549
Views
18
CrossRef citations to date
0
Altmetric
Review

Beyond EZH2: is the polycomb protein CBX2 an emerging target for anti-cancer therapy?

, &
Pages 565-578 | Received 03 Jan 2019, Accepted 31 May 2019, Published online: 10 Jun 2019

References

  • Kouzarides T. Chromatin modifications and their function. Cell. 2007 Feb 23;128(4):693–705. PubMed PMID: 17320507.
  • Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011 Mar;21(3):381–395. PubMed PMID: 21321607.
  • Chi P, Allis CD, Wang GG. Covalent histone modifications–miswritten, misinterpreted and mis-erased in human cancers. Nat Rev Cancer. 2010 Jul;10(7):457–469. PubMed PMID: 20574448.
  • Cao R, Wang L, Wang H, et al. Role of histone H3 lysine 27 methylation in polycomb-group silencing. Science. 2002;298(5595):1039–1043.
  • Young MD, Willson TA, Wakefield MJ, et al. ChIP-seq analysis reveals distinct H3K27me3 profiles that correlate with transcriptional activity. Nucleic Acids Res. 2011;39(17):7415–7427.
  • Liu J, Wu X, Zhang H, et al. Dynamics of RNA polymerase II pausing and bivalent histone H3 methylation during neuronal differentiation in brain development. Cell Rep. 2017 Aug 8;20(6):1307–1318. PubMed PMID: 28793256.
  • Cao R, Tsukada Y, Zhang Y. Role of Bmi-1 and Ring1A in H2A ubiquitylation and Hox gene silencing. Mol Cell. 2005 Dec 22;20(6):845–854. PubMed PMID: 16359901.
  • Nakagawa T, Kajitani T, Togo S, et al. Deubiquitylation of histone H2A activates transcriptional initiation via trans-histone cross-talk with H3K4 di- and trimethylation. Genes Dev. 2008 Jan 1;22(1):37–49. PubMed PMID: 18172164.
  • Zhou W, Zhu P, Wang J, et al. Histone H2A monoubiquitination represses transcription by inhibiting RNA polymerase II transcriptional elongation. Mol Cell. 2008 Jan 18;29(1):69–80. PubMed PMID: 18206970.
  • Azuara V, Perry P, Sauer S, et al. Chromatin signatures of pluripotent cell lines. Nat Cell Biol. 2006;8(5):532–538.
  • Blanpain C, Simons BD. Unravelling stem cell dynamics by lineage tracing. Nat Rev Mol Cell Biol. 2013 Aug;14(8):489–502. PubMed PMID: 23860235.
  • Brookes E, de Santiago I, Hebenstreit D, et al. Polycomb associates genome-wide with a specific RNA polymerase II variant, and regulates metabolic genes in ESCs. Cell Stem Cell. 2012 Feb 3;10(2):157–170. PubMed PMID: 22305566.
  • Voigt P, Tee WW, Reinberg D. A double take on bivalent promoters. Genes Dev. 2013 Jun 15;27(12):1318–1338. PubMed PMID: 23788621.
  • Al-Hajj M, Wicha MS, Benito-Hernandez A, et al. Prospective identification of tumorigenic breast cancer cells. Proc Nat Acad Sci USA. 2003;100(7):3983–3988.
  • Kleer CG, Cao Q, Varambally S, et al. EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc Nat Acad Sci USA. 2003;100(20):11606–11611.
  • Varambally S, Dhanasekaran SM, Zhou M, et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature. 2002 Oct 10;419(6907):624–629. PubMed PMID: 12374980.
  • Souroullas GP, Jeck WR, Parker JS, et al. An oncogenic Ezh2 mutation induces tumors through global redistribution of histone 3 lysine 27 trimethylation. Nat Med. 2016 Jun;22(6):632–640. PubMed PMID: 27135738.
