenland J, et al. A trans-acting riboswitch controls expression of the virulence regulator PrfA in Listeria monocytogenes. Cell. 2009 Nov 13;139(4):770–779. PubMed PMID: 19914169.
  • Li S, Breaker RR. Eukaryotic TPP riboswitch regulation of alternative splicing involving long-distance base pairing. Nucleic Acids Res. 2013 Mar 1;41(5):3022–3031. PubMed PMID: 23376932; PubMed Central PMCID: PMCPMC3597705.
  • Kazanov MD, Vitreschak AG, Gelfand MS. Abundance and functional diversity of riboswitches in microbial communities. BMC Genomics. 2007;8:347. PubMed PMID: 17908319; PubMed Central PMCID: PMC2211319
  • Soukup JK, Soukup GA. Riboswitches exert genetic control through metabolite-induced conformational change. Curr Opin Struct Biol. 2004;14(3):344–349.
  • Deigan KE, Ferré-D’Amaré AR. Riboswitches: discovery of drugs that target bacterial gene-regulatory RNAs. Acc Chem Res. 2011;44(12):1329–1338.
  • Penchovsky R. inventorMethods for creating novel antibacterial agent using chimeric antisense oligonucleotides. 2018.
  • Blount K, Puskarz I, Penchovsky R, et al. Development and application of a high-throughput assay for glmS riboswitch activators. RNA Biol. 2006 Apr;3(2):77–81. PubMed PMID: 17114942
  • Penchovsky R. Computational design of allosteric ribozymes as molecular biosensors. Biotechnol Adv. 2014 Sep-Oct;32(5):1015–1027. PubMed PMID: 24877999
  • Penchovsky R, Breaker RR. Computational design and experimental validation of oligonucleotide-sensing allosteric ribozymes. Nat Biotechnol. 2005 Nov;23(11):1424–1433. PubMed PMID: 16244657
  • Kaloudas D, Pavlova N, Penchovsky R. EBWS: essential bioinformatics web services for sequence analyses. IEEE/ACM Trans Comput Biol Bioinform. 2018 Mar 16. DOI:10.1109/TCBB.2018.2816645. PubMed PMID: 29993817.
  • Sudarsan N, Barrick JE, Breaker RR. Metabolite-binding RNA domains are present in the genes of eukaryotes. Rna. 2003 Jun;9(6):644–647. PubMed PMID: 12756322; PubMed Central PMCID: PMCPMC1370431
  • Rodionov DA, Vitreschak AG, Mironov AA, et al. Regulation of lysine biosynthesis and transport genes in bacteria: yet another RNA riboswitch? Nucleic Acids Res. 2003 Dec 1;31(23):6748–6757. PubMed PMID: 14627808; PubMed Central PMCID: PMC290268
  • Grundy FJ, Lehman SC, Henkin TM. The L box regulon: lysine sensing by leader RNAs of bacterial lysine biosynthesis genes. Proc Natl Acad Sci USA. 2003 Oct 14;100(21):12057–12062. PubMed PMID: 14523230; PubMed Central PMCID: PMC218712.
  • Breaker RR. Riboswitches and the RNA world. Cold Spring Harb Perspect Biol. 2012 Feb;4(2). DOI:10.1101/cshperspect.a003566. PubMed PMID: 21106649; PubMed Central PMCID: PMC3281570.
  • Johnson JE Jr., Reyes FE, Polaski JT, et al. B12 cofactors directly stabilize an mRNA regulatory switch. Nature. 2012 Dec 6;492(7427):133–137. PubMed PMID: 23064232; PubMed Central PMCID: PMC3518761.
  • Wang JX, Lee ER, Morales DR, et al. Riboswitches that sense S-adenosylhomocysteine and activate genes involved in coenzyme recycling. Mol Cell. 2008;29(6):691–702.
  • Weinberg Z, Barrick JE, Yao Z, et al. Identification of 22 candidate structured RNAs in bacteria using the CMfinder comparative genomics pipeline. Nucleic Acids Res. 2007;35(14):4809–4819.
  • Vitreschak AG, Rodionov DA, Mironov AA, et al. Regulation of riboflavin biosynthesis and transport genes in bacteria by transcriptional and translational attenuation. Nucleic Acids Res. 2002 Jul 15;30(14):3141–3151. PubMed PMID: 12136096; PubMed Central PMCID: PMC135753
  • Serganov A, Huang L, Patel DJ. Coenzyme recognition and gene regulation by a flavin mononucleotide riboswitch. Nature. 2009 Mar 12;458(7235):233–237. PubMed PMID: 19169240; PubMed Central PMCID: PMC3726715.
  • Winkler WC, Cohen-Chalamish S, Breaker RR. An mRNA structure that controls gene expression by binding FMN. Proc Natl Acad Sci USA. 2002 Dec 10;99(25):15908–15913. PubMed PMID: 12456892; PubMed Central PMCID: PMC138538.
  • Mansjo M, Johansson J. The riboflavin analog roseoflavin targets an FMN-riboswitch and blocks Listeria monocytogenes growth, but also stimulates virulence gene-expression and infection. RNA Biol. 2011 Jul-Aug;8(4):674–680. PubMed PMID: 21593602; PubMed Central PMCID: PMCPMC3225981
  • Howe JA, Wang H, Fischmann TO, et al. Selective small-molecule inhibition of an RNA structural element. Nature. 2015 Oct 29;526(7575):672–677. PubMed PMID: 26416753; eng.
  • Wang H, Lin M, Xiong J, et al. editors. Workload-Aware Page-level flash translation layer for NAND flash-based storage systems. cloud computing and security. Cham: Springer International Publishing; 2017.
  • Krajewski SS, Ignatov D, Johansson J. Two are better than one: dual targeting of riboswitches by metabolite analogs. Cell Chem Biol. 2017 May 18;24(5):535–537. PubMed PMID: 28525764.
