684
Views
5
CrossRef citations to date
0
Altmetric
Review

COPD: preclinical models and emerging therapeutic targets

, &
Pages 829-838 | Received 15 May 2019, Accepted 11 Sep 2019, Published online: 20 Sep 2019

References

  • Alfageme I, de LP AJ, Miravitlles M, et al. 10 years after EPISCAN: a new study on the prevalence of COPD in Spain -A summary of the EPISCAN II Protocol. Arch Bronconeumol. 2019;55:38–47.
  • Miravitlles M, Soler-Cataluna JJ, Calle M, et al. Spanish guidelines for management of chronic obstructive pulmonary disease (GesEPOC) 2017. Pharmacological treatment of stable phase. Arch Bronconeumol. 2017;53:324–335.
  • Pleguezuelos E, Gimeno-Santos E, Hernandez C, et al. Recommendations on non-pharmacological treatment in chronic obstructive pulmonary disease from the Spanish COPD Guidelines (GesEPOC 2017). Arch Bronconeumol. 2018;54:568–575.
  • Vogelmeier CF, Criner GJ, Martinez FJ, et al. Erratum to “Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease 2017 report: GOLD executive summary” [Arch Bronconeumol]. Arch Bronconeumol. 2017;53:411–412.
  • Barreiro E. Impact of physical activity and exercise on chronic obstructive pulmonary disease phenotypes: the relevance of muscle adaptation. Arch Bronconeumol. 2019. doi:10.1016/j.arbres.2019.04.024.
  • Gea J, Sancho-Munoz A, Chalela R. Nutritional status and muscle dysfunction in chronic respiratory diseases: stable phase versus acute exacerbations. J Thorac Dis. 2018;10:S1332–S1354.
  • Gea J. The future of biological therapies in COPD. Arch Bronconeumol. 2018;54:185–186.
  • Gea J, Pascual S, Castro-Acosta A, et al. The BIOMEPOC project: personalized biomarkers and clinical profiles in chronic obstructive pulmonary disease. Arch Bronconeumol. 2019;55:93–99.
  • Gea J, Martinez-Llorens J. Muscle dysfunction in chronic obstructive pulmonary disease: latest developments. Arch Bronconeumol. 2019;55:237–238.
  • Miller LA, Royer CM, Pinkerton KE, et al. Nonhuman primate models of respiratory disease: past, present, and future. Ilar J. 2017;58:269–280.
  • Tan WC, Ng TP. COPD in Asia: where East meets West. Chest. 2008;133:517–527.
  • Barreiro E, Peinado VI, Galdiz JB, et al. Cigarette smoke-induced oxidative stress: A role in chronic obstructive pulmonary disease skeletal muscle dysfunction. Am J Respir Crit Care Med. 2010;182:477–488.
  • Barreiro E, Del Puerto-Nevado L, Puig-Vilanova E, et al. Cigarette smoke-induced oxidative stress in skeletal muscles of mice. Respir Physiol Neurobiol. 2012;182:9–17.
  • Paul T, Salazar-Degracia A, Peinado VI, et al. Soluble guanylate cyclase stimulation reduces oxidative stress in experimental chronic obstructive pulmonary disease. PLoS One. 2018;13:e0190628.
  • Austin V, Crack PJ, Bozinovski S, et al. COPD and stroke: are systemic inflammation and oxidative stress the missing links? Clin Sci (Lond). 2016;130:1039–1050.
  • Basic VT, Tadele E, Elmabsout AA, et al. Exposure to cigarette smoke induces overexpression of von Hippel-Lindau tumor suppressor in mouse skeletal muscle. Am J Physiol Lung Cell Mol Physiol. 2012;303:L519–L527.
  • Jones B, Donovan C, Liu G, et al. Animal models of COPD: what do they tell us? Respirology. 2017;22:21–32.
  • Vlahos R, Bozinovski S. Recent advances in pre-clinical mouse models of COPD. Clin Sci (Lond). 2014;126:253–265.
  • Khedoe PP, Rensen PC, Berbee JF, et al. Murine models of cardiovascular comorbidity in chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol. 2016;310:L1011–L1027.
  • Demura Y, Taraseviciene-Stewart L, Scerbavicius R, et al. N-acetylcysteine treatment protects against VEGF-receptor blockade-related emphysema. COPD. 2004;1:25–32.
  • Takahashi Y, Izumi Y, Kohno M, et al. Airway administration of vascular endothelial growth factor siRNAs induces transient airspace enlargement in mice. Int J Med Sci. 2013;10:1702–1714.
  • de Oliveira MV, de Novaes RN, RS S, et al. Endotoxin-induced emphysema exacerbation: a novel model of chronic obstructive pulmonary disease exacerbations causing cardiopulmonary impairment and diaphragm dysfunction. Front Physiol. 2019;10:664.