  • Taube JH, Sphyris N, Johnson KS, et al. The H3K27me3-demethylase KDM6A is suppressed in breast cancer stem-like cells, and enables the resolution of bivalency during the mesenchymal-epithelial transition. Oncotarget. 2017;8(39):65548–65565.
  • Chang CJ, Yang JY, Xia W, et al. EZH2 promotes expansion of breast tumor initiating cells through activation of RAF1-beta-catenin signaling. Cancer Cell. 2011 Jan 18;19(1):86–100. PubMed PMID: 21215703.
  • Zhen CY, Duc HN, Kokotovic M, et al. Cbx2 stably associates with mitotic chromosomes via a PRC2- or PRC1-independent mechanism and is needed for recruiting PRC1 complex to mitotic chromosomes. Mol Biol Cell. 2014 Nov 15;25(23):3726–3739. PubMed PMID: 25232004.
  • Mager J, Montgomery ND, de Villena FP, et al. Genome imprinting regulated by the mouse polycomb group protein Eed. Nat Genet. 2003 Apr;33(4):502–507. PubMed PMID: 12627233.
  • Radulovic V, de Haan G, Klauke K. Polycomb-group proteins in hematopoietic stem cell regulation and hematopoietic neoplasms. Leukemia. 2013 Mar;27(3):523–533. PubMed PMID: 23257781.
  • Bruggeman SW, Valk-Lingbeek ME, van der Stoop PP, et al. Ink4a and Arf differentially affect cell proliferation and neural stem cell self-renewal in Bmi1-deficient mice. Genes Dev. 2005 Jun 15;19(12):1438–1443. PubMed PMID: 15964995.
  • Crea F, Paolicchi E, Marquez VE, et al. Polycomb genes and cancer: time for clinical application? Crit Rev Oncol Hematol. 2012 Aug;83(2):184–193. PubMed PMID: 22112692.
  • Lewis E. A gene complex controlling segmentation in Drosophila. Nature. 1978;276(5688):565–570.
  • Laprell F, Finkl K, Müller J. Propagation of polycomb-repressed chromatin requires sequence-specific recruitment to DNA. Science. 2017;356(6333):85–88.
  • Blackledge NP, Farcas AM, Kondo T, et al. Variant PRC1 complex-dependent H2A ubiquitylation drives PRC2 recruitment and polycomb domain formation. Cell. 2014 Jun 5;157(6):1445–1459. PubMed PMID: 24856970.
  • Pasini D, Bracken AP, Hansen JB, et al. The polycomb group protein Suz12 is required for embryonic stem cell differentiation. Mol Cell Biol. 2007 May;27(10):3769–3779. PubMed PMID: 17339329.
  • Nekrasov M, Wild B, Muller J. Nucleosome binding and histone methyltransferase activity of Drosophila PRC2. EMBO Rep. 2005 Apr;6(4):348–353. PubMed PMID: 15776017.
  • Margueron R, Li G, Sarma K, et al. Ezh1 and Ezh2 maintain repressive chromatin through different mechanisms. Mol Cell. 2008 Nov 21;32(4):503–518. PubMed PMID: 19026781.
  • Pasini D, Bracken AP, Jensen MR, et al. Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity. Embo J. 2004 Oct 13;23(20):4061–4071. PubMed PMID: 15385962.
  • Margueron R, Justin N, Ohno K, et al. Role of the polycomb protein EED in the propagation of repressive histone marks. Nature. 2009 Oct 8;461(7265):762–767. PubMed PMID: 19767730.
  • Wu H, Zeng H, Dong A, et al. Structure of the catalytic domain of EZH2 reveals conformational plasticity in cofactor and substrate binding sites and explains oncogenic mutations. PLoS One. 2013;8(12):e83737. PubMed PMID: 24367611
  • Gao Z, Zhang J, Bonasio R, et al. PCGF homologs, CBX proteins, and RYBP define functionally distinct PRC1 family complexes. Mol Cell. 2012 Feb 10;45(3):344–356. PubMed PMID: 22325352.