  • Epshtein V, Mironov AS, Nudler E. The riboswitch-mediated control of sulfur metabolism in bacteria. Proc Nat Acad Sci USA. 2003;100(9):5052–5056.
  • Montange RK, Batey RT. Structure of the S-adenosylmethionine riboswitch regulatory mRNA element. 2006.
  • Winkler WC, Nahvi A, Sudarsan N, et al. An mRNA structure that controls gene expression by binding S-adenosylmethionine. Nat Struct Mol Biol. 2003;10(9):701–707.
  • Vitreschak AG, Rodionov DA, Mironov AA, et al. Riboswitches: the oldest mechanism for the regulation of gene expression? Trends Genet. 2004;20(1):44–50.
  • Albers E. Metabolic characteristics and importance of the universal methionine salvage pathway recycling methionine from 5′‐methylthioadenosine. IUBMB Life. 2009;61(12):1132–1142.
  • Rodionov DA, Vitreschak AG, Mironov AA, et al. Comparative genomics of the methionine metabolism in Gram-positive bacteria: a variety of regulatory systems. Nucleic Acids Res. 2004;32(11):3340–3353.
  • Tomšič J, McDaniel BA, Grundy FJ, et al. Natural variability in S-adenosylmethionine (SAM)-dependent riboswitches: s-box elements in Bacillus subtilis exhibit differential sensitivity to SAM in vivo and in vitro. J Bacteriol. 2008;190(3):823–833.
  • Edwards TE, Ferre-D’Amare AR. Crystal structures of the thi-box riboswitch bound to thiamine pyrophosphate analogs reveal adaptive RNA-small molecule recognition. Structure. 2006 Sep;14(9):1459–1468. PubMed PMID: 16962976; eng
  • Breaker RR. Riboswitches and the RNA world. Cold Spring Harb Perspect Biol. 2012;4(2):a003566.
  • Chen L, Cressina E, Dixon N, et al. Probing riboswitch-ligand interactions using thiamine pyrophosphate analogues. Org Biomol Chem. 2012 Aug 14;10(30):5924–5931. PubMed PMID: 22514012; eng.
  • Bian J, Shen H, Tu Y, et al. The riboswitch regulates a thiamine pyrophosphate ABC transporter of the oral spirochete Treponema denticola. J Bacteriol. 2011 Aug;193(15):3912–3922. PubMed PMID: 21622748; PubMed Central PMCID: PMCPMC3147507.
  • Teplyakov A, Obmolova G, Badet-Denisot MA, et al. The mechanism of sugar phosphate isomerization by glucosamine 6-phosphate synthase. Protein Sci. 1999 Mar;8(3):596–602. PubMed PMID: 10091662; PubMed Central PMCID: PMC2144271.
  • Cochrane JC, Lipchock SV, Strobel SA. Structural investigation of the GlmS ribozyme bound to Its catalytic cofactor. Chem Biol. 2007 Jan;14(1):97–105. PubMed PMID: 17196404; PubMed Central PMCID: PMCPMC1847778
  • Roth A, Nahvi A, Lee M, et al. Characteristics of the glmS ribozyme suggest only structural roles for divalent metal ions. Rna. 2006 Apr;12(4):607–619. PubMed PMID: 16484375; PubMed Central PMCID: PMC1421096.
  • Blount KF, Breaker RR. Riboswitches as antibacterial drug targets. Nat Biotechnol. 2006 Dec;24(12):1558–1564. PubMed PMID: WOS:000242795800034; English
  • Urban JH, Vogel J. Two seemingly homologous noncoding RNAs act hierarchically to activate glmS mRNA translation. PLoS Biol. 2008 Mar 18;6(3):e64. PubMed PMID: 18351803; PubMed Central PMCID: PMC2267818.
  • Lunse CE, Schmidt MS, Wittmann V, et al. Carba-sugars activate the glmS-riboswitch of Staphylococcus aureus. ACS Chem Biol. 2011 Jul 15;6(7):675–678. PubMed PMID: 21486059; eng.
  • Schuller A, Matzner D, Lunse CE, et al. Activation of the glmS ribozyme confers bacterial growth inhibition. Chembiochem Eur J Chem Biol. 2017 Mar 2;18(5):435–440. PubMed PMID: 28012261.
  • Mandal M, Boese B, Barrick JE, et al. Riboswitches control fundamental biochemical pathways in Bacillus subtilis and other bacteria. Cell. 2003;113(5):577–586.
  • Krajewski SS, Isoz I, Johansson J. Antibacterial and antivirulence effect of 6-N-hydroxylaminopurine in Listeria monocytogenes. Nucleic Acids Res. 2017;45(4):1914–1924. PubMed PMID: 28062853
  • Reining A, Nozinovic S, Schlepckow K, et al. Three-state mechanism couples ligand and temperature sensing in riboswitches. Nature. 2013;499(7458):355–359.
  • Mehdizadeh Aghdam E, Hejazi MS, Barzegar A. Riboswitches: from living biosensors to novel targets of antibiotics. Gene. 2016 Nov 5;592(2):244–259. PubMed PMID: 27432066.
  • Owens RC Jr. An overview of harms associated with beta-lactam antimicrobials: where do the carbapenems fit in? Crit Care. 2008;12(Suppl 4):S3–S3. PubMed PMID: 18495060
  • Pinto JT, Zempleni J. Riboflavin. Adv Nutr. 2016;7(5):973–975. PubMed PMID: 27633112
  • Lunse CE, Schuller A, Mayer G. The promise of riboswitches as potential antibacterial drug targets. Int J Med Microbiol. 2014 Jan;304(1):79–92. PubMed PMID: 24140145

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.