  • Sajjan U, Ganesan S, Comstock AT, et al. Elastase- and LPS-exposed mice display altered responses to rhinovirus infection. Am J Physiol Lung Cell Mol Physiol. 2009;297:L931–L944.
  • Gilmour MI, Daniels M, McCrillis RC, et al. Air pollutant-enhanced respiratory disease in experimental animals. Environ Health Perspect. 2001;109(Suppl 4):619–622.
  • Kapourchali FR, Surendiran G, Chen L, et al. Animal models of atherosclerosis. World J Clin Cases. 2014;2:126–132.
  • TLJ L-C, Matthay RA. Pulmonary hypertension and cor pulmonale in COPD. Semin Respir Crit Care Med. 2003;24:263–272.
  • Barreiro E, Puig-Vilanova E, Marin-Corral J, et al. Therapeutic approaches in mitochondrial dysfunction, proteolysis, and structural alterations of diaphragm and gastrocnemius in rats with chronic heart failure. J Cell Physiol. 2016;231:1495–1513.
  • Bertaglia RS, Reissler J, Lopes FS, et al. Differential morphofunctional characteristics and gene expression in fast and slow muscle of rats with monocrotaline-induced heart failure. J Mol Histol. 2011;42:205–215.
  • van Hees HW, van der Heijden HF, Ottenheijm CA, et al. Diaphragm single-fiber weakness and loss of myosin in congestive heart failure rats. Am J Physiol Heart Circ Physiol. 2007;293:H819–H828.
  • van Hees HW, Li YP, Ottenheijm CA, et al. Proteasome inhibition improves diaphragm function in congestive heart failure rats. Am J Physiol Lung Cell Mol Physiol. 2008;294:L1260–L1268.
  • van Hees HW, Dekhuijzen PN, Heunks LM. Levosimendan enhances force generation of diaphragm muscle from patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2009;179:41–47.
  • Vescovo G, Ceconi C, Bernocchi P, et al. Skeletal muscle myosin heavy chain expression in rats with monocrotaline-induced cardiac hypertrophy and failure. Relation to blood flow and degree of muscle atrophy. Cardiovasc Res. 1998;39:233–241.
  • Vescovo G, Zennaro R, Sandri M, et al. Apoptosis of skeletal muscle myofibers and interstitial cells in experimental heart failure. J Mol Cell Cardiol. 1998;30:2449–2459.
  • Vescovo G, Volterrani M, Zennaro R, et al. Apoptosis in the skeletal muscle of patients with heart failure: investigation of clinical and biochemical changes. Heart. 2000;84:431–437.
  • Vescovo G, Ambrosio GB, Dalla LL. Apoptosis and changes in contractile protein pattern in the skeletal muscle in heart failure. Acta Physiol Scand. 2001;171:305–310.
  • Sorensen GL. Surfactant Protein D in respiratory and non-respiratory diseases. Front Med (Lausanne). 2018;5:18.
  • Hartshorn KL, Crouch E, White MR, et al. Pulmonary surfactant proteins A and D enhance neutrophil uptake of bacteria. Am J Physiol. 1998;274:L958–L969.
  • Pikaar JC, Voorhout WF, van Golde LM, et al. Opsonic activities of surfactant proteins A and D in phagocytosis of gram-negative bacteria by alveolar macrophages. J Infect Dis. 1995;172:481–489.
  • Restrepo CI, Dong Q, Savov J, et al. Surfactant protein D stimulates phagocytosis of Pseudomonas aeruginosa by alveolar macrophages. Am J Respir Cell Mol Biol. 1999;21:576–585.
  • Botas C, Poulain F, Akiyama J, et al. Altered surfactant homeostasis and alveolar type II cell morphology in mice lacking surfactant protein D. Proc Natl Acad Sci U S A. 1998;95:11869–11874.
  • Knudsen L, Ochs K, Boxler L, et al. Surfactant protein D (SP-D) deficiency is attenuated in humanised mice expressing the Met(11)Thr short nucleotide polymorphism of SP-D: implications for surfactant metabolism in the lung. J Anat. 2013;223:581–592.
  • Wert SE, Yoshida M, LeVine AM, et al. Increased metalloproteinase activity, oxidant production, and emphysema in surfactant protein D gene-inactivated mice. Proc Natl Acad Sci U S A. 2000;97:5972–5977.
  • Hastings RH, Grady M, Sakuma T, et al. Clearance of different-sized proteins from the alveolar space in humans and rabbits. J Appl Physiol (1985). 1992;73:1310–1316.
  • More JM, Voelker DR, Silveira LJ, et al. Smoking reduces surfactant protein D and phospholipids in patients with and without chronic obstructive pulmonary disease. BMC Pulm Med. 2010;10:53.