  • Plath K, Talbot D, Hamer KM, et al. Developmentally regulated alterations in polycomb repressive complex 1 proteins on the inactive X chromosome. J Cell Biol. 2004 Dec 20;167(6):1025–1035. PubMed PMID: 15596546.
  • Yap KL, Li S, Munoz-Cabello AM, et al. Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol Cell. 2010 Jun 11;38(5):662–674. PubMed PMID: 20541999.
  • Ku M, Koche RP, Rheinbay E, et al. Genomewide analysis of PRC1 and PRC2 occupancy identifies two classes of bivalent domains. PLoS Genet. 2008 Oct;4(10):e1000242. PubMed PMID: 18974828.
  • Fischle W, Wang Y, Jacobs SA, et al. Molecular basis for the discrimination of repressive methyl-lysine marks in histone H3 by polycomb and HP1 chromodomains. Genes Dev. 2003 Aug 1;17(15):1870–1881. PubMed PMID: 12897054.
  • Schoorlemmer J, Marcos-Guitiérrez C, Were F, et al. Ring1A is a transcriptional repressor that interacts with the polycomb-M33 protein and is expressed at rhombomere boundaries in the mouse hindbrain. Embo J. 1997;16(19):5930–5942.
  • Bernstein E, Duncan EM, Masui O, et al. Mouse polycomb proteins bind differentially to methylated histone H3 and RNA and are enriched in facultative heterochromatin. Mol Cell Biol. 2006 Apr;26(7):2560–2569. PubMed PMID: 16537902.
  • Pemberton H, Aderton E, Patel H, et al. Genome-wide co-localization of polycomb orthologs and their effects on gene expression in human fibroblasts. Genome Biol. 2014;15(2):R23.
  • Kundu S, Ji F, Sunwoo H, et al. Polycomb repressive complex 1 generates discrete compacted domains that change during differentiation. Mol Cell. 2017 Feb 2;65(3):432–446 e5. PubMed PMID: 28157505.
  • Bracken AP, Helin K. Polycomb group proteins: navigators of lineage pathways led astray in cancer. Nat Rev Cancer. 2009 Nov;9(11):773–784. . PubMed PMID: 19851313.
  • Morey L, Pascual G, Cozzuto L, et al. Nonoverlapping functions of the polycomb group Cbx family of proteins in embryonic stem cells. Cell Stem Cell. 2012 Jan 6;10(1):47–62. PubMed PMID: 22226355.
  • Luis NM, Morey L, Mejetta S, et al. Regulation of human epidermal stem cell proliferation and senescence requires polycomb- dependent and -independent functions of Cbx4. Cell Stem Cell. 2011 Sep 2;9(3):233–246. PubMed PMID: 21885019.
  • Agherbi H, Gaussmann-Wenger A, Verthuy C, et al. Polycomb mediated epigenetic silencing and replication timing at the INK4a/ARF locus during senescence. PLoS One. 2009 May 20;4(5):e5622. PubMed PMID: 19462008; PubMed Central PMCID: PMCPMC2680618.
  • Fonfria-Subiros E, Acosta-Reyes F, Saperas N, et al. Crystal structure of a complex of DNA with one AT-hook of HMGA1. PLoS One. 2012;7(5):e37120. PubMed PMID: 22615915
  • Tardat M, Albert M, Kunzmann R, et al. CBX2 targets PRC1 to constitutive heterochromatin in mouse zygotes in a parent-of-origin-dependent manner. Mol Cell. 2015 Apr 2;58(1):157–171. PubMed PMID: 25801166.
  • Kawaguchi T, Machida S, Kurumizaka H, et al. Phosphorylation of CBX2 controls its nucleosome-binding specificity. J Biochem. 2017 Nov 1;162(5):343–355. PubMed PMID: 28992316.
  • Morey L, Santanach A, Blanco E, et al. Polycomb regulates mesoderm cell fate-specification in embryonic stem cells through activation and repression mechanisms. Cell Stem Cell. 2015;17(3):300–315.
  • Katoh-Fukui Y, Tsuchiya R, Shiroishi T, et al. Male-to-female sex reversal in M33 mutant mice. Nature. 1998;393(6686):688–692.
  • Klauke K, Radulovic V, Broekhuis M, et al. Polycomb Cbx family members mediate the balance between haematopoietic stem cell self-renewal and differentiation. Nat Cell Biol. 2013 Apr;15(4):353–362. PubMed PMID: 23502315.
  • Clermont PL, Sun L, Crea F, et al. Genotranscriptomic meta-analysis of the polycomb gene CBX2 in human cancers: initial evidence of an oncogenic role. Br J Cancer. 2014 Oct 14;111(8):1663–1672. PubMed PMID: 25225902.
  • Ngollo M, Lebert A, Daures M, et al. Global analysis of H3K27me3 as an epigenetic marker in prostate cancer progression. BMC Cancer. 2017 Apr 12;17(1):261. PubMed PMID: 28403887.
  • Li H, Cai Q, Godwin AK, et al. Enhancer of zeste homolog 2 promotes the proliferation and invasion of epithelial ovarian cancer cells. Mol Cancer Res. 2010 Dec;8(12):1610–1618. PubMed PMID: 21115743.
  • He LR, Liu MZ, Li BK, et al. Prognostic impact of H3K27me3 expression on locoregional progression after chemoradiotherapy in esophageal squamous cell carcinoma. BMC Cancer. 2009 Dec 22;9:461. PubMed PMID: 20028503.
  • Cai MY, Hou JH, Rao HL, et al. High expression of H3K27me3 in human hepatocellular carcinomas correlates closely with vascular invasion and predicts worse prognosis in patients. Mol Med. 2011 Jan-Feb;17(1–2):12–20. PubMed PMID: 20844838.
  • Liu J, Li Y, Liao Y, et al. High expression of H3K27me3 is an independent predictor of worse outcome in patients with urothelial carcinoma of bladder treated with radical cystectomy. Biomed Res Int. 2013;2013:390482. PubMed PMID: 24093096.
  • Gao SB, Zheng QF, Xu B, et al. EZH2 represses target genes through H3K27-dependent and H3K27-independent mechanisms in hepatocellular carcinoma. Mol Cancer Res. 2014 Oct;12(10):1388–1397. PubMed PMID: 24916103.
  • Wassef M, Rodilla V, Teissandier A, et al. Impaired PRC2 activity promotes transcriptional instability and favors breast tumorigenesis. Genes Dev. 2015 Dec 15;29(24):2547–2562. PubMed PMID: 26637281.
  • Bracken AP, Kleine-Kohlbrecher D, Dietrich N, et al. The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells. Genes Dev. 2007 Mar 1;21(5):525–530. PubMed PMID: 17344414.
  • Beckedorff FC, Ayupe AC, Crocci-Souza R, et al. The intronic long noncoding RNA ANRASSF1 recruits PRC2 to the RASSF1A promoter, reducing the expression of RASSF1A and increasing cell proliferation. PLoS Genet. 2013;9(8):e1003705. PubMed PMID: 23990798
  • Cao Q, Yu J, Dhanasekaran SM, et al. Repression of E-cadherin by the polycomb group protein EZH2 in cancer. Oncogene. 2008 Dec 11;27(58):7274–7284. PubMed PMID: 18806826.
  • Lee TI, Jenner RG, Boyer LA, et al. Control of developmental regulators by polycomb in human embryonic stem cells. Cell. 2006 Apr 21;125(2):301–313. PubMed PMID: 16630818.
  • Yamazaki J, Estecio MR, Lu Y, et al. The epigenome of AML stem and progenitor cells. Epigenetics. 2013 Jan;8(1):92–104. PubMed PMID: 23249680.
  • Iliopoulos D, Lindahl-Allen M, Polytarchou C, et al. Loss of miR-200 inhibition of Suz12 leads to polycomb-mediated repression required for the formation and maintenance of cancer stem cells. Mol Cell. 2010 Sep 10;39(5):761–772. PubMed PMID: 20832727.