  • Barlo NP, van Moorsel CH, Ruven HJ, et al. Surfactant protein-D predicts survival in patients with idiopathic pulmonary fibrosis. Sarcoidosis Vasc Diffuse Lung Dis. 2009;26:155–161.
  • Celli BR, Locantore N, Yates J, et al. Inflammatory biomarkers improve clinical prediction of mortality in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2012;185:1065–1072.
  • Eisner MD, Parsons P, Matthay MA, et al. Plasma surfactant protein levels and clinical outcomes in patients with acute lung injury. Thorax. 2003;58:983–988.
  • Determann RM, Royakkers AA, Haitsma JJ, et al. Plasma levels of surfactant protein D and KL-6 for evaluation of lung injury in critically ill mechanically ventilated patients. BMC Pulm Med. 2010;10:6.
  • Garcia-Laorden MI, Rodriguez DCF, Sole-Violan J, et al. Influence of genetic variability at the surfactant proteins A and D in community-acquired pneumonia: a prospective, observational, genetic study. Crit Care. 2011;15:R57.
  • Leth-Larsen R, Nordenbaek C, Tornoe I, et al. Surfactant protein D (SP-D) serum levels in patients with community-acquired pneumonia. Clin Immunol. 2003;108:29–37.
  • Obeidat M, Li X, Burgess S, et al. Surfactant protein D is a causal risk factor for COPD: results of Mendelian randomisation. Eur Respir J. 2017 Nov 30;50:pii: 1700657. doi: 10.1183/13993003.00657-2017.
  • Sorensen GL, Hjelmborg J, Kyvik KO, et al. Genetic and environmental influences of surfactant protein D serum levels. Am J Physiol Lung Cell Mol Physiol. 2006;290:L1010–L1017.
  • Moazed F, Burnham EL, Vandivier RW, et al. Cigarette smokers have exaggerated alveolar barrier disruption in response to lipopolysaccharide inhalation. Thorax. 2016;71:1130–1136.
  • Zou W, Liu S, Hu J, et al. Nicotine reduces the levels of surfactant proteins A and D via Wnt/β-catenin and PKC signaling in human airway epithelial cells. Respir Physiol Neurobiol. 2016;221:1–10.
  • Bergeron C, Tulic MK, Hamid Q. Airway remodelling in asthma: from benchside to clinical practice. Can Respir J. 2010;17:e85–e93.
  • Brasier AR. Therapeutic targets for inflammation-mediated airway remodeling in chronic lung disease. Expert Rev Respir Med. 2018;12:931–939.
  • Karvonen HM, Lehtonen ST, Harju T, et al. Myofibroblast expression in airways and alveoli is affected by smoking and COPD. Respir Res. 2013;14:84.
  • Kim KK, Kugler MC, Wolters PJ, et al. Alveolar epithelial cell mesenchymal transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular matrix. Proc Natl Acad Sci U S A. 2006;103:13180–13185.
  • Phillips RJ, Burdick MD, Hong K, et al. Circulating fibrocytes traffic to the lungs in response to CXCL12 and mediate fibrosis. J Clin Invest. 2004;114:438–446.
  • Liu Z, Tian B, Chen H, et al. Discovery of potent and selective BRD4 inhibitors capable of blocking TLR3-induced acute airway inflammation. Eur J Med Chem. 2018;151:450–461.
  • Liu Z, Wang P, Chen H, et al. Drug Discovery Targeting Bromodomain-Containing Protein 4. J Med Chem. 2017;60:4533–4558.
  • Rival Y, Hoffmann R, Didier B, et al. 5-HT3 antagonists derived from aminopyridazine-type muscarinic M1 agonists. J Med Chem. 1998;41:311–317.
  • Broekman W, Khedoe PPSJ, Schepers K, et al. Mesenchymal stromal cells: a novel therapy for the treatment of chronic obstructive pulmonary disease? Thorax. 2018;73:565–574.
  • Ng-Blichfeldt JP, de Jong T, Kortekaas RK, et al. TGF-beta activation impairs fibroblast ability to support adult lung epithelial progenitor cell organoid formation. Am J Physiol Lung Cell Mol Physiol. 2019 Jul 1;317(1):L14–L28.
  • Ng-Blichfeldt JP, Gosens R, Dean C, et al. Regenerative pharmacology for COPD: breathing new life into old lungs. Thorax. 2019;74:890–897.
  • Mei SH, McCarter SD, Deng Y, et al. Prevention of LPS-induced acute lung injury in mice by mesenchymal stem cells overexpressing angiopoietin 1. PLoS Med. 2007;4:e269.
  • Fricker M, Deane A, Hansbro PM. Animal models of chronic obstructive pulmonary disease. Expert Opin Drug Discov. 2014;9:629–645.
  • Shapiro SD, Demeo DL, Silverman EK. Smoke and mirrors: mouse models as a reflection of human chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2004;170:929–931.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.