  • Chaffer CL, Marjanovic ND, Lee T, et al. Poised chromatin at the ZEB1 promoter enables breast cancer cell plasticity and enhances tumorigenicity. Cell. 2013 Jul 3;154(1):61–74. PubMed PMID: 23827675.
  • Wei Y, Xia W, Zhang Z, et al. Loss of trimethylation at lysine 27 of histone H3 is a predictor of poor outcome in breast, ovarian, and pancreatic cancers. Mol Carcinog. 2008 Sep;47(9):701–706. PubMed PMID: 18176935.
  • Skourti-Stathaki K, Torlai Triglia E, Warburton M, et al. R-loops enhance polycomb repression at a subset of developmental regulator genes. Mol Cell. 2019 Mar 7;73(5):930–945.e4. PubMed PMID: 30709709.
  • Beguelin W, Popovic R, Teater M, et al. EZH2 is required for germinal center formation and somatic EZH2 mutations promote lymphoid transformation. Cancer Cell. 2013 May 13;23(5):677–692. PubMed PMID: 23680150.
  • Leeb M, Pasini D, Novatchkova M, et al. Polycomb complexes act redundantly to repress genomic repeats and genes. Genes Dev. 2010 Feb 1;24(3):265–276. PubMed PMID: 20123906.
  • Ramadoss S, Chen X, Wang CY. Histone demethylase KDM6B promotes epithelial-mesenchymal transition. J Biol Chem. 2012 Dec 28;287(53):44508–44517. PubMed PMID: 23152497.
  • Dhar SS, Lee SH, Chen K, et al. An essential role for UTX in resolution and activation of bivalent promoters. Nucleic Acids Res. 2016 May 5;44(8):3659–3674. PubMed PMID: 26762983.
  • Molofsky AV, Pardal R, Iwashita T, et al. Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature. 2003 Oct 30;425(6961):962–967. PubMed PMID: 14562059.
  • Pietersen AM, Evers B, Prasad AA, et al. Bmi1 regulates stem cells and proliferation and differentiation of committed cells in mammary epithelium. Curr Biol. 2008 Jul 22;18(14):1094–1099. PubMed PMID: 18635350.
  • Prince ME, Sivanandan R, Kaczorowski A, et al. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Nat Acad Sci USA. 2007;104(3):973–978.
  • Chen D, Wu M, Li Y, et al. Targeting BMI1(+) cancer stem cells overcomes chemoresistance and inhibits metastases in squamous cell carcinoma. Cell Stem Cell. 2017 May 4;20(5):621–634 e6. PubMed PMID: 28285905.
  • Bernard D, Martinez-Leal JF, Rizzo S, et al. CBX7 controls the growth of normal and tumor-derived prostate cells by repressing the Ink4a/Arf locus. Oncogene. 2005 Aug 25;24(36):5543–5551. PubMed PMID: 15897876.
  • Jung J, Buisman SC, Weersing E, et al. CBX7 induces self-renewal of human normal and malignant hematopoietic stem and progenitor cells by canonical and non-canonical interactions. Cell Rep. 2019 Feb 12;26(7):1906–1918.e8. PubMed PMID: 30759399.
  • Wheeler LJ, Watson ZL, Qamar L, et al. CBX2 identified as driver of anoikis escape and dissemination in high grade serous ovarian cancer. Oncogenesis. 2018;7(11). DOI:10.1038/s41389-018-0103-1.
  • Zheng H, Jiang W-H, Tian T, et al. CBX6 overexpression contributes to tumor progression and is predictive of a poor prognosis in hepatocellular carcinoma. Oncotarget. 2017;8(12):18872–18884.
  • Scott CL, Gil J, Hernando E, et al. Role of the chromobox protein CBX7 in lymphomagenesis. Proc Nat Acad Sci USA. 2007;104(13):5389–5394.
  • Pickl JM, Tichy D, Kuryshev VY, et al. Ago-RIP-Seq identifies polycomb repressive complex I member CBX7 as a major target of miR-375 in prostate cancer progression. Oncotarget. 2016 Sep 13;7(37):59589–59603. PubMed PMID: 27449098.
  • Forzati F, Federico A, Pallante P, et al. CBX7 is a tumor suppressor in mice and humans. J Clin Invest. 2012 Feb;122(2):612–623. PubMed PMID: 22214847.
  • Pallante P, Federico A, Berlingieri MT, et al. Loss of the CBX7 gene expression correlates with a highly malignant phenotype in thyroid cancer. Cancer Res. 2008 Aug 15;68(16):6770–6778. PubMed PMID: 18701502.
  • Shinjo K, Yamashita Y, Yamamoto E, et al. Expression of chromobox homolog 7 (CBX7) is associated with poor prognosis in ovarian clear cell adenocarcinoma via TRAIL-induced apoptotic pathway regulation. Int J Cancer. 2014 Jul 15;135(2):308–318. PubMed PMID: 24375438.
  • Federico A, Pallante P, Bianco M, et al. Chromobox protein homologue 7 protein, with decreased expression in human carcinomas, positively regulates E-cadherin expression by interacting with the histone deacetylase 2 protein. Cancer Res. 2009 Sep 1;69(17):7079–7087. PubMed PMID: 19706751.
  • Liang Y-K, Lin H-Y, Chen C-F, et al. Prognostic values of distinct CBX family members in breast cancer. Oncotarget. 2017;8(54):92375–92387.
  • Clermont PL, Crea F, Chiang YT, et al. Identification of the epigenetic reader CBX2 as a potential drug target in advanced prostate cancer. Clin Epigenetics. 2016:8:16. PubMed PMID: 26877821.
  • Nagy A, Lanczky A, Menyhart O, et al. Validation of miRNA prognostic power in hepatocellular carcinoma using expression data of independent datasets. Sci Rep. 2018 Jun 15;8(1):9227. PubMed PMID: 29907753.
  • Tsai HC, Baylin SB. Cancer epigenetics: linking basic biology to clinical medicine. Cell Res. 2011 Mar;21(3):502–517. PubMed PMID: 21321605.
  • Berthon C, Raffoux E, Thomas X, et al. Bromodomain inhibitor OTX015 in patients with acute leukaemia: a dose-escalation, phase 1 study. Lancet Haematol. 2016;3(4):e186–e195.
  • Shorstova T, Marques M, Su J, et al. SWI/SNF-compromised cancers are susceptible to bromodomain inhibitors. Cancer Res. 2019 May 15;79(10):2761–2774. PubMed PMID: 30877105.
  • Kim KH, Roberts CW. Targeting EZH2 in cancer. Nat Med. 2016 Feb;22(2):128–134. PubMed PMID: 26845405.
  • Di Costanzo A, Del Gaudio N, Conte L, et al. The HDAC inhibitor SAHA regulates CBX2 stability via a SUMO-triggered ubiquitin-mediated pathway in leukemia. Oncogene. 2018 May;37(19):2559–2572. PubMed PMID: 29467492.
  • Eid W, Opitz L, Biason-Lauber A. Genome-wide identification of CBX2 targets: insights in the human sex development network. Mol Endocrinol. 2015 Feb;29(2):247–257. PubMed PMID: 25569159.
  • Hilmi K, Jangal M, Marques M, et al. CTCF facilitates DNA double-strand break repair by enhancing homologous recombination repair. Sci Adv. 2017;3(5):e1601898.
  • Chen WY, Zhang XY, Liu T, et al. Chromobox homolog 2 protein: A novel biomarker for predicting prognosis and Taxol sensitivity in patients with breast cancer. Oncol Lett. 2017 Mar;13(3):1149–1156. PubMed PMID: 28454227.
  • Italiano A, Soria JC, Toulmonde M, et al. Tazemetostat, an EZH2 inhibitor, in relapsed or refractory B-cell non-Hodgkin lymphoma and advanced solid tumours: a first-in-human, open-label, phase 1 study. Lancet Oncol. 2018 May;19(5):649–659. PubMed PMID: 29650362.
  • Fioravanti R, Stazi G, Zwergel C, et al. Six years (2012–2018) of researches on catalytic EZH2 inhibitors: the boom of the 2-pyridone compounds. Chem Rec. 2018 Dec;18(12):1818–1832. PubMed PMID: 30338896.
  • Wang X, Li L, Wu Y, et al. CBX4 suppresses metastasis via recruitment of HDAC3 to the Runx2 promoter in colorectal carcinoma. Cancer Res. 2016 Dec 15;76(24):7277–7289. PubMed PMID: 27864346.
  • Simhadri C, Gignac MC, Anderson CJ, et al. Structure-activity relationships of Cbx7 inhibitors, including selectivity studies against other Cbx proteins. ACS Omega. 2016 Oct 31;1(4):541–551. PubMed PMID: 30023485.
  • Beshara CS, Jones CE, Daze KD, et al. A simple calixarene recognizes post-translationally methylated lysine. Chem Bio Chem. 2010 Jan 4;11(1):63–66. PubMed PMID: 19937593.
  • Tabet S, Douglas SF, Daze KD, et al. Synthetic trimethyllysine receptors that bind histone 3, trimethyllysine 27 (H3K27me3) and disrupt its interaction with the epigenetic reader protein CBX7. Bioorg Med Chem. 2013 Nov 15;21(22):7004–7010. PubMed PMID: 24100156.
  • Ren C, Morohashi K, Plotnikov AN, et al. Small-molecule modulators of methyl-lysine binding for the CBX7 chromodomain. Chem Biol. 2015 Feb 19;22(2):161–168. PubMed PMID: 25660273.
  • Kaustov L, Ouyang H, Amaya M, et al. Recognition and specificity determinants of the human cbx chromodomains. J Biol Chem. 2011 Jan 7;286(1):521–529. PubMed PMID: 21047797.
  • Simhadri C, Daze KD, Douglas SF, et al. Chromodomain antagonists that target the polycomb-group methyllysine reader protein chromobox homolog 7 (CBX7). J Med Chem. 2014 Apr 10;57(7):2874–2883. PubMed PMID: 24625057.
  • Stuckey JI, Dickson BM, Cheng N, et al. A cellular chemical probe targeting the chromodomains of polycomb repressive complex 1. Nat Chem Biol. 2016 Mar;12(3):180–187. PubMed PMID: 26807715.
  • Liu H, Li Z, Li L. The molecular selectivity of UNC3866 inhibitor for polycomb CBX7 protein from molecular dynamics simulation. Comput Biol Chem. 2018 Jun;74:339–346. PubMed PMID: 29723807.
  • Nishida Y, Maeda A, Kim MJ, et al. The novel BMI-1 inhibitor PTC596 downregulates MCL-1 and induces p53-independent mitochondrial apoptosis in acute myeloid leukemia progenitor cells. Blood Cancer J. 2017 Feb 17;7(2):e527. PubMed PMID: 28211885.
  • Kreso A, van Galen P, Pedley NM, et al. Self-renewal as a therapeutic target in human colorectal cancer. Nat Med. 2014 Jan;20(1):29–36. PubMed PMID: 24292392.
  • Alzrigat M, Parraga AA, Majumder MM, et al. The polycomb group protein BMI-1 inhibitor PTC-209 is a potent anti-myeloma agent alone or in combination with epigenetic inhibitors targeting EZH2 and the BET bromodomains. Oncotarget. 2017;8(61):103731–103743.
  • Bunnage ME, Chekler EL, Jones LH. Target validation using chemical probes. Nat Chem Biol. 2013 Apr;9(4):195–199. PubMed PMID: 23508172.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.